共查询到18条相似文献,搜索用时 109 毫秒
1.
兰花大棚内无线传感器网络433MHz信道传播特性试验 总被引:2,自引:3,他引:2
不同的应用环境对无线传感器网络的性能有一定的影响。该文针对兰花大棚环境中无线传感器网络节点部署的要求及其应用环境的特性,以433 MHz为载波频率,研究了无线射频信号的传播特性和无线信号与影响因素之间的关系,影响因素包括发射功率、数据包长度、距离、发射端位置等参数,获得了接收信号强度、丢包率等数据,并进行了统计分析。试验结果表明,该无线传感器网络信号的衰减符合对数模型,其决定系数R2最大为0.9246,最小为0.8753;发射功率为0和-5 dBm时,信号较强、通信成功率较高;发射功率处在0和-20 dBm时接收信号强度波动较大;在数据传输速率为1.2 kbps、和调制扩频为高斯频移键控方式等参数确定的情况下数据包的长度对丢包率的影响很小。在上述试验研究的基础上,建立了发射功率和接收信号强度之间的关系模型,模型参数与发射功率之间、传播环境因子n与发射功率之间成二次多项式关系,相关系数分别达到0.9967和0.8686;验证试验结果表明:该模型可以较好地预测不同发射功率不同通信距离的接收信号强度,为兰花大棚无线传感器网络的组建提供支持。此外,设计了接收信号强度三维曲面图和等高曲线图,可直观反映兰花大棚环境下无线信号的传播特性,为今后无线节点布置与组网提供依据。 相似文献
2.
基于无线传感器网络的温室栽培营养液电导率监测系统 总被引:1,自引:2,他引:1
温室营养液无土栽培,具有节约种植成本、生产效率高等优点.监测营养液的电导率、pH值等特性参数,是实现营养液无土栽培信息化与自动化的基础.为了实现温室无土栽培营养液的实时监测,开发了基于无线传感器网络(wireless sensor network, WSN)的营养液电导率实时监测系统.系统以JN5139为中央控制器同时控制营养液电导率信息采集单元和无线通讯单元,实现了营养液电导率信息的实时采集与处理、LCD显示和键盘输入等人机交互操作以及基于WSN的营养液电导率实时测量自组织网络,同时系统集成了GPRS模块,实现了营养液电导率与温度信息的远程传输与监控等功能.系统采用星型网络拓扑结构,并进行定时休眠、传感器掉电控制来节省能源消耗.针对系统的实用性和可靠性进行了系统标定、温度补偿以及温室试验,分析比较了电导率测量线性与非线性模型.试验结果表明分段线性模型建模效果较好,分段拟合R2均在0.97以上.系统的测量范围为0.5~2.9 mS/cm,测量结果能够精确到0.01 mS/cm,总体测量相对误差为2.10%,较好地满足了温室营养液电导率实时监测的要求,为无土栽培的科学管理提供技术手段. 相似文献
3.
为了提高无线数据传输的可靠性,基于无线传感器网络(wireless sensor network,WSN)的温室环境数据采集系统,采用试验的方法研究温室中不同环境下WSN节点之间通信的可靠性。在通信距离为5~40 m,存在作物、温室设施等遮挡影响,相对湿度为35%~80%的情况下,对丢包率和接收信号强度指示(received signal strength indication,RSSI)的关系进行研究,通过RSSI对节点间通信可靠性进行评价。在此基础上,提出WSN节点发射功率自适应控制算法。该算法以RSSI作为通信质量的评价因子,通过增大节点的发射功率来提高通信可靠性。测试结果表明,该算法能够根据当前通信状况,自适应地设置节点的发射功率,以尽可能小的发射功率将丢包率维持在1%左右。该算法对WSN在温室中的应用具有实用价值。 相似文献
4.
基于无线传感器网络的温室光环境调控系统设计 总被引:1,自引:2,他引:1
为了解决现有光环境调控系统存在光照度不可调、能耗高、部署困难等问题,该文设计基于无线传感器网络的光环境调控系统。该光环境调控系统以CC2530处理器为核心设计中央控制节点、监测节点、调光节点,采用ZigBee协议实现自组网络、监测数据和控制信号传输。监测节点通过周期监测光合有效辐射值,利用自然光中太阳高度角与红蓝光比例关系,计算当前红蓝光光量子通量密度;利用智能中央控制节点计算其与作物所需目标量的差值,并将其转换为脉宽调制控制信号,通过调光节点控制LED输出亮度,实现LED调光灯输出光量的动态、精确、无线调控。试验检验表明,该系统红蓝光光量子通量密度监测误差小于6%,调控输出光照度相对误差小于3%,可满足多个温室实时、按需、定量光环境调控的需求,具有部署灵活、易扩展、低能耗的特点。 相似文献
5.
基于相似度的温室无线传感器网络定位算法 总被引:2,自引:1,他引:2
针对温室移动节点定位简单、易实现要求,提出了一种基于相似度的温室无线传感器网络定位方法。该方法主要包括虚拟网格划分、测量距离修正、节点定位3个阶段。首先,汇聚节点根据信标节点的分布信息,将温室区域等分划分虚拟网格,并返回除区域边界外的网格顶点的坐标;然后,汇聚节点通过比较信标节点间测量距离与真实距离的偏差,获得各信标节点的误差系数,用以修正传感器节点与各信标节点间的测量距离,并按序组成距离向量;最后,量化该距离向量与所有除区域边界外的网格顶点到各信标节点的距离向量之间的相似程度,选取相似度最高的网格顶点的质心为传感器节点的估计位置。仿真试验表明,该方法充分考虑测距误差、虚拟网格、信标节点数量对定位误差的影响,具有较高的稳定性和定位精度,能够满足网络定位成本受限的温室定位需求;将该方法与支持向量机定位算法进行比较,2种算法的定位误差均值分别为2.5407、2.9195 m,定位算法平均运行时间分别为0.2326、2.3719 s,表明该方法具有更低定位误差和计算复杂度。 相似文献
6.
7.
8.
传感器网络技术为大范围稻田水分信息采集提供了一种新技术手段。利用测量稻田水分含量和水层深度测量的无线传感器WFDMS,探讨了构建稻田水分传感器网络PMSN的关键技术:设计了大面积、大范围应用体系结构模型;提出了一种满足稻田水分采样频率和数据业务需求的低功耗传输控制协议LPTP-PMSN;开发了水分信息监测信息管理系统,实现了完整运行的稻田水分传感器网络整套系统。试验表明,PMSN网络在稻田中的可靠通信距离达60 m,在 3.6 V/2 100 mAh电池供电下,4 h周期采样试验中,在传输协议LPTP-PMSN控制下,传感器、簇首、基站、短信网关、计算机间能够协同工作,整个稻田水分传感器网络可以较可靠运行,节点生命期超过190 d。该研究可为农用信息监控无线传输网络的其他应用提供参考。 相似文献
9.
温室动态星型无线传感器网络通信方法研究 总被引:6,自引:2,他引:6
针对温室测控系统信息传输技术存在的一些问题,根据温室结构特征提出一种动态星型无线传感器网络的框架,从低成本低功耗角度出发,移动的汇聚节点采用定时跳频方法与子节点形成子网,以尽量缩短点对点之间的通信距离。利用帧扩展的方法实现了以低功耗芯片nRF2401A构成复杂的通信网络,并给出了传感器节点、控制节点和汇聚节点的通信算法。在汇聚节点不同的工作状态下,对网络子节点进行能耗分析,结果表明,动态星型无线传感器网络的通信方法具有很好的节能效果,对温室中数据的传输是有效的。 相似文献
10.
11.
由于无线传感网络节点的能量有限,如何有效地利用有限资源以及实现数据的有效传输,成为研究热点问题.针对农田区域广以及种植作物杂等环境特征,为延长农田无线传感器网络的生命周期,提高传感网的数据包投递率,构建了适用于农田信息采集的无线传感器网络架构,提出了一种混合式的分簇路由算法HCRA(hybrid clustering routing algorithm),研究了簇的形成、簇头竞选以及簇间路由过程,并对HCRA算法与低功耗自适应集簇分层型算法LEACH(low-energy adaptive clustering hierarchy),以及使用固定簇半径的混合节能分簇算法HEED(hybrid energy-efficient distributed clustering)进行了仿真试验.结果表明:在1 000次迭代周期下,采用HCRA算法的网络生存时间要比LEACH算法长约28%,比HEED算法长约12%;采用HCRA算法的数据包投递率要比LEACH算法高约34个百分点,比HEED算法高约16个百分点.该研究可为农田环境信息采集自动化监测系统提供参考. 相似文献
12.
基于无线传感网络与模糊控制的精细灌溉系统设计 总被引:8,自引:9,他引:8
为准确判断作物需水量并确立合适的灌溉控制策略,实现作物的自动、定位、实时与适量灌溉,设计了基于ZigBee无线传感网络与模糊控制方法的精细灌溉系统。该系统通过ZigBee无线传感器网络采集土壤水势与微气象信息(包括环境温度、湿度、太阳辐射与风速等),并传输灌溉控制指令;结合FAO56 Penman-Monteith公式计算农田蒸散量,并将农田蒸散量和土壤水势作为模糊控制器的输入量,建立了多因素控制规则库,实现了作物灌溉需水量的模糊控制。试验结果表明该系统经济实用、通信可靠、控制准确性高,特别适用于中小型灌溉区域的精细灌溉。 相似文献
13.
针对目前用于农业图像获取的图像传感器节点分辨率偏低、分辨率固定不可调的现状,设计并实现一种分辨率实时可调的无线图像传感器节点。节点的硬件平台由ARM处理器S3C6410和CMOS图像传感器OV5642组成,并集成了Wi Fi模块和4 G模块。设计了太阳能供电系统为节点供电。采用嵌入式Linux搭建节点的软件平台,设计了基于驱动层和应用层协作、多线程并发的分辨率实时调整算法,并在应用层实现了分辨率实时调整、图像采集、图像压缩和无线传输等功能。为了验证节点的性能,将节点部署在农田进行了长时间的测试试验。测试结果表明,节点具有7种不同的分辨率,最高可达500万像素,更重要的是它在工作过程中可接收远程用户的指令,实时调整分辨率,进而采集不同精度的农作物图像,并远程传输到服务器端。试验表明所设计的节点可满足用户获取不同精度农业图像的需求。 相似文献
14.
基于无线传感器网络的农田信息采集节点设计与试验(简报) 总被引:12,自引:6,他引:12
研究基于ZigBee协议的无线传感器网络技术,结合嵌入式处理器开发了无线传感器网络节点和汇聚节点。网络节点规则分布在被监测区域,负责采集土壤水分信息,并自组成网,将信息发送给汇聚节点,实现对信息的动态显示和大容量存储;节点天线分别在0.5、1.0、1.5和2.0 m 4个高度下,对小麦苗期、拔节期和抽穗期3个典型的生长时期进行试验,得出无线电信号在小麦不同生长时期,最佳天线高度下的有效传输距离,为无线传感器网络在农业中的应用提供技术支持。 相似文献
15.
温室传感器网络中,不同区域节点间高相似度数据的传输会浪费通信带宽和增加能量消耗,因此研究相应的节点数据压缩方法对减少数据冗余和提高节点续航能力具有重要意义。该文针对温室无线传感器网络中节点感知数据的特点,同时考虑节点续航能力有限的因素,提出一种温室无线传感器网络方案,系统按轮运行,每轮中利用粒子群(Particle Swarm Optimization)的K-均值聚类算法将节点按监测数据相似性划分到相同的区域,每个数据相同区只允许聚类有效性指标值最高的节点向汇聚节点传输数据,其余节点暂时休眠。试验结果表明,16个节点在10轮试验中归入休眠集合的总次数达到131次,DCAPI平均值为0.1814,每轮降低能耗72.93%以上,该系统能够极大地减少每轮中的工作节点,压缩发送的数据量,降低能耗。 相似文献
16.
为探究柿园无线传感器网络信号传输特性,该文研究了在2.4 GHz无线信道下柿树处于萌芽期、幼叶期和花期3种时期时无线网络信号传输的衰减情况。试验中分别在柿子树萌芽期、幼叶期和花期3个生长时期下选择一列长势均匀的柿树,通过调节子节点和汇聚节点装置的高度和距离测量柿子树从距离地面3个高度冠层底部(0.8 m)、冠层最密部(1.8 m)和冠层顶部(2.8 m)处各8个距离点的链路质量指示值(link quality indicator,LQI),并对试验数据进行分析。结果表明LQI值随着距离的变化呈正弦曲线式衰减趋势。萌芽期时子节点和汇聚节点的高度均位于冠层顶部时,节点间距38 m时是最佳位置;幼叶期时子节点和汇聚节点的高度均位于冠层顶部,节点间距32 m时是最佳位置;花期时子节点和汇聚节点的高度均位于冠层顶部时,节点间距26 m时是最佳位置。通过对3次数据进行曲线拟合分析分别建立了在2.4 GHz信道下信号衰减模型,其中3种生长时期下均是三次多项式模型决定系数R2最大,为最适模型。果园中无线传感器网络信号传输损耗的研究为在果园中无线传感器网络节点部署提供了技术基础。 相似文献
17.
农田无线传感器网络数据处理服务器的设计与实现 总被引:1,自引:0,他引:1
对无线传感器网络采集到的田间信息进行有效的接收、处理是基于无线传感器网络的农田环境监测系统的重要组成部分,该文针对农田无线传感器网络数据采集的特点,对系统的数据处理服务器的构建进行了研究,设计并实现了一个基于非阻塞式Sockets套接口的数据通信服务器。该服务器综合利用静态线程池与I/O复用技术,采用循环队列作为数据缓冲区,较好地解决了农田无线传感器网络对TCP多连接长时间通信,大量田间实时监测数据并发接收、处理性能要求高的问题;采用面向对象设计方法,抽象出类的层次结构,提高了程序代码的复用性。 相似文献
18.
茶园信息采集无线传感器网络节点设计 总被引:2,自引:7,他引:2
针对茶园中所存在的无线通信障碍问题,该文设计了一款适合茶园信息采集的无线传感器网络节点。节点以ATmega128为核心,nRF905射频芯片及其外围电路作为无线通信模块,SHT11空气温湿度传感器和TDR-3土壤含水量传感器及其外围电路作为传感器模块,并以该节点为硬件平台编写了通信协议、应用程序和后台管理软件。分析、测试了节点的功耗和通信距离,在空旷地带,节点的有效通信距离达到150 m,与Micaz节点对比室内外通信距离分别提高了200%和150%。在广东省英德茶园基地进行了组网试验测试,结果表明:网络平均丢包率为0.84%,传感器感知精度达到98.2%,能够满足茶园信息采集的应用要求。 相似文献