首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
In-season diagnosis of crop nitrogen(N) status is crucial for precision N management. Critical N(N_c) dilution curve and N nutrition index(NNI) have been proposed as effective methods to diagnose N status of different crops. The N_c dilution curves have been developed for indica rice in the tropical and temperate zones and japonica rice in the subtropical-temperate zone, but they have not been evaluated for short-season japonica rice in Northeast China. The objectives of this study were to evaluate the previously developed N_c dilution curves for rice in Northeast China and to develop a more suitable N_c dilution curve in this region. A total of17 N rate experiments were conducted in Sanjiang Plain, Heilongjiang Province in Northeast China from 2008 to 2013. The results indicated that none of the two previously developed N_c dilution curves was suitable to diagnose N status of the short-season japonica rice in Northeast China. A new N_c dilution curve was developed and can be described by the equation N_c = 27.7 W~(-0.34) if W ≥ 1 Mg dry matter(DM) ha~(-1) or N_c = 27.7 g kg~(-1) DM if W 1 Mg DM ha~(-1), where W is the aboveground biomass. This new curve was lower than the previous curves. It was validated using a separate dataset, and it could discriminate non-N-limiting and N-limiting nutritional conditions. Additional studies are needed to further evaluate it for diagnosing N status of different rice cultivars in Northeast China and develop efficient non-destructive methods to estimate NNI for practical applications.  相似文献   

2.
在富营养土壤斑块中根增值对玉米养分吸收和生长的贡献   总被引:1,自引:0,他引:1  
Root proliferation can be stimulated in a heterogeneous nutrient patch; however, the functions of the root proliferation in the nutrient-rich soil patches are not fully understood. In the present study, a two-year field experiment was conducted to examine the comparative effects of localized application of ammonium and phosphorus (P) at early or late stages on root growth, nutrient uptake, and biomass of maize (Zea mays L.) on a calcareous soil in an intensive farming system. Localized supply of ammonium and P had a more evident effect on shoot and root growth, and especially stimulated fine root development at the early seedling stage, with most of the maize roots being allocated to the nutrient-rich patch in the topsoil. Although localized ammonium and P supply at the late stage also enhanced the fine root growth, the plant roots in the patch accounted for a low proportion of the whole maize roots in the topsoil at the flowering stage. Compared with the early stage, fine root length in the short-lived nutrient patch decreased by 44%-62% and the shoot dry weight was not different between heterogeneous and homogeneous nutrient supply at the late growth stage. Localized supply of ammonium and P significantly increased N and P accumulation by maize at 35 and 47 days after sowing (DAS); however, no significant difference was found among the treatments at 82 DAS and the later growth stages. The increased nutrient uptake and plant growth was related to the higher proportion of root length in the localized nutrient-enriched patch. The results indicated that root proliferation in nutrient patches contributed more to maize growth and nutrient uptake at the early than late stages.  相似文献   

3.
There is a lack of quantitative assessments available on the effect of agricultural intensification on soil aggregate distribution and microbial properties. Here, we investigated how short-term nitrogen(N) intensification induced changes in aggregate size distribution and microbial properties in a soil of a hot moist semi-arid region(Bangalore, India). We hypothesised that N intensification would increase the accumulation of macroaggregates 2 mm and soil microbial biomass and activity, and that the specific crop plant sowed would influence the level of this increase. In November 2016, surface(0–10 cm) and subsurface(10–20 cm) soil samples were taken from three N fertilisation treatments, low N(50 kg N ha~(-1)), medium N(75 and 100 kg N ha~(-1) for finger millet and maize, respectively),and high N(100 and 150 kg N ha~(-1) for finger millet and maize, respectively). Distribution of water-stable aggregate concentrations,carbon(C) and N dynamics within aggregate size class, and soil microbial biomass and activity were evaluated. The high-N treatment significantly increased the concentration of large macroaggregates in the subsurface soil of the maize crop treatment, presumably due to an increased C input from root growth. Different N fertilisation levels did not significantly affect C and N concentrations in different aggregate size classes or the bulk soil. High-N applications significantly increased dehydrogenase activity in both the surface soil and the subsurface soil and urease activity in the surface soil, likely because of increased accumulation of enzymes stabilised by soil colloids in dry soils. Dehydrogenase activity was significantly affected by the type of crop, but urease activity not. Overall, our results showed that high N application rates alter large macroaggregates and enzyme activities in surface and subsurface soils through an increased aboveground and corresponding belowground biomass input in the maize crop.  相似文献   

4.
华北地区采用无机氮测试和植株速测进行夏玉米氮肥推荐   总被引:2,自引:0,他引:2  
A field experiment with a split-plot design was carried out at Dongbeiwang Farm in Beijing Municipality to establish reliable N fertilizer recommendation indices for summer maize (Zea mays L.) in northern China using the soil Nmin(mineral N) test as well as the plant nitrate and SPAD (portable chlorophyll meter readings) tests. The results showed that Nrnin sollwert (NS) 60 kg N ha^-1 at the third leaf stage and N rate of 40 to 120 kg N ha^-1 at the tenth leaf stage could meet the N requirement of summer maize with a target yield of 5.5-6 t ha^-1. Sap nitrate concentrations and SPAD chlorophyll meter readings in the latest expanded maize leaves at the tenth leaf stage were positively correlated with NS levels, indicating that plant nitrate and SPAD tests reflected the N nutritional status of maize well. Considering that winter wheat subsequently utilized N after the summer maize harvest, the 0-90 cm soil Nmin (74 kg N ha^-1) and apparent N loss (12 kg N ha^-1) in the NS60+40 treatment were controlled at environmentally acceptable levels. Therefore NS60+40, giving a total N supply of 100 kg N ha^-1, was considered the optimal N fertilizer input for summer maize under these experimental conditions.  相似文献   

5.
提高高产玉米氮素利用效率的根层氮素管理技术   总被引:5,自引:0,他引:5  
Many recently developed N management strategies have been extremely successful in improving N use efficiency.How-ever,attempts to further increase grain yields have had limited success.Field experiments were conducted in 2007 and 2008 at four sites to evaluate the effect of an in-season root-zone N management strategy on maize (Zea mays L.).According to the in-season root-zone N management,the optimal N rate (ONR) was determined by subtracting measured soil mineral N (NH + 4--N and NO 3--N) in the root zone from N target values.Other treatments included a control without N fertilization,70% of ONR,130% of ONR,and recommended N rate (RNR) by agronomists in China that have been shown to approach maize yield potentials.Although apparent N recovery for the ONR treatment was significantly higher than that under RNR in 2007,grain yield declined from 13.3 to 11.0 Mg ha 1 because of an underestimation of N uptake.In 2008,N target values were adjusted to match crop uptake,and N fertilization rates were reduced from 450 kg N ha-1 for RNR to 225 to 265 kg N ha-1 for ONR.High maize yields were maintained at 12.6 to 13.5 Mg ha 1,which were twice the yield from typical farmers’ practice.As a result,apparent N recovery increased from 29% to 66%,and estimated N losses decreased significantly for the ONR treatment compared to the RNR treatment.In conclusion,the in-season root-zone N management approach was able to achieve high yields,high NUE and low N losses.  相似文献   

6.
Addressing concerns about mitigating greenhouse gas (GHG) emissions while maintaining high grain yield requires improved management practices that achieve sustainable intensification of cereal production systems. In the North China Plain, a field experiment was conducted to measure nitrous oxide (N2O) and methane (CH4) fluxes during the maize (Zea mays L.) season under various agricultural management regimes including conventional treatment (CONT) with high N fertilizer application at a rate of 300 kg N ha-1 and overuse of groundwater by flood irrigation, optimal fertilization 1 treatment (OPTIT), optimal fertilization 2 treatment (OPT2T), and controlled-release urea treatment (CRUT) with reduced N fertilizer application and irrigation, and a control (CK) with no N fertilizer. In contrast to CONT, balanced N fertilization treatments (OPT1T, OPT2T, and CRUT) and CK demonstrated a significant drop in cumulative N20 emission (1.70 v.s. 0.43-1.07 kg N ha-l), indicating that balanced N fertilization substantially reduced N20 emission. The vMues of the N20 emission factor were 0.42%, 0.29%, 0.32%, and 0.27% for CONT, OPTIT, OPT2T, and CRUT, respectively. Global warming potentials, which were predominantly determined by N20 emission, were estimated to be 188 kg CO2-eq ha-1 for CK and 419-765 kg CO2-eq ha-1 for the N fertilization treatments. Global warming potential intensity calculated by considering maize yield was significantly lower for OPT1T, OPT2T, CRUT, and CK than for CONT. Therefore, OPTIT, OPT2T, and CRUT were recommended as promising management practices for sustaining maize yield and reducing GHG emissions in the North China Plain.  相似文献   

7.
中国南方大棚蔬菜地氮平衡与损失   总被引:28,自引:0,他引:28  
High rates of fertilizer nitrogen (N) are applied in greenhouse vegetable fields in southeastern China to maximize production;however,the N budgets of such intensive vegetable production remain to be explored.The goal of this study was to determine the annual N balance and loss in a greenhouse vegetable system of annual rotation of tomato,cucumber,and celery at five N (urea) application rates (0,348,522,696,and 870 kg N ha-1 year-1).Total N input to the 0-50 cm soil layer ranged from 531 to 1 053 kg ha-1,and N fertilizer was the main N source,accounting for 66%-83% of the total annual N input.In comparison,irrigation water,wet deposition,and seeds in total accounted for less than 1% of the total N input.The fertilizer N use efficiency was only 18% under the conventional application rate of 870 kg N ha-1 and decreased as the application rate increased from 522 to 870 kg N ha-1.Apparent N losses were 196-201 kg N ha-1,of which 71%-86% was lost by leaching at the application rates of 522-870 kg N ha-1.Thus,leaching was the primary N loss pathway at high N application rates and the amount of N leached was proportional to the N applied during the cucumber season.Moreover,dissolved organic N accounted for 10% of the leached N,whereas NH3 volatilization only contributed 0.1%-0.6% of the apparent N losses under the five N application rates in this greenhouse vegetable system.  相似文献   

8.
Soil organic carbon(SOC) content and its stable carbon isotopic composition(within the upper 1 m) were measured to determine the e?ect of land-use changes from dry evergreen forest to maize fields in eastern Thailand.Digital land cover maps,derived from aerial photography and satellite images for years 1989,1996,and 2002 were used in association with field surveys and farmer interviews to derive land-use history and to assist in study site selection.Conversion from forest to maize cultivation for the duration of 12 years reduced SOC stocks at the rate of 6.97 Mg C ha-1 year-1.Reduction was most pronounced in the top 10 cm soil layer,which was 47% after 12 years of cultivation.Stable carbon isotope data revealed that the main fraction lost was forest-derived C.Generally low input rates of maize-derived C were not sufficient to maintain SOC at the level prior to forest conversion.After 12 years of continuous maize cultivation,the maize-derived C fraction made up about 20% of total SOC(5 Mg ha-1 of the total 25.31 Mg ha-1).  相似文献   

9.
As a result of intensive greenhouse vegetable production in northern China, the potential risk of nitrogen (N) fertilizer over-applied is increasingly apparent and is threatening ecosystem and the sustainability of food production. An experiment was carried out in Shouguang, Shangdong Province, China to evaluate agronomic benefit and soil quality under different N applications, including the conventional chemical N rate (1000 kg N ha-1 season-1, N1), 70% of N1 (N2), 70% of N1 + maize straw (N3), 50% of N1 + maize straw + drip irrigation (N4), and 0% of N1 (N0), during two successive growing seasons of autumn-winter (AW) and winter-spring (WS). The maximum yields for N4 were 1.1 and 1.0 times greater than those for N1 in the AW and WS seasons, respectively. N agronomic effciency (AEN) and apparent N recovery effciency (REN) were greatest with the N4. A significant relationship was found between soil NO-3 -N content and electrical conductivity (EC) (R2 = 0.61 in the AW season and R2 = 0.29 in the WS season). Reducing N fertilizer decreased soil NO-3 -N accumulation (20.9%-37.8% reduction in the AW season and 11.7%-20.1% reduction in the WS season) relative to the accumulation observed for N1 within the 0-100 cm soil layer. Soil urease and invertase activities were not significantly different among N treatments. The N4 treatment would be practical for reducing excess N input and maintaining the sustainability of greenhouse-based intensive vegetable systems in Shouguang.  相似文献   

10.
A change in the European Union energy policy has markedly promoted the expansion of biogas production.Consequently,large amounts of nutrient-rich residues are being used as organic fertilizers.In this study,a pot experiment was conducted to simulate the high-risk situation of enhanced greenhouse gas (GHG) emissions following organic fertilizer application in energy maize cultivation.We hypothesized that cattle slurry application enhanced CO2 and N2O fluxes compared to biogas digestate because of the overall higher carbon (C) and nitrogen (N) input,and that higher levels of CO2 and N2O emissions could be expected by increasing soil organic C (SOC) and N contents.Biogas digestate and cattle slurry,at a rate of 150 kg NH4+-N ha-1,were incorporated into 3 soil types with low,medium,and high SOC contents (Cambisol,Mollic Gleysol,and Sapric Histosol,termed Clow,Cmedium,and Chigh,respectively).The GHG exchange (CO2,CH4,and N2O) was measured on 5 replicates over a period of 22 d using the closed chamber technique.The application of cattle slurry resulted in significantly higher CO2 and N2O fluxes compared to the application of biogas digestate.No differences were observed in CH4 exchange,which was close to zero for all treatments.Significantly higher CO2 emissions were observed in Chigh compared to the other two soil types,whereas the highest N2O emissions were observed in Cmedium.Thus,the results demonstrate the importance of soil type-adapted fertilization with respect to changing soil physical and environmental conditions.  相似文献   

11.
The study was conducted at three sites during 2008 and 2009 in the North-East China Plain (NECP). Field experiments consisted of five or six nitrogen (N) fertilization rates (0–350 kg N ha?1). Shoot biomass and N concentration (Nc) of spring maize (Zea mays L.) were determined on six sampling dates during the growing season. Nitrogen application rate had a significant effect on aerial biomass accumulation and Nc. As expected, shoot Nc declined during the growing period. A critical N dilution curve (Nc = 36.5 W ?0.48) was determined in China, which was a little different from those reported for maize in France and Germany. Besides, the N nutrition index (NNI) calculated from this critical N dilution curve was significantly related to relative grain yield, which can be expressed by a linear with plateau model (R2 = 0.66; P < 0.001). NNI can be used as a reliable indicator of the level of N deficiency during the growing season of maize.  相似文献   

12.
Abstract

Sweetpotato is an important tuber crop for the food security in Island countries of the South Pacific. The allometric relationship between tissue nitrogen (N) concentration and aerial dry matter is unknown. We determined critical N (Nc) content from vegetative stage to harvesting, and estimated the range of variation in N nutrition index (NNI) from two field experiments with varied rates of N (0, 25, 60, 125 and 180?kg N ha?1 in 2015 and 0, 50, 125, 175 and 250?kg N ha?1 in 2017). A unified critical N curve (Nc = 3.338?W?0.307) where W?=?aerial dry matter with W?≥?1.38 t ha?1, was constructed based on the N concentration in the aerial dry matter. The calculated NNI ranged from 0.69 to 1.23 in 2015 and 0.54 to 1.17 in 2017. The preliminary Nc dilution curve and NNI determined could potentially be used as a parameter for N management.  相似文献   

13.
Determining a critical nitrogen dilution curve for sugarcane   总被引:1,自引:0,他引:1  
Adequate measurements of the nitrogen (N) concentration in the aboveground biomass of sugarcane throughout the growth cycle can be obtained using the critical N dilution curve (CNDC) concept, which provides an N‐nutrition index (NNI). The aim of this work was to determine the CNDC value for Brazilian sugarcane variety SP81‐3250, establish the critical concentration of N, and determine the NNI in the aboveground biomass throughout the cane plant and first ratoon crop cycles. The study was performed in three experimental areas located in São Paulo, Brazil, during the crop cycles of 2005/2006 (18‐month cane plant) and 2006/2007 (first ratoon). The plant cane crop was fertilized with treatments of 40, 80, or 120 kg N ha–1 and a control treatment without N. After the plant cane harvest, rates of 0, 50, 100, or 150 kg N ha–1 were applied to the control plot and the 120 kg N ha–1–treatment plot in a split‐plot experimental design with four repetitions. Throughout both sugarcane cycles, measurements of aboveground biomass were used to determine the dry‐mass (DM) production and N concentration for each treatment. CNDC varied between the growth cycles, with a higher N concentration observed in the initial stages of the first ratoon and a lower N dilution observed throughout the plant cane cycle. The NNI value indicated excessive N storage in the initial stages and limiting concentrations at the end of the growth cycle. CNDC and NNI allow for the identification of the N‐nutrition variation rate and the period in which the nutrient concentration limits the production of aboveground biomass. The equations for the critical N (Ncr) level obtained in this study for plant cane (Ncr = 19.0 DM–0.369) and ratoons (Ncr = 20.3 DM–0.469) can potentially be used as N‐nutritional diagnostic parameters for sugarcane N nutrition.  相似文献   

14.
The intensive winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) cropping systems in the North China Plain (NCP) rely on the heavy use of mineral nitrogen (N) fertilizers. As the fertigated area of wheat and maize in the NCP has grown rapidly during recent years, developing N management strategies is required for sustainable wheat and maize production. Field experiments were conducted in Hebei Province during three consecutive growth seasons in 2012–2015 to assess the influence of different N fertigation rates on N uptake, yield, and nitrogen use efficiency [NUE: recovery efficiency (REN) and agronomic efficiency (AEN)]. Five levels of N application, 0 (FN0), 40 (FN40%), 70 (FN70%), 100 (FN100%), and 130% (FN130%) of the farmer practice rate (FP: 250 kg N ha?1 and 205.5 kg N ha?1 for wheat and maize, respectively), corresponding to 0, 182.2, 318.9, 455.5, and 592.2 kg N ha?1 y?1, respectively, were tested. Nitrogen in the form of urea was dissolved in irrigation water and split into six and four applications for wheat and maize, respectively. In addition, the treatment “drip irrigation + 100% N conventional broadcasting” (DN100%) was also conducted. All treatments were arranged in a randomized complete block design with three replications. The results revealed the significant influence of both N fertigation rate and N application method on grain yield and NUE. Compared to DN100%, FN100% significantly increased the 3‐year averaged N recovery efficiency (REN) by 0.09 kg kg?1 and 0.04 kg kg?1, and the 3‐year averaged N agronomic efficiency (AEN) by 2.43 kg kg?1 and 1.62 kg kg?1 for wheat and maize, respectively. Among N fertigation rates, there was no significant increase in grain yield in response to N applied at a greater rate than 70% of FP due to excess N accumulation in vegetative tissues. Compared to FN70%, FN100%, and FN130%, FN40% increased the REN by 0.17–0.57 kg kg?1 and 0.03–0.34 kg kg?1and the AEN by 4.60–27.56 kg kg?1 and 2.40–10.62 kg kg?1 for wheat and maize, respectively. Based on a linear‐response relationship between the N fertigation rate and grain yield over three rotational periods it can be concluded that recommended N rates under drip fertigation with optimum split applications can be reduced to 46% (114.6 kg N ha?1) and 58% (116.6 kg N ha?1) of FP for wheat and maize, respectively, without negatively affecting grain yield, thereby increasing NUE.  相似文献   

15.
Best nitrogen (N) management practices are most important for increasing maize (Zea mays L.) productivity and profitability in Northwest Pakistan. Field experiments were performed at the New Developmental Research Farm of NWFP Agricultural University, Peshawar during summer 2002 and 2003. Factorial experimental treatments were two plant densities (D1 = 60,000 and D2 = 100,000 plants ha?1) and three N rates (N1 = 60, N2 = 120 and N3 = 180 kg N ha?1) as main plots, and six split N applications in different proportions at different growth stages of maize (cv. ‘Azam’) in two equal, three equal, three unequal, four equal, five equal and five unequal splits at sowing and with first, second, third, and fourth irrigation at two week intervals as subplots. Application of the higher N rate (180 kg ha?1) with 4 to 5 splits significantly increased leaf, stem, ear, and total plant dry weight at silking and physiological maturity as well as grain yield plant?1 at both low and high plant densities. Variation in dry matter partitioning and grain yield in maize due to fluctuation in the rainfall data of the two years suggests zonal specific effective N management practices for sustainable maize production in different agro-ecological zones of Northwest Pakistan.  相似文献   

16.
中国玉米小麦产量与氮肥利用效率同步提高的研究进展   总被引:20,自引:0,他引:20  
Achieving both high yield and high nitrogen use efficiency (NUE) simultaneously has become a major challenge with increased global demand for food, depletion of natural resources, and deterioration of environment. As the greatest consumers of N fertilizer in the world, Chinese farmers have overused N and there has been poor synchrony between crop N demand and N supply because of limited understanding of the N uptake-yield relationship. To address this problem, this study evaluated the total and dynamic N requirement for different yield ranges of two major crops (maize and wheat), and suggested improvements to N management strategies. Whole-plant N aboveground uptake requirement per grain yield (N req) initially deceased with grain yield improvement and then stagnated, and yet most farmers still believed that more fertilizer and higher grain yield were synonymous. When maize yield increased from < 7.5 to > 12.0 Mg ha-1, Nreq decreased from 19.8 to 17.0 kg Mg-1 grain. For wheat, it decreased from 27.1 kg Mg-1 grain for grain yield < 4.5 Mg ha-1 to 22.7 kg Mg-1 grain for yield > 9.0 Mg ha-1. Meanwhile, the percentage of dry matter and N accumulation in the middle-late growing season increased significantly with grain yield, which indicated that N fertilization should be concentrated in the middle-late stage to match crop demand while farmers often applied the majority of N fertilizer either before sowing or during early growth stages. We accordingly developed an integrated soil-crop system management strategy that simultaneously increases both grain yield and NUE.  相似文献   

17.
Several nitrogen (N)‐rate field experiments were carried out in cotton to define dilution curves for critical N concentrations in individual plants (i.e., the minimum N concentration required for maximum growth at any growth stage). Nitrogen application rate had a significant effect on aboveground dry matter, N accumulation, and N concentration. As expected, shoot N concentration in plants decreased during the growing period. These results support the concept of critical N concentration in shoot biomass of single plants as described by Lemaire et al. (2007) and reveal that a dilution curve for critical N concentrations in cotton plants can be described by a power equation. The pattern of critical–N concentration dilution curves was consistent across the two sites. Nitrogen concentration for a given biomass varied greatly with the supply of N. After initial flowering, the N‐nutrition index (NNI) for aboveground biomass of individual plants increased with increasing N rates. Relationships between plant total N uptake and accumulated dry matter in the aboveground biomass can be described by the allometric‐relation equations for each dose of N. Nitrogen‐dilution curves can be used as a tool for diagnosing the status of N in cotton from initial flowering to boll opening. The relationship can also be used in the parameterization and validation of growth models for predicting the N response and/or N requirement of cotton.  相似文献   

18.
Nitrogen fertilization management under water limited conditions needs to be refined to save environmental ecosystems and increase economic returns. Two-year field studies in a split-plot design were conducted to investigate the response of maize to different nitrogen rates (N100 = 100, N130 = 130, and N160 = 160?kg N ha?1) under two irrigation levels (100 or 75% of water requirements). Under deficit irrigation, water and N were used more efficiently than normal water supply. N-fertilization of drip irrigated maize grown under deficit irrigation with N160 increased the uptake of N, P and K by 35, 29 and 70% compared with N100. Fertilization of maize grown under deficit irrigation with N160 increased the grain, straw and biological yield and water use efficiency by 50, 14, 22 and 33% compared with N100. Based on the obtained results, 160?kg of N ha?1 is the optimum rate of N for maize irrigated by 75% of water requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号