首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rates of carbon dioxide evolution and degradation rates of metamitron, metazachlor and metribuzin were measured in two soils in the presence of three microbial inhibitors. The nonselective microbial inhibitor sodium azide reduced both carbon dioxide evolution and the rate of loss of all three herbicides in both soils, although the reduction in degradation rate of metamitron was small. The antibacterial antibiotic novobiocin enhanced carbon dioxide evolution from both soils but had variable effects on the rates of herbicide degradation. It inhibited degradation of metazachlor and metribuzin, and in one of the soils its effects on metazachlor degradation were similar to those of sodium azide. Novobiocin inhibited degradation of metamitron to a small extent in one soil only. The antifungal antibiotic cycloheximide also enhanced carbon dioxide evolution from both soils. In general, its effects on herbicide degradation were similar to those of novobiocin, although the extent of inhibition was usually less pronounced. The results are discussed in terms of the relative involvement of microorganisms in degradation of the three herbicides.  相似文献   

2.
The introduction of crops resistant to the broad spectrum herbicide glyphosate, N-(phosphonomethyl)glycine, may constitute an answer to increased contamination of the environment by herbicides, since it should reduce the total amount of herbicide needed and the number of active ingredients. However, there are few published data comparing the fate of glyphosate in the environment, particularly in soil, with that of substitute herbicides. The objective of this study is to compare the fate of glyphosate in three soils with that of four herbicides frequently used on crops that might be glyphosate resistant: trifluralin, alpha,alpha,alpha-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine, and metazachlor, 2-chloro-N-(pyrazol-1-ylmethyl)acet-2',6'-xylidide for oilseed rape, metamitron, 4-amino-4,5-dihydro-3-methyl-6-phenyl-1,2,4-triazin-5-one for sugarbeet and sulcotrione, 2-(2-chloro-4-mesylbenzoyl)cyclohexane-1,3-dione for maize. The distribution of herbicides between the volatilized, mineralized, extractable and non-extractable fractions was studied, along with the formation of their metabolites in laboratory experiments using 14C-labelled herbicides, over a period of 140 days. The main dissipation pathways were mineralization for glyphosate and sulcotrione, volatilization for trifluralin and non-extractable residues formation for metazachlor and metamitron. The five herbicides had low persistence. Glyphosate had the shortest half-life, which varied with soil type, whereas trifluralin had the longest. The half-lives of metazachlor and sulcotrione were comparable, whereas that of metamitron was highly variable. Glyphosate, metazachlor and sulcotrione were degraded into persistent metabolites. Low amounts of trifluralin and metamitron metabolites were observed. At 140 days after herbicide applications, the amounts of glyphosate and its metabolite residues in soils were the lowest in two soils, but not in the third soil, a loamy sand with low pH. The environmental advantage in using glyphosate due to its rapid degradation is counterbalanced by accumulation of aminomethylphosphonic acid specifically in the context of extensive use of glyphosate.  相似文献   

3.
Adsorption and leaching of the herbicides thiazafluron (1,3-dimethyl-1(5-trifluoromethyl-1,3,4-thiadiazol-2-yl)urea), metamitron (4-amino-4,5-dihydro-3-methyl-6-phenyl-1,2,4-tri azin-5-one) and clopyralid (3,6-dichloropicolinic acid) were studied in one sandy and two silty-clay soils. Equilibrium adsorption coefficients (Kd) were measured using a batch equilibration procedure, and mobility was studied in repacked columns of the soils under fluctuating saturated/unsaturated flow conditions. Breakthrough curves (BTCs) were consistent with an inverse relationship between leaching and adsorption with greater mobility of the weakly-adsorbed clopyralid than the more strongly adsorbed thiazafluron or metamitron. The BTC data were used to evaluate the LEACHP simulation model. Following model calibration with respect to hydrological parameters and some of the herbicide degradation rates, the best fits between predicted and observed data were with the less adsorptive and highly mobile clopyralid. In general, the model gave acceptable predictions of the timing of the concentration maxima and the shapes of the BTCs, although earlier breakthrough than that observed was predicted with the less mobile herbicides, thiazafluron and metamitron, in the silty-clay soils. For metamitron, the total amounts leached were not predicted accurately, suggesting more rapid degradation of the herbicide in the soil columns than in the kinetic studies performed in a 1:1 soil:solution ratio shaken system.  相似文献   

4.
The spatial variability in mineralization of atrazine, isoproturon and metamitron in soil and subsoil samples taken from a 135-ha catchment in north France was studied. Fifty-one samples from the top layer were taken to represent exhaustively the 31 agricultural fields and 21 soil types of the catchment. Sixteen additional samples were collected between depths of 0.7 and 10 m to represent the major geological materials encountered in the vadose zone of the catchment. All these samples were incubated with 14C-labelled atrazine under laboratory conditions at 28 degrees C. Fourteen selected surface samples which exhibited distinctly different behaviour for atrazine dissipation (including sorption and mineralization) were incubated with 14C-isoproturon and 14C-metamitron. Overall soil microbial activity and specific herbicide degradation activities were monitored during the incubations through measurements of total carbon dioxide and 14C-carbon dioxide respectively. At the end of the incubations, extractable and non-extractable (bound) residues remaining in soils were measured. Variability of herbicide dissipation half-life in soil surface samples was lower for atrazine and metamitron (CV < 12%) than for isoproturon (CV = 46%). The main contributor to the isoproturon dissipation variability was the variability of the extractable residues. For the other herbicides, spatial variability was mainly related to the variability of their mineralization. In all cases, herbicide mineralization half-lives showed higher variability than those of dissipation. Sorption or physicochemical soil properties could not explain atrazine and isoproturon degradation, whose main factors were probably directly related to the dynamics of the specific microbial degradation activity. In contrast, variability of metamitron degradation was significantly correlated to sorption coefficient (K(d)) through correlation with the sorptive soil components, organic matter and clay. Herbicide degradation decreased with depth as did the overall microbial activity. Atrazine mineralization activity was found down to a depth of 2.5 m; beyond that, it was negligible.  相似文献   

5.
The retention and degradation of metribuzin herbicide were studied under two environmental conditions. Field studies were carried out on two soils, a sandy loam soil (soil A) and a clay soil (soil B). Metribuzin was applied with a jet sprayer at 1060 g a.i. ha?1 and 1960 g a.i. ha?1 on soils A and B respectively. Reconstituted soil columns were used to study the herbicide movement and metabolism in the two soils. Analyses of metribuzin and its metabolites were carried out using standardized methods. The results indicated a very weak capacity of adsorption of metribuzin in the two soils, and the weak adsorbed fraction is easily desorbed. Degradation and mobility of metribuzin in the field and laboratory soil columns were very intense and rapid. Soil A favoured reductive deamination whereas soil B favoured oxidative desulphuration and the respective metabolites deaminometribuzin and diketometribuzin yield the same product deaminodiketometribuzin. Both leaching by rainfall and degradation were important in the disappearance of metribuzin from the soils.  相似文献   

6.
Enhanced degradation of some soil-applied herbicides   总被引:5,自引:0,他引:5  
In a field experiment involving repeated herbicide application, persistence of simazine was not affected by up to three previous doses of the herbicide. With propyzamide, there was a trend to more rapid rates of degradation with increasing number of previous treatments. Persistence of linuron and alachlor was affected only slightly by prior applications. In a laboratory incubation with soil from the field that had received four doses of the appropriate herbicide over a 12–month period, there was again no effect from simazine pretreatments on rates of loss. However, propyzamide, linuron and alachlor all degraded more rapidly in the previously treated than in similar untreated soil samples. Propyzamide, linuron, alachlor and napropamide degradation rates were all enhanced by a single pretreatment of soil in laboratory incubations, whereas degradation rates of isoproturon, metazachlor, atrazine and simazine were the same in pretreated and control soil samples.  相似文献   

7.
Simazine, linuron and propyzamide were incubated in 18 different soils at 25°C and field capacity soil moisture content. The degradation of each herbicide followed first-order kinetics. The half-life of simazine varied from 20 to 44 days, that of linuron from 22 to 86 days and that of propyzamide from 10 to 32 days. The rate of linuron degradation was highly significantly correlated with soil organic matter content, clay content, soil respiration and the extent of herbicide adsorption by the soil. The rate of simazine degradation was significantly and negatively correlated with soil pH, but the rate of propyzamide degradation was not related with any of the soil factors examined.  相似文献   

8.
Herbicide degradation in soils is highly temperature‐dependent. Laboratory incubations and field experiments are usually conducted with soils from the temperate climatic zone. Few data are available for cold conditions and the validation of approaches to correct the degradation rate at low temperatures representative of Nordic environments is scarce. Laboratory incubation studies were conducted at 5, 15 and 28°C to compare the influence of temperature on the dissipation of metribuzin in silt/sandy loam soils in southern and northern Norway and in a sandy loam soil under temperate climate in France. Using 14C‐labelled metribuzin, sorption and biodegradation were studied over an incubation period of 49 days. Metribuzin mineralisation and total soil organic carbon mineralisation rates showed a positive temperature response in all soils. Metribuzin mineralisation was low, but metabolites were formed and their abundance depended on temperature conditions. The rate of dissipation of 14C‐metribuzin from soil pore water was strongly dependent on temperature. In Nordic soils with low organic content, metribuzin sorption is rather weak and biodegradation is the most important process controlling its mobility and persistence.  相似文献   

9.
10.
Singh N 《Pest management science》2008,64(10):1057-1062
BACKGROUND: Metribuzin (4-amino-6-tert-butyl-4,5-dihydro-3-methylthio-1,2,4-triazin-5-one) is weakly sorbed in soils and therefore leaches easily to lower soil profiles and results in loss of activity. Soil amendments play an important role in the management of runoff and leaching losses of pesticides from agricultural fields. Therefore, the effect of biocompost from sugarcane distillery effluent on metribuzin degradation and mobility was studied in a sandy loam soil.RESULTS: Metribuzin was more persistent in biocompost-unamended (T-0) flooded soil (t(1/2) - 41.2 days) than in non-flooded (t(1/2) - 33.4 days) soil. Biocompost application at the rate of 2.5 and 5.0% (T-1 and T-2) in non-flooded soils increased metribuzin persistence, but no significant effect was observed on persistence in flooded soils. Freundlich adsorption constants (K(f)) for treatments T-0, T-1 and T-2 were 0.43, 0.64 and 1.13 respectively, suggesting that biocompost application caused increased metribuzin sorption. Leaching studies in packed soil columns indicated that biocompost application affected both metribuzin breakthrough time and maximum concentration in the leachate. Leaching losses of metribuzin were drastically reduced from 93% in control soil (T-0) to 65% (T-1) and 31% (T-2) in biocompost-amended soils.CONCLUSION: Biocompost from sugarcane distillery effluent can be used effectively to reduce downward mobility of metribuzin in low-organic-matter sandy loam soil. Copyright (c) 2008 Society of Chemical Industry.  相似文献   

11.
BACKGROUND: Metribuzin is a widely used herbicide that has been identified as a groundwater contaminant. In this study, slow‐release formulations of metribuzin were designed by encapsulating the active ingredient in phosphatidylcholine (PC) vesicles and adsorbing the vesicles onto montmorillonite. RESULTS: The maximum active ingredient content in the slow‐release formulations was 246 g kg?1. Infrared spectroscopy results revealed that the hydrophobic interactions between metribuzin and the alkyl chains on PC were necessary for encapsulation. In addition, water bridges connecting the herbicide and the PC headgroup enhanced the solubility of metribuzin in PC. Adsorption experiments in soils were performed to evaluate the relationship between sorption and leaching. Funnel experiments in a sandy soil revealed that the herbicide was not irreversibly retained in the formulation matrix. In soil column experiments, PC–clay formulations enhanced herbicide accumulation and biological activity in the top soil layer relative to a commercial formulation. PC–clay formulations also reduced the dissipation of metribuzin by a factor of 1.6–2.5. CONCLUSIONS: A reduction in the recommended dose of metribuzin can be achieved by employing PC–clay formulations, which reduces the environmental risk associated with herbicide applications. Moreover, PC and montmorillonite are non‐toxic and do not negatively affect the environment. Copyright © 2010 Society of Chemical Industry  相似文献   

12.
R. J. HANCE 《Weed Research》1976,16(5):317-321
Suspensions of wettable powders of metribuzin and simazine were sprayed onto samples of two soils of two particle size grades, > 2.5 mm and <0.5 mm. The soils were either air-dry or at a water content of 12%. After either 1 h or 1 week, water was added to give a soil to water ratio of 1:1. Samples of solution were analysed after 1, 24 and 48 h. With metribuzin the intial concentration for both soils after wetting was greater from the >2.5 mm samples than the <0.5 mm samples, following application to dry soil, but by 48 h the differences were negligible. With simazine WRO soil did not show this effect at all and with Kirton soil only small differences were seen. If the soil was wet at the time of application, particle size had no effect except with simazine in Kirton soil. Generally metribuzin concentrations were higher after application to wet than to dry soils for at least 24 h after wetting whereas simazine concentrations were higher from initially dry soils and the differences had virtually disappeared 24 h after wetting. With the WRO soil herbicide concentrations in soil water were higher if the soil was wetted 1 h after spraying than if left for 1 week but the differences rarely persisted for 48 h. No such trend was observed with Kirton soil. It is concluded that the differences observed in these experiments could be responsible for variations in the performance of soil-applied herbicides.  相似文献   

13.
The persistence of atrazine was monitored in three fields at different sites in Spain during two consecutive years (1990 and 1991). Laboratory assays for determining the influence of temperature and soil moisture content on the rate of herbicide degradation were carried out on soil samples from the same fields. The degradation constants derived from these assays, together with weather records for the period of the field experiments, were used in a computer program which simulated herbicide persistence in the field. Some adjustments were made to adapt the model to Spanish conditions. The model predicted with reasonable accuracy the persistence of the herbicide in two soils, although there was a tendency to overestimate the residues at early dates. Discrepancies between predicted and measured residues were greater in the third soil, due to rapid initial losses that were not predicted by the program. In this case, the agreement was improved if the program was run taking time zero to be one month after herbicide application. Possible reasons for these discrepancies are discussed.  相似文献   

14.
The effects of soil temperature and soil moisture content on the rate of simazine degradation were measured in the laboratory in soils from sixteen sites located in several different countries. First-order half-lives under standard incubation conditions were significantly correlated with clay content, organic carbon content and soil pH in a multiple linear regression. The temperature dependence of degradation was similar in the different soils whereas the moisture dependence showed considerable variation between soils. Persistence of simazine was also measured in the same soils in the field and at live additional sites. Weather records from the different sites for the periods of the Held experiments were used in conjunction with constants derived from the laboratory data in a computer program to simulate persistence in the field. In general, the model overestimated residues in the field. About half of the calculated residues were within 25% of those observed, an accuracy sufficient for practical purposes, but on several occasions the discrepancies between calculated and observed residues were greater than 50%. Possible reasons for the discrepancies and requirements for further experiments are discussed.  相似文献   

15.
Freundlich isotherms were obtained for the adsorption equilibrium of the herbicides metamitron and chloridazon with the components of a representative soil in a pesticide concentration range of 10-1000 γg ml?1 for metamitron and 10-500 μg ml?1 for chloridazon. The mobility of these herbicides through soil columns was also studied using the displacement technique described by Davidson (Soil Sci. Soc. Amer. Proc., 32 (1968) 629). The experiment was carried out simultaneously in three columns, two of which were fed with solutions of the herbicides while the third was used as a control. The herbicide solutions flowed down by gravity and were collected at the outlet at different times. The herbicide content of these outlet solutions was determined by Differential Pulse Polarography.  相似文献   

16.
The movement and persistence of atrazine and metribuzin, in a sandy loam soil following application in spring, was simulated using two models. The first model, based on the physical laws describing water and solute movement and using measured values of soil hydraulic properties, underestimated herbicide mobility in the soil and predicted too rapid drying of the deeper soil layers. The accuracy of the simulations was improved by empirically reducing the measured hydraulic conductivities by a factor of 4. This probably reflects the difficulties of obtaining reliable measurements of soil hydraulic properties. A second and simpler model, which simulated water and herbicide movement using mobile and immobile water categories, accurately predicted soil water contents. It tended to underestimate herbicide movement at short times after application, and to overestimate movement later in the experiments. A comparison of different methods of simulating herbicide degradation showed that prediction of degradation rates in the field from laboratory data can be unsatisfactory with some compounds.  相似文献   

17.
为明确双唑草腈在环境中的降解行为特性,采用室内模拟试验方法,分别研究了积水厌气、好氧和灭菌条件下,双唑草腈在紫色土、水稻土及红壤3种典型土壤中的降解特性。结果表明:双唑草腈在3种土壤中的降解均符合一级反应动力学方程,好氧条件下,其在紫色土、水稻土及红壤中的降解半衰期分别为13.4、10.1和31.1 d,且降解速率与土壤中有机质和黏粒含量呈正相关;不同条件下的降解速率依次为积水厌气 > 好氧 > 灭菌,说明双唑草腈在土壤中的降解一定程度上受水解和微生物活性的影响;在一定的土壤持水量范围内,双唑草腈在土壤中的降解速率随土壤含水量增加而加快。研究表明,双唑草腈在稻田淹水条件下施用降解较快,残留期较短。所得结果可为双唑草腈的合理使用及其环境安全性评价提供科学依据。  相似文献   

18.
Application of urea fertilisers to soils influences the soil solution characteristics and thus may affect the sorption of soil-applied herbicides. The present investigation reports the influence of urea co-application on sorption and leaching of metribuzin, a triazine herbicide. Urea application at 60 and 120 kg N ha(-1) increased metribuzin sorption in soils over that in untreated natural soil. The Kf (Freundlich adsorption coefficient) values of metribuzin for natural, 60 and 120 kg N ha(-1) treatments were 0.43, 0.46 and 0.84 microg(1 - 1/n) g(-1) ml1/n respectively. Downward mobility of metribuzin was studied in packed soil columns (300 mm length x 59 mm i.d.) at two irrigation intensities, 720 m3 ha(-1) (72 mm) and 3600 m3 ha(-1) (360 mm). After 720 m3 ha(-1) irrigation, metribuzin did not leach out of any column and was not detected in the leachate. Urea amendment slowed the leaching of metribuzin by 20 and 40% in 60 and 120 kg N ha(-1) urea-treated columns respectively. Also, following urea application, greater amounts of metribuzin were retained in the application zone. Upon increasing the irrigation intensity fivefold, urea application did not have any effect on metribuzin mobility, and its breakthrough from both natural and urea-amended columns occurred after 126 mm irrigation. However, there was a marked difference in the maximum concentration of metribuzin in the breakthrough curves obtained from natural and urea-amended columns. The study indicated that co-application of metribuzin and urea fertiliser is a safe practice as far as leaching of herbicide is concerned.  相似文献   

19.
以稗草为生物测定材料,运用二次正交旋转组合设计,以土壤湿度和除草剂用量二因子为决策变量,对稗草的抑制率为目标函数,研究土壤湿度对三氮苯类除草剂药效的影响。结果表明,适当的土壤水分是三氮苯类除草剂发挥药效的重要因素,药效随土壤湿度的提高而提高。不同的土壤湿度对不同除草剂药效影响各异,高湿条件下,湿度差异对药效影响大小依次为嗪草酮、西草净、扑草净、莠去津,低湿条件下则相反。除草剂用量与土壤湿度存在最佳发挥药效的组合。  相似文献   

20.
Relationship between rate of propyzamide degradation and physico-chemical properties Propyzamide was incubated in 29 different soils at a soil moisture content of 25%. The degradation of the herbicide followed first-order kinetics. The rate of propyzamide degradation was correlated with soil resistivity. Addition of mineral fertilizers inhibited propyzamide degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号