首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
以大兴安岭地区南瓮河保护区落叶松林(Larix gmelinii)、蒙古栎林(Quercus mongolica Fischer)、落叶松-白桦混交林(Mixture of Larix gmelinii and Betula platyphylla)(阴坡、阳坡)、沟塘草甸等4种典型林分为研究对象,运用气象要素回归法,对春季防火期和秋季防火期内的地表细小死可燃物含水率动态进行测定,构建了不同防火期、不同林型地表死可燃物含水率的预测模型,分析了相应模型的预测误差。结果表明:同林型地表可燃物含水率在春季防火期和秋季防火期差异显著;在秋季防火期,5个典型林型的地表死可燃物含水率预测平均绝对误差为0.167,平均相对误差为0.218,低于春季防火期模型和春季-秋季混合模型;秋季防火期模型对可燃物含水率预测效果最好。气象要素回归法适用于南瓮河保护区典型林型地表死可燃物含水率预测。  相似文献   

2.
准确预测森林细小死可燃物含水率对提高森林和草原火险预测精度具有重要的科学意义。以大兴安岭林区兴安落叶松-白桦(Larix gmelinii-Betula platyphylla)混交林、兴安落叶松林(Larix gmelinii)、蒙古栎林(Quercus mongolica)和草甸细小死可燃物为研究对象,确定影响林内t时刻可燃物含水率变化率的影响因子(林外t-1时刻的气温变化率、相对湿度变化率和累计降水量变化率),根据统计回归理论建立细小死可燃物含水率变化率模型,进而构建大兴安岭林区典型森林和草甸细小死可燃物含水率预测模型。结果表明:兴安落叶松-白桦林混交林、兴安落叶松林、蒙古栎林和草甸细小死可燃物含水率预测模型准确率分别为91.1%、90.0%、91.0%和81.0%(相对误差不超过5%),可燃物含水率预测模型预测效果良好,模型具有较好的实用性,可为大兴安岭林区的森林火险预警提供理论和技术支持。  相似文献   

3.
对大兴安岭16种乔木和灌木凋落的树叶、小枝和树皮含水率进行实验分析,结果表明:凋落的树叶、小枝和树皮的风干含水率差别不大,凋落的树叶与小枝的绝干含水率差异也不显著,但树皮与树叶和小枝的绝干含水率有显著差异;凋落的树叶、小枝和树皮风干含水率和绝干含水率无显著相关,这说明在分析抗火性时风干含水率和绝干含水率都要考虑进去;所选的16种树种的风干含水率和绝干含水率不存在差异,因此,在分析树种之间凋落的树叶、小枝和树皮抗火性差别时可以不考虑风干含水率和绝干含水率.  相似文献   

4.
可燃物含水率的大小决定森林燃烧的难易程度,而可燃物含水率又与气象要素有着密切关系。本文以丰宁县内油松为研究对象,利用统计回归方法分析可燃物含水率与气象要素的关系模型,结果表明当日的降水量、观测前5 天平均相对湿度及当日的最高温度对可燃物含水率影响最大。  相似文献   

5.
草地可燃物含水率变化规律的研究   总被引:7,自引:0,他引:7  
研究草地可燃物含水率与环境因素的关系,以及草地燃烧系统各组分含水率的年变化动态。结果表明草地死体可燃物的含水率变化与天空总幅射、大气温度的变化呈负相关,与大气湿度的变化呈正相关;与地表温度相关不显著。活体可燃物含水率一般不低于30%;草原死体可燃物一年中的每天都有着火的含水率条件(除有降水外),活体可燃物一般不燃,草原燃烧系统夏季难燃,冬季有积雪覆盖不燃,最易燃着的季节是每年的4~6月和10~11月。  相似文献   

6.
【目的】建立宁夏盐池地区柠条林株高生长量与种植年限关系模型,为精确掌握柠条林的生长过程提供依据。【方法】以盐池县北部、中部、南部的柠条林为研究对象,考虑不同地区立地条件的差异性及种植密度对株高生长的影响,对原有生长方程进行改进,并在改进的基础上利用非线性混合效应(NLME)模型方法建立其株高生长量与种植年限的关系模型,用幂函数、指数函数、常数加幂函数考虑数据间的异方差性,最后对NLME模型与传统模型、改进后的模型、不含随机效应的NLME模型的精度进行对比分析。【结果】相较其余3种模型,含有随机参数且考虑异方差结构的NLME模型精度有显著提高,其调整后的决定系数可达到0.986 5,平均绝对误差和剩余均方根误差分别为0.073 2和0.094 2。【结论】基于改进后Korf方程建立的柠条株高生长量与种植年限关系的NLME模型,考虑了种植密度对株高生长的影响,消除了数据间的异方差性,可准确描述盐池县不同地区柠条株高的生长过程。  相似文献   

7.
利用通化市森林可燃物6个观测点的观测资料,分析了林下可燃物含水率与气象要素之间的关系,结果表明,含水率与最高气温、前3d累积降水量、蒸发量、日照时数有很好的联系,根据相关分析的结果分别对不同测点建立了含水率的线性和多项式气象模型,对2种模型进行了比较,发现在相同的信度水平检验下,多项式模型比线性模型与实况的相关性有了很...  相似文献   

8.
可燃物含水率实时变化的预测模型   总被引:11,自引:0,他引:11  
通过微分方程理论推导,建立了可燃物含水率实时变化预测模型,并统计分析了单位时间内可燃物含水率改变量与前一时刻气温、相对湿度和风速的关系,以及模型中各影响因子的取值范围。结果表明:所建模型的精度达到98.0%,说明在温带针阔混交林区,3—4月份及多时无雨且温度在零度以上的情况下所建模型是适用的,能够较精确地预测可燃物含水率。  相似文献   

9.
大兴安岭6种活森林可燃物含水率的测试与研究   总被引:6,自引:0,他引:6  
采用常规方法对大兴安岭地区6种活可燃物含水率进行测定,得出活可燃物含水率和取样日期的函数关系,建立了活可燃物含水率动态模型.通过模型分析,活可燃物含水率在春季防火期内随着生长日期的增加而增加,因此有逐日降低火险的作用.  相似文献   

10.
树高和胸径作为重要的林分因子,二者的异速生长关系是林分生长与收获预估的基础。以北京市古石峪61块油松(Pinus tabuliformis)天然林样地为研究对象,样地按郁闭度CD≥0.6(类型Ⅰ)、0.5≤CD<0.6(类型Ⅱ)、0.4≤CD<0.5(类型Ⅲ)、0.3≤CD<0.4(类型Ⅳ)和CD<0.3(类型Ⅴ)划分5个等级类型,采用非线性混合模型方法,从26种常用树高曲线中选择拟合精度最高的作为基础模型,以类型和样地作为随机效应,分别基于单水平和嵌套二水平,考虑异方差构建最优的油松天然林树高曲线。采用AIC、BIC和负2倍的对数似然值对不同模型的精度进行比较,并用平均绝对误差、剩余均方根误差和调整后的决定系数对模型进行检验。结果表明,混合参数个数不同,模型预测精度不同;考虑异方差结构的嵌套2水平非线性混合模型预测精度高,调整后的决定系数达0.924 4,剩余均方根误差为0.842 1,可以准确地反映油松树高与胸径的关系,但与以样地作为随机效应的单水平样模型的差异不显著。  相似文献   

11.
以大兴安岭阔叶混交低质林补植改造2 a后土壤肥力为研究对象,采用主成分分析法建立补植改造后土壤肥力指标的评价体系,计算土壤肥力的综合得分。结果表明:不同样地补植改造后土壤肥力的综合得分由大到小为BZ5(0.895)、BZ4(0.823)、BZ3(0.144)、BZ2(-0.336)、BZ1(-0.426)、CK(-0.536)、BZ6(-0.565)。其中BZ5样地的综合得分最高,表明补植密度为800株·hm~(-2)的改造样地最有利于土壤肥力的积累,适宜大兴安岭阔叶混交低质林的改造。各样地的综合得分先是随着补植密度的增大而升高,当补植密度大于800株·hm~(-2)后,样地土壤肥力不佳。  相似文献   

12.
以大兴安岭兴安落叶松天然林为研究对象,利用固定样地调查数据,研究其结构特征。结果显示:(1)林分整体的直径分布为倒"J"型,6径阶株数最多,Exp3P2函数可以很好的拟合兴安落叶松的直径分布;(2)林分树高分布为单峰偏左曲线,树高8级时,株数最多,柯列尔函数拟合兴安落叶松树高分布精度高;(3)兴安落叶松树高随胸径增大而增加,可以用Wykoff方程表示其相关性;(4)兴安落叶松的胸径与冠幅为正相关关系,Monomolecular函数拟合结果良好;(5)林分平均角尺度0.485,林分呈现随机分布格局;(6)用胸径、树高和冠幅3个指标计算林分平均大小比数均呈现中庸状态;(7)林分平均混交度0.327,属于弱度混交,表明该地区为典型的兴安落叶松天然林。  相似文献   

13.
以大兴安岭阔叶混交低质林为研究对象,对其进行补植改造,补植苗木为兴安落叶松(Larix gmelinii)。通过野外实地取样和室内实验测得各指标数据,选取35个评价指标进行分析,利用主成分分析法建立综合评价模型,计算样地改造效果的综合得分,筛选出最佳的补植改造密度。结果表明:不同样地补植改造后的综合得分由大到小依次为BZ5(0.761)、BZ3(0.351)、BZ6(0.247)、BZ2(0.017)、BZ4(-0.059)、CK(-0.394)、BZ1(-0.923)。其中BZ5改造样地的综合得分最高,补植改造效果最好,表明补植密度为800株·hm~(-2)最适宜大兴安岭阔叶混交低质林的补植改造。  相似文献   

14.
对大兴安岭林区新林林业局白桦低质林进行不同密度的补植改造,采用灰色关联分析法和变异系数法对各补植改造样地的土壤养分进行分析。结果表明:7个补植样地的灰色关联值,从大到小依次为BZ5(0.886)、BZ6(0.794)、BZ4(0.681)、BZ3(0.651)、BZ2(0.582)、BZ1(0.577)、CK(0.547)。与对照样地相比,补植改造后各样地的土壤养分均有不同程度的提高,且随着补植密度的增大,土壤养分先增大后减小,其中BZ5样地的灰色关联度最高,表明补植密度为900株·hm~(-2)的改造方式最有利于土壤养分的积累,适宜大兴安岭白桦低质林的补植改造。  相似文献   

15.
大兴安岭不同类型低质林土壤和枯落物的水文性能   总被引:2,自引:0,他引:2  
以大兴安岭地区阔叶混交低质林、蒙古栎低质林、白桦低质林为研究对象,运用描述性统计和差异性分析对其土壤层和枯落物层的水文效应进行比较分析,以期对低质林水源涵养功能深入了解。结果表明:3种类型的土壤含水率、土壤密度、土壤毛管孔隙度范围分别为0.86%~0.90%、0.41~0.53 g·cm-3、60.17%~68.16%,各类型间差异不显著。蒙古栎低质林土壤密度最低,毛管孔隙度和总孔隙度最高。3种类型的枯落物总蓄积量范围为8.87~15.18 t·hm~(-2),枯落物总蓄积量由大到小表现为阔叶混交低质林、蒙古栎低质林、白桦低质林,各类型间差异显著。3种类型低质林的自然持水率、最大持水率、有效拦蓄率范围分别为13.26%~19.53%、248.95%~401.97%、192.07%~323.88%,蒙古栎低质林最大持水率和有效拦蓄率高于其他2种类型,各类型间差异不显著。枯落物最大持水量、有效拦蓄量范围分别为11.4~28.15、9.00~22.26 t·hm~(-2),其中白桦低质林的均低于其他2种类型,各类型间差异显著。综合分析表明:蒙古栎低质林土壤水文效应优于其余2种类型,白桦低质林枯落物水文性能明显低于阔叶混交低质林和蒙古栎低质林。  相似文献   

16.
大兴安岭白桦低质林补植改造后枯落物水文效应变化   总被引:2,自引:0,他引:2  
以大兴安岭地区新林林业局白桦低质林为研究对象,对白桦低质林进行不同密度的补植改造,采用灰色关联分析法和变异系数法建立综合评价体系,评价的指标为各补植样地的未分解层和半分解层枯落物自然持水率、最大持水率、最大持水量、总最大持水量、有效拦蓄量、总有效拦蓄量、蓄积量、总蓄积量。结果表明:不同密度补植样地的枯落物吸水速率随浸泡时间的增加呈幂指数关系下降,持水量随浸泡时间的增加呈对数函数上升,灰色关联值大小依次为:BZ_4(0.807)、BZ_5(0.666)、BZ_6(0.642)、BZ_3(0.548)、BZ_2(0.513)、BZ_1(0.480)、CK(0.421),说明补植密度为800株·hm~(-2)时,大兴安岭新林林业局白桦低质林的水源涵养能力最佳。  相似文献   

17.
[目的]明确小兴安岭蔷薇科植物区系特征,为开发利用小兴安岭蔷薇科植物资源提供参考。[方法]采用野外调查和标本鉴定的方法,对小兴安岭蔷薇科植物属、种组成及区系特征进行统计和分析。[结果]该区共有蔷薇科植物68种,隶属于4亚科19属,且优势属明显。从属层次上表现出典型的温带性质,以北温带成分为主,且没有中国特有属。[结论]小兴安岭蔷薇科植物组成丰富,区系地理成分多样。  相似文献   

18.
以小兴安岭地区天然针阔混交次生林为研究对象,进行不同间伐强度、不同间伐带宽的抚育改造,选取各样地土壤因子、枯落物持水因子、物种多样性因子和冠层结构因子共38项评价指标进行分析。运用主客观赋权的方法确定指标权重,采用层次分析法确定主观权重,熵权法确定客观权重,最小信息熵法确定组合权重,最后对生境因子进行单独评价以及综合评价。结果表明:运用组合权重法得到各生境因子的权重大小,按重要性排序为土壤化学性质(0.370),枯落物持水性能(0.231),冠层结构(0.166),物种多样性(0.129),土壤物理性质(0.104)。不同抚育间伐强度和间伐带宽对各改造样地生境因子的影响程度不同。在间伐强度为15%、间伐带宽为10 m时枯落物持水性能最好,综合评价值为3.510;在间伐强度为20%、间伐带宽为18 m时土壤化学性质、冠层结构最佳,综合评价值分别为2.796、0.953;在间伐强度为30%的情况下,间伐带宽为10 m时群落物种多样性程度最优,综合评价值为1.820,带宽为18 m时土壤的物理性质优于其他样地,综合评价值为7.943。通过综合评价得出小兴安岭天然针阔混交次生林在抚育间伐强度为20%,间伐带宽为18 m时的森林生境最佳。从整体来看,抚育间伐大大改善了森林生境条件,为林内生物提供了良好的生存环境,此研究为天然次生林生态经营提供了很好的理论依据。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号