首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We evaluated the technical feasibility of reducing water dependency of rohu, Labeo rohita, culture with biofloc under light-limited indoor culture. Biofloc and control treatments were conducted in 700-L indoor tanks at three different stocking densities (STD): 1.3, 2.6, and 3.9 Nos. fish m?2 of surface area of tank for a period of 90 days. In biofloc treatment, fish were fed 20% crude protein feed and extra organic carbon in the form of wheat flour, whereas in case of control treatment they were fed 30% crude protein feed only. Fish survival was 100% in both the treatments. Lower stocking density produced larger fish, but growth was similar within stocking densities among control and biofloc treatments. The nutritional quality of biofloc was found to be quite suitable for rohu. Frequency of water exchange was significantly less in biofloc treatments as compared to the control ones.  相似文献   

2.
In this study, the efficacy of biofloc system was assessed for culturing Indian major carps, e.g., rohu (Labeo rohita), catla (Catla catla), and mrigal (Cirrihinus mrigala) at varied stocking densities (STD) from 4.28, 8.57, and 12.85 fish m−3 of tank volume. Biofloc system could efficiently remove inorganic nitrogen from culture water and substantially improved the growth parameters of fishes as compared to the control system without the application of biofloc. Among different STDs in biofloc system, water quality and floc formation were noted to be higher with a STD of 4.28 fish m−3 and the average concentration of NH4 – N, NO2 – N and NO3 – N of 0.61 mg L−1, 0.35 mg L−1 and 1.8 mg L−1, respectively was recorded lowest as compared to the other STD. As a result, catla and rohu could achieve a specific growth rate of 1.1 % day−1 and 0.98 % day−1, respectively. However, in the other two STDs, the respective concentrations were noted in the range of acceptable water quality, and the growth rates were satisfactory. It can be concluded that the biofloc system is efficient to culture IMC in polyculture mode amd therefore, can be directly applied in scaled-up culture modules.  相似文献   

3.
An experiment to investigate the compensatory growth (CG) response of Labeo rohita was conducted in two phases: a first phase (6 weeks) in which triplicate groups of fish were subjected to feed restriction (5, 25, 50 and 75 % of satiation) or satiation feeding (control) and a second phase (6 weeks) of satiation feeding for all treatment groups. CG in body weight occurred in groups which were under moderate feed restriction (50–75 % of satiation) under phase 1, but more severe feed restrictions resulted in lower weight gain. Improved feed conversion ratio (FCR) (1.6 ± 0.05 and 1.9 ± 0.03) relative to control (2.1 ± 0.06) was observed in the fish that displayed CG following moderate feed restriction (50–75 % of satiation). At the end of the experiment, body moisture, lipid and protein content were not significantly different between moderately restricted fish and the control. After the first phase, there was no significant difference in the expression of pituitary growth hormone (GH) gene between groups, but at the end of the experiment, significantly lower GH expression was observed in the fish subjected to a restriction of 25 and 50 % of satiation during phase 1. Exploiting the ability of fishes to undergo CG in terms of weight gain and improved FCR without major changes in body composition can be considered as an effective management practice.  相似文献   

4.
The aim of this research is to evaluate the effects of biofloc system application at different fish density on the nursery production performance and the robustness of African catfish Clarias gariepinus (Burchell) against Aeromonas hydrophila and salinity stress. An economic analysis was also performed to determine the most optimum fish density in biofloc‐based African catfish nursery production. African catfish with an average body weight of 0.96 ± 0.04 g and average body length of 4.20 ± 0.46 cm, respectively, were distributed in 12 units of circular plastic‐lined tanks (1,020 L). The experiment consisted of four treatments in triplicates, that is, a control without carbon source addition at a density of 4 fish/L, and three biofloc treatments at different densities, that is, BFT4 (4 fish/L), BFT6 (6 fish/L) and BFT8 (8 fish/L). Tapioca flour was used as the organic carbon source in biofloc systems and was added at an estimated C/N ratio of 10. Housing the fish in biofloc systems resulted in higher fish growth, more efficient feed utilization, higher fish robustness against A. hydrophila infection and salinity stress, as well as higher profitability of nursery production. Increasing the fish density resulted in higher mortality. However, higher number of fish produced and lower feed conversion ratio were observed in the treatments with higher density (6 and 8 fish/L). In conclusion, the application of biofloc technology at a density of 8 fish/L could be recommended to increase the production and profitability of African catfish nursery culture.  相似文献   

5.
ABSTRACT

This study was conducted as a trial of using dry whey meal (DWM) as a substitute for fish meal (FM) in practical diets for Nile tilapia, Oreochromis niloticus. Triplicate fish groups were fed on five isonitrogenous (30.2%) and isolipidic (6.9%) diets. The control diet (D1) used FM as the sole protein source. In the other four diets (D2–D5), FM protein was substituted by 25, 50, 75, or 100% DWM. Fish (3.5 ± 0.1 g) were stocked at a rate of 20 fish per 100-L aquarium and fed one of the tested diets up to satiation twice daily for 12 weeks. Fish growth, feed utilization, protein efficiency ratio, apparent protein utilization, and energy utilization for fish fed DWM diets up to 75% FM (D2–D4) tended to be higher but were not statistically different than the control diet. No significant effect of diet was found in whole-body moisture, crude protein, and total ash contents. Whole-body lipid content in fish fed the 100% DWM (D5) diet was significantly higher than that for fish fed the control diet. The optimal replacement level of FM by DWM was estimated by second-order polynomial regression to be 62.5%.  相似文献   

6.
The objective of the study was to evaluate the utilization of biofloc meal as a feed ingredient in enhancing the growth and health status of African catfish (Clarias gariepinus) juvenile. The study consisted of two experiments, that is digestibility and growth experiments. The digestibility of two biofloc meals produced with two different carbon sources, that is tapioca and molasses, were assessed in the digestibility experiment. Whereas the effect of four dietary treatments with different levels of biofloc meal, that is 0%, 5%, 10% and 20%, on the fish growth performance, feed utilization, immuno‐haematological response, antioxidant status and robustness against environmental stress were evaluated in the growth experiment. The results showed that the digestibility of dry matter, protein, lipid and phosphorus of biofloc grown using molasses as the carbon source were remarkably higher than that grown using tapioca (p < 0.05). The inclusion of biofloc meal in the diets at 10% and 20% resulted in higher feed intake, fish growth and final biomass and protein efficiency ratio, and lower feed conversion ratio (p < 0.05). Furthermore, the red blood cells counts, phagocytic, lysozyme activities and antioxidative capacity were significantly enhanced in the fish provided with diet containing 20% biofloc meal (p < 0.05).The fish survival following salinity stress test was higher in the treatments with biofloc meal at 10% and 20% inclusion levels. In conclusion, dietary inclusion of biofloc meal could improve the growth performance and health status of African catfish juvenile and an inclusion level of 20% could be recommended.  相似文献   

7.
A 6-week experiment was performed to compare different carbon sources, i.e. sucrose, glycerol and rice bran, to a nitrogen ratio of 15:1 in a biofloc-based African catfish Clarias gariepinus culture system. Catfish survival, growth, whole-body proximate composition, body indices, liver histopathology and glycogen content were measured. Each treatment was triplicated in glass aquaria with each replicate containing 50 fish (500 fish/m3) with an initial weight ± SD of 5.06 ± 0.05 g. Glycerol significantly increased total biofloc production, and both the sucrose and glycerol treatments generally had lower nitrogenous levels, compared to the control. These levels spiked at week 2 in the rice bran treatment, leading to significantly lower survival compared to all other treatments. At both weeks 3 and 6, liver histopathology of fish in the rice bran treatment revealed substantial vacuolation and less glycogen while the highest was in fish from the glycerol treatment. Fish growth was unaffected among the treatments, but survival was highest in the glycerol treatment. Rice bran appears unsuitable for C. gariepinus, likely due to being a slower-releasing carbon source. Instead, glycerol is recommended based on significantly higher biofloc production and subsequently improved water quality and survival of C. gariepinus during their nursery culture.  相似文献   

8.
Eight isonitrogenous (approximately 35 % crude protein) and isocaloric (17.58 kJ g?1) diets incorporating raw and fermented sesame oilseed meal replacing other feed ingredients including fishmeal at 10, 20, 30 and 40 % levels by weight into a fishmeal-based reference diet (RD) were fed to rohu, Labeo rohita, fingerlings (mean initial weight 3.19 ± 0.09 g) for 80 days. Two phytase-producing bacterial strains (LF1 and LH1 of Bacillus licheniformis) isolated from the foregut and hindgut regions of adult L. rohita were used for fermentation of oilseed meal for 15 days at 37 ± 2 °C. Fermentation of sesame seed meal was effective in significantly reducing the crude fibre content and anti-nutritional factors such as tannins and phytic acid and enhancing available free amino acids, free fatty acids and mineral concentration. In terms of growth, feed conversion ratio and protein efficiency ratio, 30 % fermented oilseed meal incorporated diet resulted in a significantly (P < 0.05) better performance of rohu fingerlings. In general, growth and feed utilization efficiencies of diets containing fermented oilseed meal were superior to diets containing raw meal. The apparent digestibility of protein, lipid, ash and minerals (phosphorus, calcium, manganese, copper and iron) was significantly (P < 0.05) higher in fish fed diet containing 30 % fermented oilseed meal in comparison with those fed RD. The maximum deposition of protein in the carcass was recorded in fish fed the diet containing 30 % fermented seed meal.  相似文献   

9.
为了研究零换水条件下团头鲂(Megalobrama amblycephala)养殖水体生物絮团形成所需的适合的碳氮比(C/N),以及不同C/N形成的生物絮团对团头鲂生长、消化酶活性和非特异性免疫力的影响,本实验设计4个不同C/N实验组,包括投喂基础饲料(C/N=8∶1)的对照组,在基础饲料上添加葡萄糖的处理组,其中将处理组的C/N分别调整为12∶1(C/N12)、16∶1(C/N16)和20∶1(C/N20).结果显示,C/N16和C/N20处理组中团头鲂的增重率和特定生长率显著高于对照组(P<0.05),而饲料系数显著低于对照组(P<0.05);C/N16和C/N20处理组中团头鲂肠道的蛋白酶活性和淀粉酶活性显著高于对照组(P<0.05);而各实验组中团头鲂肠道的脂肪酶活性没有显著性差异;C/N16和C/N20处理组中团头鲂肝脏超氧化物歧化酶、碱性磷酸酶和溶菌酶活性显著高于对照组(P<0.05).研究表明,生物絮团技术应用于团头鲂养殖适宜的C/N应不低于16,该条件下形成的生物絮团能有效提高团头鲂生长、消化酶和免疫相关酶活性.  相似文献   

10.
A 7-week feeding trial was conducted to investigate the effects of replacing fish meal by autoclaved Salicornia bigelovii seed meal (SSM), supplemented with varying cholesterol levels, on feed intake, growth performance, body composition and survival of Nile tilapia Oreochromis niloticus fingerlings under laboratory conditions. SSM was tested at different inclusion levels (0, 25, 50 and 65 % of total protein), using different levels of cholesterol supplementation (0, 1, 2 and 2.6 %) in isonitrogenous (420 g Kg?1 DM crude protein) and isocaloric (18.52 MJ Kg?1 DM) fish meal–Soybean meal-based diets. Triplicate groups of fish (374 ± 15 mg, initial fresh body weight) were randomly stocked in 18 20-L plastic tanks at a stocking density of 20 fish per tank and were fed to satiation by hand five times a day, 7 days per week. Feed intake, growth performance and survival were significantly affected by the SSM inclusion level and the cholesterol supplementation. The lower growth performance of fish fed diets containing SSM without cholesterol is thought to result from the presence of saponins in the meal. When cholesterol is added, the saponin-induced toxicity is ameliorated, which is evident from growth and survival responses, up to 50 % of SSM protein inclusion. At the highest level of SSM inclusion (65 %), growth and survival were very poor, despite the addition of cholesterol. The results of the present work suggest that autoclaved SSM can partially substitute fish protein in diets for O. niloticus fingerlings at levels up to 50 % of the dietary protein if 2 % cholesterol is added in fish meal–SBM-based diets.  相似文献   

11.
The aim of this study was to evaluate the effects of practical diets with different protein content on survival, growth, feed utilization and body composition of juvenile tench (Tinca tinca). A 90-day experiment was conducted with 6-month-old juveniles (34.35 mm total length, 0.411 g weight). Six practical diets differing in the protein level were tested: 40, 44, 48, 52, 56 or 60 %. Survival rates ranged from 96.7 to 100 %. The 52 % protein enabled the highest growth (55.49 mm total length, 2.11 g weight, 1.80 % day?1 specific growth rate) and the lowest feed conversion ratio (1.61) without significant differences (P > 0.05) from the 48 %. Protein productive value ranged from 15.64 to 22.01. The percentages of fish with visible deformities ranged from 1.1 to 4.4 %. The relationship among amino acid profiles of the diets, growth of juveniles, body composition and amino acid requirements of other fish species is discussed. Second-order polynomial regression analysis showed that the optimum dietary protein requirement for maximum growth of juvenile tench may be 52.7 %.  相似文献   

12.
The objective of this study was to determine the effects of fish oil replacement with dietary vegetable oils on growth performance, chemical composition and fatty acids profiles in fillets of farmed Caspian great sturgeon juveniles Huso huso (26.97 ± 0.49 g). Five isonitrogenous and isolipidic diets were formulated, containing 10 % of added oil. The diet with 100 % kilka fish oil (Caspian tyulka, Clupeonella caspia) was the control. Fish oil was substituted by 50 % of vegetable oils consisting of an equal share of sunflower and soybean oils (diet A), sunflower and canola oils (diet B) and soybean and canola oils (diet C). In diet D, 100 % of fish oil was replaced with vegetable oil (1:1:1 ratio of sunflower oil, soybean oil and canola oil). Significant differences (P > 0.05) were not detected during 60 days feeding trial in final body weight, weight gain, condition factor, specific growth rate, feed conversion rate, protein efficiency ratio and the chemical composition of fillet (crude protein, crude lipid, moisture and ash). Generally, the fatty acids composition of fish fillets was reflective of the dietary lipid sources. These results indicate the feasibility of substituting fish oils with the mixture of vegetable oils in diets of juvenile H. huso without negative influence on growth providing optimum ratios of n-3/n-6 and n-3/18:1n-9 is met in the diet.  相似文献   

13.
The present study assessed the effects of different types of feeds and salinity levels on water quality, growth performance, survival rate and body composition of the Pacific white shrimp, Litopenaeus vannamei, juveniles in a biofloc system. Shrimp juveniles (2.56 ± 0.33 g) were cultured for 35 days in 300 L fibreglass tanks (water volume of 180 L) with a density of 1 g/L in six treatments. Three sources of feed (100% formulated feed, mixture of 66.6% formulated diet and 33.3% wet biofloc, and 100% wet biofloc) and two levels of salinity (10 and 32 ppt) were considered in two control groups and four biofloc treatments. Water quality parameters in the biofloc treatments were significantly better than control groups (p < .05). The highest increase in growth performance and survival rate were obtained in salinity of 32 ppt and mixed feed sources. Analysing the proximate composition of body shrimp indicates an increase in lipid and ash levels in biofloc treatments, which was more evident in the salinity of 32 ppt. In addition, the proximate analysis of shrimp body showed significant differences between biofloc treatments and control groups (p < .05). The highest FCR was found in the treatment with salinity level of 10 ppt and fed only with floc. Overall, it was found that the artificial diet supplemented with biofloc at the salinity of 32 showed better performance in the juvenile stage of Pacific white shrimp.  相似文献   

14.
The compensatory growth, productive performance, proximal composition and somatic indices of Nile tilapia (Oreochromis niloticus) cultivated in biofloc were evaluated during a 144‐day period under five cyclic regimes of feed restriction and feeding. Five treatment groups, in which the frequency of feed restriction (R) and feeding (F) varied by periods (days) as follows: R1:F3, R3:F9, R6:F18, R8:F24 and R12:F36; each treatment was evaluated in triplicate. The cycles were repeated throughout the culture period. The control group received feed daily. Fish were cultivated in 18 circular tanks (3 m3) at a density of 50 fish/m3 per tank. At the end of the study, the survival of Nile tilapia was greater than 90% in all the treatments. Complete compensation in growth was achieved in R6:F18 and R12:F36. At the end of the feed restriction period, both crude protein and total lipid content of the tilapia muscle tissue taken from fish of the treatment groups were similar to samples of muscle tissue derived from fish of the control group; however, a reduction of more than 40% in somatic indices compared with the control was observed, but these recovered by the end of the feeding phase. The results indicate that cyclic feeding based on 12 days of feed restriction and 36 days of feeding (R12:F36) induced a complete compensation in weight and restoration of energy reserves, with similar measures of productive performance observed when compared to the control treatment during the culture of Nile tilapia in biofloc, and food reduction did not affect proximal composition.  相似文献   

15.
The biofloc technology production system is a production‐intensifying management strategy used primarily for culturing tilapia and penaeid shrimp, both of which can consume the biofloc. Other fish can be grown in biofloc systems because the biofloc serves to maintain water quality, metabolizing the ammonia excreted by intensively fed fish. A dose–response study was conducted in an outdoor biofloc system to begin quantifying the stocking rate production function for sunshine bass, Morone chrysops × Morone saxatilis, advanced fingerlings. Sunshine bass (2.9 ± 0.2 g/fish) were stocked into tanks at 50–250 fish/m2 in 50 fish/m2 increments. After 94 d, gross yields ranged from 1.4 to 3.1 kg/m3 and were independent of stocking rate. Harvested fish were separated into two size groups: smaller than 115 mm total length (TL, target fish) and larger than 115 mm TL (jumper fish). Target fish increased linearly from 62 to 93% and jumpers decreased linearly from 38 to 7% of the population, respectively, as stocking rate increased. The outdoor biofloc system offers potential for intensifying the production of advanced sunshine bass fingerlings, but feed consumption appeared to be impeded by high total suspended solids concentrations. Further research is needed to optimize stocking rates and solids management.  相似文献   

16.
An eight-week feeding trial was conducted to evaluate the supplementation of pineapple waste extract (PWE) at levels of 0%, 1%, 2%, and 3% on growth performance of Nile tilapia (8.76 ± 0.17 g) for 8 weeks. PWE supplementation improved pepsin digestibility significantly but not protein digestibility. Thus, fish fed PWE showed better growth than those fed the control feed. The fish fed the feed supplemented with 1% PWE resulted in the optimum protein digestibility, growth, and feed utilization (P < 0.05). No significant differences among dietary treatments were found for free ammonia and total nitrogen excretion (P > 0.05).  相似文献   

17.
A 28-day indoor trial was conducted to evaluate the water quality, phytoplankton composition and growth of Litopenaeus vannamei in an integrated biofloc system with Gracilaria birdiae and Gracilaria domingensis. The experimental design was completely randomized with three treatments: control (shrimp monoculture); SB (shrimp and G. birdiae) and SD (shrimp and G. domingensis), all with three replicates. Random sampling was done (6 % of total population per experimental unit) to confirm white spot syndrome Virus (WSSV) infection using nested-PCR analysis due to suspicion of presence of the virus in the experiment (treatment and control groups). Shrimp L. vannamei (2.63 ± 0.10 g) were stocked in experimental tanks at a density of 425 shrimp m?3, and the Gracilaria was stocked at a biomass of 2.0 kg m?3. Shrimp mortality began in both the experimental and control groups at 10 days of culture. The integrated biofloc system (shrimp and seaweed) increased settleable solids (by 26–52 %); final weight (by 6–21 %); weekly growth (by 17–43 %); weight gain (by 17–43 %); specific growth rate (by 16–36 %); and yield (by 5–7 %) and decreased feed conversion ratio (by 21–28 %) and Cyanobacteria density about 16 % as compared to the control (shrimp monoculture). The use of red seaweed Gracilaria in an integrated biofloc system can enhance shrimp growth and reduce Cyanobacteria density in the presence of WSSV.  相似文献   

18.
The relative contribution of the dietary nitrogen supplied by fish meal and a biofloc meal to the growth of Pacific white shrimp was evaluated using stable isotope analysis. Biofloculated material was obtained from an experimental tilapia culture system. Five formulated diets were supplied. Two of them consisted in isotopic controls having only fish meal or biofloc meal as protein source. Three mixed diets were formulated with varying proportions of these ingredients on a dietary nitrogen basis (75:25, 50:50 and 25:75). At the end of the trial, survival rates were similar (92–100%) but significant differences in mean final weight were observed and a negative correlation between the inclusion of biofloc meal and weight gain was evidenced. Mean final weight in shrimp fed on diet containing only fish meal was 2.8 g, while mean final weight of animals fed on diet containing 50% biofloc was 1.9 g. Isotopic mixing models indicated that all diets contributed higher proportions of dietary nitrogen from fish meal than from biofloc meal. Dietary nitrogen available in diets containing 25%, 50% and 75% of biofloc meal was incorporated in muscle tissue as 5%, 41% and 64% respectively. Diet supplying 25% of nitrogen from biofloc was the only mixed diet eliciting growth comparable to diet containing only fish meal. Lower growth and nitrogen deposition in shrimp fed on diets containing high proportions of biofloc meal were possibly associated to the use of only two protein sources and a restriction of essential amino acids.  相似文献   

19.
不同鲤养殖模式生物絮团系统中鱼体的生长及水质   总被引:2,自引:2,他引:0  
为了探明不同鲤养殖模式生物絮团系统中鱼体的生长及水质变化情况。采用陆基围隔法,分别设置了鲤单养、鲤+鳙二元混养及鲤+鳙+鲢三元混养3种鲤养殖模式,每种模式设3个重复,测定了鲤不同养殖模式下鱼体的生长及水质参数,实验共进行90 d。结果显示,与单养模式相比,二元混养和三元混养鲤的存活率和鱼体蛋白质效率均显著偏高,而其总饲料系数则显著偏低。3种养殖模式中鲤肌肉的水分和粗脂肪含量相互之间差异均不显著,三元混养模式鲤肌肉的粗蛋白和灰分含量均显著高于单养模式。在3种养殖模式生物絮团系统中,生物絮团形成量与水温之间在19.3~28.5°C范围内呈显著的正相关。整个实验过程中,二元混养和三元混养水体的总氨氮、亚硝酸态氮、总无机氮、正磷酸盐及总悬浮颗粒物含量均低于单养模式,而硝酸态氮、总碱度、有机悬浮颗粒物及叶绿素a含量均高于单养模式,除叶绿素a之外,其余水质参数相互之间差异均不显著。研究表明,与传统的混养系统相似,在生物絮团养殖系统中,符合生物学原则的混养模式同样能够有效发挥养殖系统的生态功能,提高养殖效率。  相似文献   

20.
This experiment was carried out to investigate the effect of feeding low protein diets (~20BFd20.13; ~22BFd22.20; ~24BFd24.32, and ~26BFd26.44) in the presence of the biofloc on the growth performance and feed utilization of (Fenneropenaeus indicus) in comparison with commercial feed of 35% CP as control. The present study was based on application of genetic, nutritional and pathological tools. The biofloc was developed in the low protein diet using molasses as a carbon source. Fifty juveniles F. indicus with an average body weight of 0.52?±?0.03 g were stocked in 50 L plastic tanks. Low protein diets and the control were tested in three replicates over a 112 days feeding trial. There were significant differences in protein, amino acids profile, lipids and fatty acids profile between the control and low diets group in the presence of the biofloc. However, less variation was noticed in the whole body composition (protein, amino acid profile, lipids and fatty acid profiles) of the shrimp between the control and low diets groups in the presence of the biofloc. There were no significant differences in final weight between control and low diets groups. Same trend was noted in the SGR, which did not vary significantly between low protein diets and control. However, the utilization of the biofloc by shrimp as a feed source was evident by the significant differences (P<?0.05) in FCR between low protein diets and control. There was a significant difference in the shrimp survival (%) (P<?0.05) between the low protein diets and the control which ranged between 86.66 % and 66.66 %, respectively. The development of biofloc significantly reduced the TAN, nitrate NO3-N and nitrite NO2-N levels in the low protein diets tanks. Diagnostic of mortality cases revealed that biofloc can serve as a biosecurity system for shrimp farmimg. RAPD-PCR were used to study the epidemiology of Vibrio parahaemolyticus responsible for early mortality syndrome (EMS) isolated from the water of culture system. The OPC5 (GATGACCGCC) primer produced bands ranged from 1 to 8 with sizes from 0.2–5.0 kb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号