首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设施农业中温湿度监测系统的设计与应用   总被引:2,自引:0,他引:2  
为了实现温室大棚温湿度采集和实时信息查询,开发完成了基于温湿度传感器的设施农业环境监测系统。本系统集成GSM/GPRS模块、无线传感器节点、嵌入式控制器和web服务器等模块;采用Zig Bee的无线传送数据方案,避免了传感器布设的受限问题;嵌入式控制器通过GPRS模块接入Internet网,实现数据上传至web服务器。Web服务器提供实时数据在线查询、历史数据的统计分析等,并可以通过手机短信快速获取参数的实时信息。  相似文献   

2.
张慧颖 《湖北农业科学》2014,(14):3402-3406,3411
针对传统温室大棚参数监测存在繁琐的布线问题,设计了基于新型物联网技术的温室大棚智能监测系统。该系统以CC2530无线传输模块结合温湿度传感器、光照传感器和CO2浓度传感器构成无线采集节点,对温室环境参数进行检测;检测数据通过由ZigBee模块构成的路由节点选取最优路径实现数据的无线传输;采用STM32作为核心处理器设计嵌入式网关,并利用GPRS技术将现场检测到的数据实时传送给监测中心,实现对温室环境的实时监测和报警。结果表明,该系统运行稳定、测量准确、网络覆盖性好、布点灵活、低功耗并且使用方便。  相似文献   

3.
游洪  严文强  李雪冬  黄桂林 《安徽农业科学》2014,(15):4901-4903,4906
为实现对鸡舍环境中温湿度、二氧化碳和氨气浓度的实时监测,设计了基于UTC4432的无线传感器网络的节点模块。该模块是以无线透传模块UTC4432为收发模块,传感器将采集的数据信息传送给主控芯片STM32进行处理,再经无线模块发送给主节点,实现数据的监测和发送。该节点模块具有体积小、功耗低、实时性强等特点,同时具有很好的适用性,发展前景广阔。  相似文献   

4.
针对现代化农业蔬菜大棚生产过程中需要对大棚的环境信息进行采集和处理,以便为农户的决策服务,设计了基于Arduino控制板的大棚环境信息无线采集系统。系统使用基于AVR单片机的Arduino控制板作为采集控制设备,实现对大棚的温度、土壤温湿度、光照等特征信息的采集、显示、存储及监测报警等功能。适用于对精细化农业生产过程中的信息采集等场合。  相似文献   

5.
设计了一种基于无线传感器网络和智能网关的农业信息采集系统。系统采用PIC18F87K90微控制器作为采集控制中心,结合温湿度、照度、二氧化碳等环境信息采集模块及无线数据收发模块组成整套系统,实现了对农业信息的采集、存储、显示及监测等功能,适用于农田、冷链车和冷库等典型环境。  相似文献   

6.
为解决农业蔬菜大棚种植企业对大棚环境参数较难控制问题,设计了一种以FPGA、传感器、无线模块、GPRS模块和执行机构为硬件核心,以Kingview 6.55为软件平台的实时环境参数监控系统。该系统通过无线模块将FPGA采集到的大棚内参数值传到上位机,并对其采集数据进行分析和处理,实现了数据采集、处理、显示、存储及执行机构控制等功能。同时,农场主也可以通过GPRS模块以短信方式与手机终端实现数据查询和设备控制等功能。试验测试结果表明,该系统能够为农作物提供更佳的生长环境,且操作界面简单、成本低廉,有利于减轻农民负担、提高农作物的产量和品质,在农业和牧业领域有良好的的推广价值和应用前景。  相似文献   

7.
针对RSSI的室内定位技术的功耗高和精度低的问题,采用蓝牙4.0作为节点,应用具有低功耗、远距离和成本低等优点的BLE技术,通过在离线阶段采用高斯-均值算法对指纹数据库进行优化和在现阶段改进的跳变自适应卡尔曼算法进行数据滤波研究,并且通过蓝牙4.0无线网络系统进行试验。结果表明,优化后的指纹库和自适应卡尔曼定位算法,在复杂的环境中比传统的定位算法更加稳定和准确。  相似文献   

8.
基于CC2430的温室无线传感器节点设计与应用   总被引:1,自引:0,他引:1  
针对温室环境监控的特点,以CC2430芯片为核心设计一种传感器节点。传感器节点上有温湿度、光照度等传感器,并留有外接接口可以扩展各种传感器。各节点工作在频分多址(FDMA)通信模式下无线传输数据,组成一个小型的无线传感器网络(WSN)。温室大棚内的各采集节点将采集的数据通过各自的传输信道传输到网关节点上,最终计算机通过串口接收到网关节点的数据,并通过软件保存数据。试验结表明:设计的无线传感器节点在FDMA通信系统模式运行下,能够稳定、高效、低能耗地监测温室大棚。  相似文献   

9.
针对当前农业技术信息化和智能化的发展要求,利用ZigBee技术将众多的传感器节点连接成一个智能感知的网络系统.通过ZigBee网络将温湿度传感器、二氧化碳传感器、光电传感器、红外热释电模块以及气体烟雾传感器采集的温室大棚的实时环境参数和状态信息发送至上位机及移动终端.管理人员根据上传的数据信息进行决策,远程控制电气设备的运行状态以调节环境因子,使其更加适宜农作物的生长,从而实现对环境的智能感知和调节.  相似文献   

10.
本文基于Zigbee技术设计了一种应用于温室大棚的多参数采集节点。该节点可集成采集温室大棚中的温湿度、二氧化碳浓度、一氧化碳浓度、光照强度和土壤墒情,具有无线传输、自组网、体积小、功耗低、成本低的特点,可以有效弥补现有温室大棚采集技术中节点体积大、耗能高,安装复杂、不灵活的缺点。  相似文献   

11.
基于ZigBee无线物联网通讯技术,研制了太阳能墒情采集模块.由太阳能墒情采集模块组成的无线传感器网络(WSN)网关节点,即"点控机"及"站控机",分布在被测区域,负责采集葡萄园各层土壤的温湿度.网关节点自行组网,透明通讯协议将信息发送到远端PC机,实现信息的实时动态显示及存储.系统通过单节点设备测试及网络测试证明,网关节点布置在20~120m传输距离内,系统运行稳定可靠.  相似文献   

12.
基于无线传感和GSM场测试在现代农业中的应用   总被引:2,自引:2,他引:0  
王守华  黄晓 《安徽农业科学》2011,39(32):20254-20255
阐述了基于无线传感器网络和GSM技术的烟雾、温度、湿度场测试系统的组建方案,以及各节点具体实现方法。测试节点的监测数据通过微控制器C8051F310经烟雾模块MQ-2、温湿度传感模块DHT11采集,利用RF1101SE实现无线上传至主控节点,主控节点通过GSM模块TC35i向农场主指定手机发送短信报警信息。系统测试表明,基于无线传感和GSM场测试系统具有实时性、易组建和易操作等特点。  相似文献   

13.
随着智能农业与精细农业的迅速发展,特别是物联网+农业的提出,针对目前在大棚中对各种环境参数实时监测就要进行复杂繁琐的布线的情况,为了实现农作物能够在大棚中有适宜的生长环境,同时还要达到对温室环境进行实时监测的目的,提出1种基于北斗和ZigBee技术的温大棚环境无线监测系统。该系统采用无线传感网实现对温室大棚的空气温度、土壤湿度和光照度等指标进行数据采集,并由LCD显示器实时显示出测量的数据,并通过北斗通信技术实现实时远程监测的目的。经试验测试,该系统可以实时采集和远程传输大棚内的参数信息,达到了对温室花房环境实时监控的作用,为人们管理大棚提供了很大的方便,具有广阔的推广价值。  相似文献   

14.
无线多路温湿度采集系统由温湿度采集控制模块、温湿度显示模块、无线收发模块和上位机四部分组成。该系统以单片机为控制核心器件,将温湿度传感器采集到的数据送给单片机处理,再通过nRF4L01无线收发模块,将多路温湿度值在液晶显示屏和PC机上实时显示。试验结果证明,该系统结构简单,易于扩展,能方便地满足人们对多路温湿度进行监控。  相似文献   

15.
针对在传统日照温室大棚管理中存在收放保温卷帘和通风劳动强度大等问题,设计了自动卷帘与智能通风控制系统,系统主要由环境监测节点、执行节点和控制决策中心组成。节点在控制器C8051F020平台上开发而成,实现了对棚内温湿度、CO2浓度和光照度的监测,并通过无线模块n RF905上传到控制决策中心,根据作物生长专家知识库对风机和自动卷帘机进行控制,达到调节棚内环境参数的目的。结果表明,该系统能准确测量棚内的环境参数,并通过控制风机对温湿度进行自动调节,为作物的高产创造了条件,实现了温室大棚种植的精准化和智能化管理。  相似文献   

16.
nRF401在大棚温度监控中的应用   总被引:1,自引:0,他引:1  
应用基于蓝牙技术的无线收发芯片nRF401,研究了大棚温度监控中信号的无线传输技术和实现方法.阐述了无线收发芯片nRF401的特点及性能指标,并通过nRF401无线通信模块进行无线实时监控的监测系统.系统利用单片机同时对多个温度传感器进行控制和数据传输,并应用无线射频技术,将检测到的大棚温度数据传输至基站处理单元,实现对大棚温度的远程监控.  相似文献   

17.
低成本的温室环境远程监控系统包括采集节点、网关和WEB界面应用,已经在北京农业职业学院绿色科技园温室大棚中实地部署,以较低的成本实现了空气温湿度、土壤温湿度、光照强度等环境参数的采集和三路电气设备的控制,有效提升了温室的信息化水平.  相似文献   

18.
为改善当前农业物联网中IPv6和单一无线传感网络智能网关的不足,提出1种基于IPv6和异构型无线网络农业物联网智能网关的设计方法。该方法首先结合3种无线传感网络对智能网关进行整体设计,接着利用TUN服务实现了智能网关的无线模块设计,并且实现异构无线网络通信设计,接着定义感知层通信协议,并实现感知层的采集类节点和控制类节点设计,最后对系统进行了测试和分析。测试结果表明,经该智能网关设计的物联网系统能有效监测农业环境的温度、湿度、光照度等农业环境信息,并进行相应设备的自动控制;验证了IPv6异构型智能网关在农业物联网数据采集和设备控制的有效性,以及构建农业物联网系统的可行性。  相似文献   

19.
针对目前温室大棚环境监测系统存在布线困难、灵活性低和成本高等问题,构建了基于无线传感器网络(WSN)的温室大棚环境监测系统,并重点对传感节点和网关节点进行了设计。该系统的传感器节点负责对环境参数进行采集,并通过无线传感器网络将数据发送到网关节点,网关节点再向远程监测平台传输数据。节点硬件的微处理器模块采用MSP430F149单片机进行数据处理和控制;无线通信模块由nRF905射频芯片及其外围电路组成,负责对数据进行传输和接收;传感器模块采用AM2301传感器进行数据测量;电源模块以LT1129-3.3、LT1129-5和Max660组成的电路提供3.3和±5.0 V电源。节点的无线路由协议和时间同步算法均采用C语言开发,实现节点数据采集与处理、规则转发和远程传输等功能。远程监测软件采用NET.ASP、HTML和C#开发,为用户提供形象直观的Web模式远程数据管理平台。该系统在青海省西宁市温室大棚进行了组网测试,结果表明系统运行稳定可靠,网络平均丢包率为2.4%,有效解决了温室环境监测系统中存在的问题,满足温室大棚栽培环境监测的应用要求。  相似文献   

20.
为了解决生产中蔬菜大棚种植区域不集中、种植人员掌握科技能力欠缺、传统有线监控操作复杂组网困难、监控距离受限制、采集数据不科学和不准确的问题,以及能实时对蔬菜大棚中环境参数信息进行监控,结合无线传感网络和Android系统,设计了基于Android系统的蔬菜大棚环境参数监控系统;对系统中传感器终端节点和协调器、GPRS模块、Android软件进行了设计说明。各个传感器终端节点采集数据信息,以Zig Bee无线传送技术发送到协调器,协调器经过串口通信与Android平板电脑进行通信,同时经GPRS模块把相应数据信息发送到移动设备终端,实现环境参数的实时检测,并与预设的参数范围进行比较,超出范围能实时报警,并向控制器发送命令自动打开安装在蔬菜大棚中的机电设备,使蔬菜大棚内的环境参数适合蔬菜生长。系统经过测试,可实时监测到数据信息,各种传感器数据精确度达到生产要求,机电设备控制良好。该系统扩展性强、设计灵活,具有一定实用价值和良好应用空间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号