首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of pyrethroids were studied upon isolated segmental nerves and neuromuscular junctions in both susceptible (Cooper) and knockdown-resistant (kdr; super-kdr) strains of housefly larvae (Musca domestica L.). Isolated segmental nerves contained neither cell bodies nor synaptic contacts; thus, any effects of pyrethroids were attributed solely to their actions upon voltage-dependent Na+ channels. Threshold concentrations of the type II pyrethroid, deltamethrin, required to elevate the spontaneous firing rate of these nerves were determined. Both resistant strains were about ten times less sensitive to deltamethrin than the susceptible strain, but insensitivity of super-kdr nerves was no greater than in the less resistant kdr strain. At neuromuscular junctions, the minimum concentrations of pyrethroids needed to trigger massive increases in the frequency of miniature excitatory postsynaptic potentials (mEPSPs) were determined for deltamethrin and the type I pyrethroid, fenfluthrin. With fenfluthrin there was no detectable difference between the junctions of kdr and super-kdr strains, which were both about ten-fold less sensitive than Cooper junctions. With deltamethrin, kdr junctions were about 30 times less sensitive than those of Cooper; super-kdr junctions were dramatically insensitive to deltamethrin, being some 10000- and 300-fold less sensitive than those of Cooper and kdr respectively. Thus, in the synaptic assay, super-kdr conferred an extension in resistance over kdr only against the type II pyrethroid, it being ineffective against fenfluthrin. We suggest that kdr resistance comprises at least two site-insensitive areas within the nervous system. One involves insensitivity of the Na+ channel and has similar efficacy in both kdr and super-kdr strains against type I and II pyrethroids; the other is associated with the presynaptic terminal and is particularly effective in super-kdr resistance against type II pyrethroids. The latter could be associated with Ca2+-activated phosphorylation of proteins involved with neurotransmitter release. Such phosphorylation reactions are known to be perturbed by pyrethroids, especially by type II compounds.  相似文献   

2.
The electrical activity of abdominal nerves of the housefly, Musca domestica L., was used as a bioassay to study nerve sensitivity to DDT and deltamethrin in susceptible (Cooper) and resistant (kdr, super-kdr) strains. By this technique the resistant strains were less sensitive (approximately 10 000-fold) than Cooper, but the bioassay could not distinguish between super-kdr and kdr in their responses to either compound and so could not account for the greater resistance shown by flies with super-kdr above kdr flies when these insecticides are applied topically. Although factors other than nerve insensitivity may be involved, the compounds were applied to the preparation in aqueous saline solutions at, or close to, their solubility limits and this could have masked differences in responses of nerves from the resistant strains.  相似文献   

3.
Structure-activity correlations of pyrethroids to Musca domestica and Blattella germanica were studied in terms of partition coefficient, electronic effect and conformation. Relative Rf values of 12 pyrethroids measured by thin-layer chromatography were related to the relative partition coefficients and electronic effect. The relative size and shape of six pyrethroids were determined by probabilistic automatic pattern analysis using Corey-Paulings' molecular models. There is no correlation of knockdown of M. domestica and partitioning. The simple correlation, with 0.10< P <0.01 of partitioning, electronic effect and size and shape of pyrethroids to toxicity were 0, 0.2–0.3, 0.7–0.8 respectively while thermodynamic treatment gave corresponding correlations of 0, 0.4, 0.6.  相似文献   

4.
An intensifier (factor 161) identified on the second autosome in a pyrethroid-resistant strain of houseflies (Musca domestica L.) was isolated and introduced into a strain with super-kdr. Unlike E0.39, which on its own also confers very weak (< × 3) resistance to pyrethroids, factor 161 very strongly intensified super-kdr resistance to pyrethroids. Together, factor 161 and super-kdr conferred immunity to deltamethrin in female houseflies (LD50 > 20 μg fly?1) but produced much less intensification of resistance to WL 48281, the (1R)cis (αS) isomer of cypermethrin, which differs from deltamethrin only in having chlorine instead of bromine substituents in the acid side-chain. Intensification was strongly decreased by piperonyl butoxide and propyl prop-2-ynylphenylphosphonate (NIA) but was unaffected by S,S,S-tributyl phosphorotrithioate (DEF). This synergism suggests involvement of oxidative rather than esteratic metabolism in the intensification of super-kdr by factor 161.  相似文献   

5.
Knock-down resistance in Musca domestica, which provides cross-resistance between DDT and pyrethroids, has been genetically separated from three different resistant populations. After careful purification of each factor, the cross-over rates between them and the visible mutants brown body and green eye were estimated. This indicated that these factors are probably identical. The influence and implications of the knock-down resistance factor, kdr, on the total resistance of populations that include it are briefly discussed.  相似文献   

6.
One or more weak factors of resistance on autosome 2, and barely detectable resistance on autosome 3, confer moderate resistance to several pyrethroids (5–13-fold) in the field-collected Ipswich strain of houseflies. In these flies, which unlike other pyrethroid-resistant strains lack kdr or super-kdr, pyrethroid resistance probably developed in response to prolonged treatment of buildings for animals with pyrethrins synergised with piperonyl butoxide. Substrains, isolated genetically from Ipswich flies and with resistance only on autosome 2, degraded permethrin more rapidly than susceptible flies and produced larger amounts of very polar metabolites. In this, they differed from flies with kdr or super-kdr which resembled susceptible flies in their metabolism of permethrin. NIA 16388 (propyl prop-2-ynyl phenylphosphonate) was a better synergist and reduced the metabolism of permethrin more than piperonyl butoxide in both the susceptible and resistant insects. The slight increase in synergism and minimal decrease in metabolism when piperonyl butoxide was applied with NIA 16388 indicated that the latter also inhibited detoxication that was sensitive to piperonyl butoxide.  相似文献   

7.
Anti-cholinesterase resistance is in many cases caused by modified acetylcholinesterase (MACE). A comparison was made of toxicological data and AChE activity gathered from 21 field populations and nine laboratory strains of houseflies, Musca domestica L., to elucidate the best way of generating data to provide advice for management strategies and gathering information for resistance risk assessment on the organophosphates azamethiphos and dimethoate and the carbamate methomyl, which have been the primary insecticides used against adult houseflies in Denmark. Cluster analysis was performed and > 2000 houseflies were assigned to one of three phenotypes based on total acetylcholinesterase activity as well as inhibition by azamethiphos, methomyl or omethoate. A cluster, i.e. a phenotype, with high total AChE activity and high sensitivity to azamethiphos and less sensitivity to inhibition by methomyl and omethoate was shown to be linked to methomyl resistance. It was not possible to define any clusters that could be linked to azamethiphos or dimethoate resistance. The five mutations V180L, G262A, G262V, F327Y and G365A causing anticholinesterase resistance in houseflies were all identified in the Danish housefly strains. The data are very heterogeneous, and a correlation of molecular genetic background and resistance of phenotypes is not obvious with the available data.  相似文献   

8.
从饲料用麦麸中分离出的12种细菌均能支持无菌家蝇Musca domesticaL.幼虫在胰化酪蛋白大豆卵黄琼脂(Trypticase Soy Egg Yolk Agar,TSEYA)培养基中完成整个生长发育过程。1)幼虫在接种香味类香味菌Myroides odoratimimus的TSEYA培养基中生长时间最短,仅需97.61±1.14h;2)幼虫在接种醋酸钙不动杆菌Acinetobacter calcoaceticus的TSEYA培养基中的化蛹率可达到86.81%;3)从接种嗜水汽单胞菌Aeromonas hydrophila的TSEYA培养基中得到的蝇蛹重量最高,达到20.15±0.23mg/个;4)除铜绿假单胞菌Pseudomonas aeruginosa饲养的家蝇羽化率较低(60.87%)外,其余各种细菌饲养的羽化率在84.33%~97.47%之间。此外,枯草芽孢杆菌Bacillussubtilis、香味类香味菌、聚团肠杆菌Enterobacter agglomerans以及成团肠杆菌Pantoea agglomerans可作为单一营养来源支持幼虫完成整个生长发育过程。对枯草芽孢杆菌、金黄色葡萄球菌S...  相似文献   

9.
A water-soluble Mg2+-dependent ATPase (coupling factor F1) was isolated from the mitochondria of housefly thorax. It comprised about 14% of the proteins from a crude preparation. The F1 preparation was nearly homogeneous as assessed by gel electrophoresis, isoelectric focusing, and electron microscopy. It was composed of five subunits with the following apparent molecular weights: α, 68,000; β, 61,000; γ, 38,000; δ, 27,000; and ?, 17,500. The isoelectric pH (pI) of this protein was 7.3. F1 had a pH optimum of 8.2 and a temperature optimum between 37 and 45°C. The enzyme was fairly stable at 25°C. Nearly complete loss of activity was noticed at 0°C, while at 0 or 25°C, glycerol (20%) partially stabilized the enzyme activity against such inactivation. The Km value of the enzyme with respect to ATP was 0.4 mM. The activity was stimulated by low concentrations of 2,4-dinitrophenol. The enzyme was inhibited by azide, p-hydroxymercuribenzoate, and guanidine hydrochloride. Oligomycin and the pesticides pyrethrin, cyhexatin, and DDT have no effect on the enzyme activity. However, all of these chemicals inhibited intact Mg2+- ATPase. The results are discussed in the light of differential responses of soluble and intact ATPase to these pesticides.  相似文献   

10.
Samples of housefly (Musca domestica) field populations were collected from Danish livestock farms in 1997. The tolerance of the first‐generation offspring was determined for a number of insecticides. Dose‐response values were obtained by topical application for the pyrethroids bioresmethrin and pyrethrum, both synergised with piperonyl butoxide, and the organophosphate dimethoate. The organophosphates azamethiphos and propetamphos and the carbamate methomyl were tested in discriminating dose feeding bioassays. Resistance was low to moderate in most of the populations for most of the compounds tested, but this study also revealed the existence of high resistance to pyrethroid, organophosphate and carbamate insecticides in some populations. The resistance factors at LD50 for bioresmethrin/piperonyl butoxide ranged between 2 and 98, and for pyrethrum/piperonyl butoxide between 2 and 29. Our results indicate that pyrethroid resistance in Denmark is increasing, since four of the 21 farms showed more than 100‐fold resistance at LD95, a level of resistance only observed once before. Resistance factors at LD50 for dimethoate ranged from 9 to 100, and showed two distinct trends: populations with either decreasing or increasing resistance. Resistance to azamethiphos was found to be widespread and high. Although two strains with high methomyl and propetamphos resistance were observed, methomyl and propetamphos resistance is moderate and appears not to be increasing. © 2001 Society of Chemical Industry  相似文献   

11.
BACKGROUND: Spinosad, a relatively new, effective and safe pesticide, has been widely used in pest control over the last 10 years. However, different levels of resistance to this insecticide have developed in some insects worldwide. RESULTS: After continuous selection for 27 generations, a strain (SpRR) of the housefly developed 247‐fold resistance to spinosad compared with the laboratory susceptible strain (CSS). The estimated realised heritability (h2) of spinosad resistance was 0.14. There was no significant difference in the LD50 values and slopes between reciprocal progenies F1 and F1′, and values of 0.33 (F1) and 0.30 (F1′) were obtained for the degree of dominance. Chi‐square analysis from responses of self‐bred (F2) and backcrosses (BC1 and BC2) were highly significant, suggesting that the resistance was probably controlled by more than one gene. Synergists piperonyl butoxide (PBO), diethyl maleate (DEM) and S,S,S‐tributyl phosphorotrithioate (DEF) affected the toxicity of spinosad at a low level, and demonstrated that metabolic‐mediated detoxification was not an important factor in conferring resistance to spinosad in the SpRR strain. CONCLUSION: It was concluded that spinosad resistance in the housefly was autosomal and incompletely dominant, and the resistance was probably controlled by more than one gene. These results provide the basic information for designing successful management programmes for the control of houseflies. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
BACKGROUND: Beta-cypermethrin, a synthetic pyrethroid insecticide, was applied frequently in the control of health pests including houseflies, Musca domestica L., in China. However, different levels of resistance to beta-cypermethrin were monitored in field strains of houseflies. A strain of M. domestica, 4420-fold resistant to beta-cypermethrin after continuous 25 generations of selection, was used in this paper to determine the mode of inheritance of pyrethroid resistance. RESULTS: The estimated realized heritability (h(2)) of beta-cypermethrin resistance was 0.30 in this resistant strain. Results of bioassays showed no significant difference in values of LD(50) and slope of log dose-probit lines between reciprocal progenies F(1) and F'(1), and yielded values of - 0.10 (F(1)) and - 0.11 (F'(1)) for the degree of dominance (D). Chi-square analysis from responses of self-bred and backcross progenies (F(2), BC(1) and BC(2) respectively) indicated that the null hypothesis, a single gene responsible for resistance, was accepted. The minimum number of independent segregation genes was 0.93 for F(1) by Lande's method. CONCLUSION: It was concluded that beta-cypermethrin resistance in the housefly was inherited as a single, major, autosomal and incompletely recessive factor. These results would provide the basic information for pest management programmes.  相似文献   

13.
A series of insecticidal dihydropyrazoles and related compounds have been shown to exhibit negative cross-resistance to a resistant (super-kdr) strain of houseflies with site-insensitivity to pyrethroids. The level of cross-resistance is similar to that observed previously for a range of N-alkylamides against the same strain.  相似文献   

14.
Bendiocarb is recommended for the control of a wide range of arthropod pests associated with buildings. They include ants, bed bugs, carpet beetles, cockroaches, fleas and silverfish. The compound is currently being developed for the control of adult Musca domestica L. Preliminary tests in the laboratory gave promising results and subsequently a series of field experiments were conducted in the Middle East. These involved treatment of farm buildings, a slaughterhouse and parts of an urban area in which domestic refuse was the source of the fly problem. The trials demonstrated that bendiocarb spray (2.4 g a.i. + 10 g sucrose/litre) will effectively control adult flies for a period of 7–14 days in hot, arid climatic conditions.  相似文献   

15.
The genetics of resistance of the housefly, Musca domestica L., to organochlorine and organophosphorus insecticides, and interactions between mechanisms of resistance are reviewed and discussed.  相似文献   

16.
The metabolism of propetamphos by insecticide-resistant and susceptible houseflies, in vivo, was investigated. Two major pathways of propetamphos degradation were found. The first is the major route of detoxification for both resistant and susceptible strains at low doses and involves a hydrolysis of the P–O-vinyl bond, ultimately resulting in the formation of carbon dioxide. The second major pathway involves conjugation. As the dose increases, so does the importance of this pathway. Those strains of houseflies with greater conjugative capacity are able to tolerate greater doses of propetamphos than those strains with lesser conjugative capacity. The properties exhibited by this conjugate are consistent with those of glutathione conjugates. This is further supported by a parallel between reported values of glutathione S-transferase activity in the houseflies tested and tolerance to propetamphos.  相似文献   

17.
Glutathione S-transferases from two strains of house fly have been prepared in a high degree of homogeneity by a procedure involving affinity chromatography and isoelectrofocusing. They fall into two groups in each strain. One group, of isoelectric point greater than pH 6.5, catalyzes the glutathione-dependent degradation of lindane, diazinon and methyl parathion. The other group, of low isoelectric point, has conjugating activity with the model substrate CDNB, but very little activity with the insecticide substrates. In the Cornell R strain the three isoenzyme forms in the high pI group appear to be almost identical in their substrate specificities. In the A strain, it is apparent that the enzyme forms falling into this group vary markedly in substrate specificity. The dehydrochlorination of DDT paralleled very closely the conjugation of the other insecticides catalyzed by the three high pI enzymes in the Cornell R strain. In the A strain, DDT dehydrochlorinase was most strongly associated with a glutathione S-transferase isoelectric at pH 7.1. It is tentatively concluded that multiple genes are involved in the production of the glutathione S-transferases involved in pesticide metabolism in the house fly and that DDT dehydrochlorinase may be derived from some, but not all, of these same genes.  相似文献   

18.
Solutions of tetramethrin, RU 11679, or cismethrin caused uncoupled convulsions in 30–40 min in exposed thoracic ganglia from SNAIDM house flies at concentrations down to 10?10M: whereas these same compounds at 10?6M concentrations failed to produce poisoning symptoms when perfused onto the exposed ganglia of the kdr strain of house fly. The pyrethroid analogs examined had a negative temperature coefficient of action on the exposed thoracic ganglia from SNAIDM flies. DDT and GH-74 possessed positive temperature coefficients of action on the exposed thoracic ganglion of susceptible house flies. It is concluded that the central nervous system of the kdr strain of house fly is resistant to pyrethroid action; furthermore, the resistance appears to be widespread throughout the house fly nervous system, involving sensory, motor, and central neural elements.  相似文献   

19.
The insecticidal activity of dinotefuran and 23 related compounds against the housefly, Musca domestica (L) was measured by injection with metabolic inhibitors. Dinotefuran was less active than imidacloprid and clothianidin by a factor of 10 in molar concentrations. Their binding activities to the fly-head membrane preparation were measured by using [125I]alpha-bungarotoxin ([125I]alpha-BGTX) and [3H]imidacloprid ([3H]IMI) as radioligands. The activity of some selected compounds measured with [3H]IMI was 10(4)-fold higher than that measured with [125I]alpha-BGTX. With [3H]IMI as a radioligand, dinotefuran was 13-fold less active than imidacloprid. The inhibitory effect of dinotefuran on the binding of [3H]IMI to the membrane preparation was in a competitive manner. Quantitative analysis of the insecticidal activity of the test compounds with the binding activity measured with [3H]IMI showed that the higher the binding activity, the higher was the insecticidal activity.  相似文献   

20.
据资料表明 ,目前大部分的农业、卫生害虫都已对一种或多种农药产生不同程度的抗性 ,而且几乎涉及所有类型农药 [1 ] 。如何通过科学用药来抑制或延缓抗性种群的抗性发展 ,成为我们今后抗性治理的重点和难点。针对敏感和抗性初始频率较低的种群所采用的轮用、混用以及使用增效剂等用药策略对有一定抗性水平的抗性种群是否仍然奏效 ?针对这一问题 ,作者以对溴氰菊酯已产生中等抗性 ( R/ S=2 8.2 4)和高等抗性 ( R/ S=5 4.1 2 )的家蝇为试虫 ,采用轮用 (换用辛硫磷 )、混用 (辛硫磷与溴氰菊酯的混剂 )、使用增效剂(溴氰菊酯与增效磷混剂 )三…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号