首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
[目的]建立水稻叶片氮素营养光谱诊断模型。[方法]通过对不同水稻品种(湘优109和汕优98)、不同生长期、不同氮素水平的水稻叶片进行透射、吸收光谱及氮含量的测量,分析了叶片光谱与其含氮量之间的相关性,建立了水稻叶片含氮量的光谱指数预测模型。[结果]该模型检测精度在80%以上,可用于水稻氮素营养的诊断。[结论]为水稻氮素营养状况监测提供了理论依据。  相似文献   

2.
水稻氮素营养对叶片及冠层反射光谱特性的影响   总被引:2,自引:0,他引:2  
  相似文献   

3.
水稻叶片营养的光谱诊断研究   总被引:2,自引:1,他引:1  
通过测定不同氮肥水平下2个水稻品种的叶片营养数据和光谱数据,分析了遥感参量与叶片营养参数间的相关性.结果表明:在400~1 250 nm波段,叶片光谱反射率与SPAD、CHL呈显著负相关;在720~1 000 nm和1 450~1 500 nm波段,叶片光谱透射率与LWC间呈显著正相关;在400 ~ 650 nm波段,叶片光谱吸收率与CHL、SPAD和CAR呈显著正相关;分别构建了以NDVI、NDWI、GreenNDVI和NRI为自变量、叶片营养为因变量的光谱诊断模型,经检验,模型预测性较好,尤其利用NDWI(860,1 240)诊断LWC具有相对最大R2、最小RMSE和最小RE,表明此模型预测能力最强.  相似文献   

4.
基于高光谱的水稻叶片氮素营养诊断研究   总被引:2,自引:0,他引:2  
为快速、准确地实现水稻氮素营养诊断,以中嘉早17水稻为试验对象,设置4种施氮水平的水稻栽培试验,利用便携式地物波谱仪获取240组水稻分蘖期顶三叶在350~2 500 nm的光谱数据。随机将样本划分为训练集(160个样本)和测试集(80个样本)。首先,通过多元散射校正(MSC)、变量标准化校正(SNV)、平滑算法(SG)3种方法分别对原始光谱进行预处理;然后,采用主成分分析(PCA)和连续投影算法(SPA)对预处理后的光谱进行特征降维,选取累积贡献率超过99.98%的前24个主成分作为模型的输入变量,对于经过MSC、SNV和SG处理后的光谱数据,还分别筛选出12、15、19个特征波长;最后,应用支持向量机(SVM)基于上述处理分别建立水稻氮素营养诊断模型。结果表明,采用MSC-PCA-SVM模型进行水稻氮素营养诊断的识别准确率最高,其在训练集和预测集上的准确率分别达99.38%和97.50%。  相似文献   

5.
水稻叶片反射光谱诊断氮素营养敏感波段的研究   总被引:13,自引:0,他引:13       下载免费PDF全文
田间小区试验叶色差异明显而生育期相似的两品种第一和第三完全展开叶片光谱反射率与氮素营养相关性分析表明,不同品种同一叶位之间这种相关性变化规律一致,然而在不同叶位之间相关性变化不尽一致.进一步对比分析大田区域试验和小区试验叶片光谱反射率与氮素营养相关性发现两区域样本相同叶位之间相关性变化规律相同.分析第一、三完全展开叶叶片光谱反射率处理之间差异显著性表明,存在差异显著的波段范围主要集中在绿光(525~605 nm)、黄光(605~655 nm)和短波近红外光(750~1100nm)范围内.和叶片氮素含量之间相关性最大的波段主要为绿光(525~605 nm)和黄光(605~655 nm)范围,而短波近红外光范围与叶片氮素含量之间相关性最小.因此和IKONOS2、IKONOS4、MSS4、MSS6、MSS7、SPOT1、SPOT3、TM2、TM4、AVHRRCH1、AVHRRCH2相对应的绿光(525~605 nm)、黄光(605~655 nm)和短波近红外光(750~1100nm)是叶片反射光谱诊断氮素营养的敏感波段范围.  相似文献   

6.
基于叶片反射光谱估测水稻氮营养指数   总被引:1,自引:0,他引:1  
【目的】基于叶片反射光谱建立快速、无损监测水稻氮营养指数(nitrogen nutrition index,NNI)的估算模型。【方法】2018—2019年开展2个水稻品种(徽两优898和Y两优900)及5个氮肥梯度(施氮量为0、75、150、225和300 kg·hm-2,分别记为N0、N1、N2、N3、N4)的田间小区试验,测定关键生育期不同叶位叶片反射光谱和植株NNI,构建多种光谱指数的水稻NNI监测模型。【结果】单叶及叶位组合的敏感波段均分布在540 nm的绿光波长处,其与近红外波段构成的窄波段比值指数SR(R900,R540)可较好反演水稻NNI。但不同叶位叶片窄波段比值指数与水稻NNI的预测精度表现不同,顶3叶(L3)预测精度最好(R2=0.731,RMSE =0.130,RE=11.6%),顶2叶(L2)次之(R2=0.707,RMSE =0.136,RE =12.2%),顶1叶(L1)最差(R2=0.443,RMSE =0.187,RE =14.7%);顶2叶和顶3叶组合平均光谱(L23)的预测精度优于单叶水平和其他叶位组合(R2=0.740,RMSE =0.128,RE =11.5%)。再将窄波段比值指数SR(R900,R540)近红外与绿光区域分别重采样50 nm和10 nm,所构建的宽波段比值指数SR[AR(900±50),AR(540±10)]模型精度较SR(R900,R540)未明显降低,且在L23水平下2个模型的模型精度和预测精度基本一致(R2=0.740,RMSE =0.128,RE =11.5%)。水稻NNI小于1时与产量呈线性的正相关关系(P<0.05),大于1时产量趋于平稳。【结论】L2和L3叶片反射光谱为监测水稻NNI的敏感叶位,其中叶位组合L23可提高模型预测精度。基于叶片反射光谱构建的多种波段比值指数(SR(R900,R540)和SR[AR(900±50),AR(540±10)])可快速估测水稻NNI,从而为不同传感器对水稻氮营养指数估测监测研究提供了理论依据。  相似文献   

7.
基于冠层反射光谱的水稻群体叶片氮素状况监测   总被引:42,自引:4,他引:42  
 研究了不同氮肥水平下多时相水稻冠层光谱反射特征及其与叶片含氮量等参数的关系。结果表明 ,水稻冠层光谱反射率与叶片氮积累量 (单位土地面积上叶片的氮素总量 )显著相关 ,尤其是近红外与绿光波段的比值(R810 /R560 )与叶片氮积累量 (LNA)呈显著线性关系 ,不受氮肥水平和生育时期的影响 ,回归方程为LNA =0 .85 9R810 /R560 - 1.15 96。利用不同粳稻品种、播期、密度、水分和氮肥处理的数据对方程进行了较充分的检验 ,表明模拟值与实测值之间符合度较高 ,估算精度为 91.2 2 %,估计的RMSE为 1.0 9,平均相对误差为 0 .0 2 6。  相似文献   

8.
运用水稻生长模拟模型ORYZAl,分析了不同时期的不同叶片含氮量及叶面积指数对产量的影响和花后物质生产与结实的关系,探讨了水稻生长模拟模型在水稻估产中应用的可能性。  相似文献   

9.
基于高光谱的水稻叶片含水量监测研究   总被引:7,自引:2,他引:7  
【目的】建立快速、无损诊断水稻叶片含水量的估测模型,为水稻水分精确管理提供依据。【方法】基于2年不同土壤水分处理和水稻品种的池栽试验,于水稻主要生育时期同步测定顶部4张叶片的光谱反射率和含水量,系统分析350-2 500 nm波段范围内任意两波段组合而成的比值(RSI)、归一化差值(NDSI)及差值(DSI)光谱指数,并分析其与叶片含水量的量化关系。【结果】不同土壤水分处理和叶位间,叶片反射光谱具有显著的时空变化特征,叶片含水量的敏感光谱波段主要位于近红外及短波红外区域;RSI (R1402, R2272)及NDSI (R1402, R2272)光谱指数与叶片含水量呈现良好的线性相关,线性拟合R2均达到0.80。基于独立试验资料对所建模型进行测试检验也显示,预测值和观察值的拟合R2也均达到0.86。【结论】RSI(R1402, R2272)、NDSI(R1402, R2272)均可用于水稻叶片含水量的定量监测。  相似文献   

10.
氮素对水稻生长效应的数值模拟   总被引:1,自引:0,他引:1  
  相似文献   

11.
Distribution of Leaf Color and Nitrogen Nutrition Diagnosis in Rice Plant   总被引:3,自引:0,他引:3  
Greenness and nitrogen content of each leaf on main stem of different japonica and indica ricevarieties under different nitrogen levels were investigated. Results showed that the fourth leaf from the top ex-hibited active changes with the change of plant nitrogen status. When the plant nitrogen content was low, itscolor and nitrogen content were obviously lower than those of the three top leaves. With the increase of plantnitrogen content, the color and nitrogen content of the fourth leaf increased quickly, and the differences ofcolor and nitrogen content between the fourth leaf and the three top leaves decreased. So, the fourth leaf wasan ideal indication of plant nutrition status. In addition, color difference between the fourth and the third leaffrom the top was highly related to the plant nitrogen content regardless of the variety and development stage.Therefore, color difference between the fourth and the third leaf could be widely used for diagnosis of plantnutrition. Results also indicated that the minimized color difference between the fourth and the third leaf at the criticaleffective tillering, the emergence of the second leaf from the top, and the heading was the symbol of high yield. Plantnitrogen content of 27 g kg-1 DW for japonica rice and 25 g kg-1 DW for indica were the critical nitrogen concentrations.  相似文献   

12.
水稻叶色分布特点与氮素营养诊断   总被引:48,自引:8,他引:48  
 选用叶色不同的粳稻和籼稻品种 ,测定了植株不同含氮水平下主茎各叶的叶色和氮含量。发现顶 4叶在稻株氮素营养丰缺演变过程中表现较活跃 ,植株含氮量较低时 ,顶 4叶的叶色和氮含量明显低于上部各叶 ;随植株含氮量提高 ,顶 4叶的叶色和氮含量迅速提高 ,与其上位各叶的差距缩小。顶 4叶是反映水稻氮素营养状况的理想指示叶。同时还发现顶 4叶与顶 3叶的叶色差与稻株含氮量关系密切 ,且不受品种和生育进程影响 ,因此 ,用顶 4叶与顶 3叶的叶色差诊断水稻氮素营养状况具有普适性。研究提出在有效分蘖临界叶龄期、倒 2叶出生期和抽穗期顶 4叶与顶 3叶叶色相近为高产水稻的标志 ,粳稻植株含氮量 2 7g·kg-1DW和籼稻植株含氮量 2 5g·kg-1DW可作为水稻氮素丰缺的临界指标。  相似文献   

13.
分析比较3种水稻氮素营养诊断方法:形态诊断法、化学诊断法和无损氮素营养诊断法,并提出了它们今后的发展方向。  相似文献   

14.
为明确过量施氮条件下水稻冠层叶色的变化动态及其内在生理机制,在水培条件下,整个生育期维持80mg/L氮素浓度,同步测定水稻地上部不同叶位叶片的SPAD值和氮代谢关键酶活性的变化。结果表明,在氮素过量条件下,顶一叶、顶二叶SPAD值与其当周谷氨酸合成酶活性均呈显著正相关,顶三叶、顶四叶SPAD值与其当周谷氨酰胺合成酶活性分别呈极显著、显著正相关。  相似文献   

15.
水稻叶色变化与氮素吸收的关系   总被引:18,自引:0,他引:18  
【目的】明确水稻叶色变化与氮素吸收的关系。【方法】采用水培试验的方法,对水稻植株的叶色黑黄动态变化及氮素吸收速率进行研究。【结果】水稻植株在整个生育期存在着明显的叶色和氮素吸收变化。吸氮速率高峰分别出现在刚移栽后、抽穗前20 d左右和抽穗开花期,低谷分别出现在拔节前和抽穗前10 d左右。水稻氮素吸收速率与其后2周的叶色SPAD值密切相关。【结论】水稻地上部叶色的黑黄动态变化主要是由于根系吸收氮素变化引起的,这种变化主要受制于其自身内在节奏所制约的生物学节律。在氮素浓度恒定的条件下,水稻的叶色和氮素吸收速率亦受其生物学规律所制约。  相似文献   

16.
水稻氮素和叶绿素SPAD叶位分布特点及氮素诊断的叶位选择   总被引:32,自引:3,他引:32  
 【目的】研究分析水稻氮素和SPAD值的叶位分布特点,并试图提出SPAD计诊断氮素营养状况的最佳测定叶位。【方法】在95-38、武育粳3号、镇稻5394、9915等4个粳型品种和1个籼型品种R161-10的盆播氮肥试验和宁粳2号大田氮肥试验的基础上,研究水稻氮素和叶绿素含量(SPAD值)随叶位的空间分布特征,并对不同叶位叶片的含氮率、叶绿素含量、SPAD值之间及其与总叶片含氮率和植株含氮率之间的相关性进行分析,比较不同叶位叶片SPAD测定值的变异系数。【结果】水稻不同叶位叶片含氮率、叶绿素含量、SPAD值均存在差异,增加施氮量能提高叶片含氮率、叶绿素含量和SPAD值,同时减少叶位间的差异;SPAD值对氮素的敏感性顺序为顶4叶、顶3叶和顶2叶,而顶1叶的敏感性排序因品种不同而不同;穗分化期、齐穗期和成熟期均以顶3叶与总叶片及植株含氮率相关系数最高;且适宜氮素水平下,穗分化期顶3叶SPAD值的变异系数最小。【结论】以某一特定叶片的SPAD值或以叶色差的大小来诊断水稻氮素营养状况和推荐水稻穗肥施用时,顶3叶是较为理想的指示叶或参照叶。  相似文献   

17.
The investigation was made on the relationship of seasonal time-course canopy spectral reflec-tance and ratio index to total leaf nitrogen accumulation(leaf nitrogen content per unit ground area) in rice un-der different nitrogen treatments. The results showed there was a close correlation between the canopy spectralreflectance and total leaf nitrogen accumulation. Ratio of near infrared to green band (R810/R560 ) was linearlyrelated with total leaf nitrogen accumulation, independent of nitrogen levels and development stages. Differentdatasets were used to test the linear regression equation, with average estimation accuracy of 91.22 %, RMSEof 1.09 and average relative error of 0. 026. Thus, the ratio index R810/R560 of canopy spectral reflectanceshould be useful for non-destructive monitoring and diagnosis of nitrogen status in rice plants.  相似文献   

18.
通过光谱遥感技术对水稻长势进行监测,可以为水稻高产高效生产提供科学依据.该研究以晚稻天优华占为供试品种,设置不同施氮量的田间试验,研究不同氮素水平下水稻叶面积指数与冠层光谱反射率之间的关系,结果表明水稻叶面积指数有随着施氮量增加而增加的趋势,冠层光谱对不同施氮量群体有明显的响应特征,叶面积指数与冠层光谱反射率在720 nm左右的红边区域相关系数最大,进一步构建了水稻LAI与冠层反射光谱的数学模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号