首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
为改善普通胶合木梁受弯时挠度过大以及木材抗压强度和钢筋抗拉强度的利用不充分等缺点,提出一种新型预应力配筋胶合木梁构件。通过3组预应力配筋胶合木梁、1组普通配筋胶合木梁、1组普通胶合木梁的受弯试验,分析了普通胶合木梁、配筋胶合木梁、不同预应力水平的预应力配筋胶合木梁的受弯性能。结果表明:预应力配筋胶合木梁与普通胶合木梁相比,受弯极限承载力提高31.3%~64.4%、抗弯刚度约提高33.33%。配筋数量相同时,随着预加力的增大,构件的极限承载力提高,而抗弯刚度基本不变。配筋适量、预加力适度时,预应力配筋胶合木梁可以更好的利用木材抗压强度和钢筋抗拉强度,有效的减小梁的挠度变形,破坏时表现出较为明显的塑性破坏特征。  相似文献   

2.
在普通胶合木梁上粘贴玄武岩纤维复合材料,经抗弯试验,检测不同层数玄武岩纤维布和玄武岩纤维板对胶合木梁的增强效果。结果表明:玄武岩纤维复合材料对胶合木梁受弯性能有很好的增强效果;与未增强的胶合木梁相比,受弯极限承载力提高幅度为20.88%~111.25%,抗弯刚度提高幅度为18.7%~27.6%,延性系数提高幅度为23.0%~74.3%。对于玄武岩纤维复合材料配量适中的增强胶合木梁,在受拉区层板破坏的同时,受压区层板出现压屈褶皱,木材抗压强度得到比较充分的发挥,破坏时表现出明显的塑性破坏特征。玄武岩纤维复合材料的存在,能有效降低木材缺陷对胶合木梁受弯性能的不良影响。  相似文献   

3.
将天然亚麻纤维经纳米TiO2接枝制得改性亚麻纤维复合材料(FFRP),以云杉-松树-冷杉木板(SPF木板)为原材料制作24根尺寸为2 850 mm×50 mm×150 mm的胶合木梁试件,采用改性亚麻纤维复合材料通过顺向粘贴在梁底部、横向粘贴在梁侧面和底部(U型箍)的方式对胶合木梁进行增强。对8组试件进行三分点加载受弯试验,分析梁底部改性亚麻纤维复合材料粘贴方式(粘贴长度、粘贴层数、U型箍)对胶合木梁破坏形态、极限承载力、跨中挠度、截面应变的影响及粘贴FFRP对胶合木梁受弯性能的增强效果。结果表明:在不发生剥离破坏的前提下,底部粘贴长度对胶合木梁的抗弯性能影响不大。对于无箍胶合木梁,底部粘贴FFRP能够提高胶合木梁的抗弯承载力与刚度,但底部粘贴的层数不宜过多,粘贴层数过多反而会导致提高幅度有所下降;对于有箍胶合木梁,其抗弯承载力与抗弯刚度,均随着底部粘贴FFRP层数的增加而增大。当底部粘贴3层FFRP时,有箍和无箍胶合木梁的抗弯承载力与抗弯刚度相差不大,但有箍梁的延性得到明显提高;当底部粘贴6层FFRP时,有箍梁的抗弯承载力和抗弯刚度比无箍梁均有明显提高。U型箍可以改变胶合木梁的破坏形态,无箍胶合木梁的破坏形态同普通梁一样,为脆性破坏;而有箍梁的破坏形态为延性破坏,U型箍能够避免木材层板间开裂与横向撕裂,增强FFRP与梁底部木材的协调性能,提高胶合木梁的抗弯性能。  相似文献   

4.
以云杉-松-冷杉(SPF)和重组竹为材料,制作18根试验梁(2850mm×150mm×50mm),普通胶合木梁和置换率为1/6、2/6的重组竹板增强胶合木梁各6根;采用三分点对称逐级加载方式进行加载试验;测试不同置换率时胶合木梁跨中净挠度、不同加载比例时胶合木梁跨中净挠度、试验梁破坏形态、试验梁极限荷载、试验梁荷载-挠度关系曲线,分析置换率和加载比例对重组竹板增强胶合木梁长期受弯性能的影响.结果表明:置换率一定时,随着加载比例的增大,梁初始挠度及蠕变变形值均增大,且在高加载比例时,蠕变变形增长速度显著提高;加载比例一定时,置换率为2/6的重组竹板增强胶合木梁的初始挠度、蠕变变形值及蠕变变形增长速度,均小于置换率为1/6的重组竹板增强胶合木梁.对比长期加载试验与短期加载试验的试验结果,长期荷载作用对试验梁破坏形态影响较小,但是会降低胶合木梁的极限承载力、刚度和变形能力;长期荷载作用后,置换率为2/6的重组竹板增强胶合木梁的极限承载力下降7.9%~30.2%,比置换率为1/6的重组竹板增强胶合木梁下降幅度更小,长期受弯性能更好.  相似文献   

5.
选用云杉为试验原材料,制作10根2 850 mm×50 mm×150 mm的胶合木梁,将试验梁分为5组(CT、UF、RF1、RF2、RF3),每组2根; CT组为底层层板全长无指接试件、UF组为底层层板跨中有指接试件,2组为参照组; RF1、RF2、RF3组为增强指接试件,分别为粘贴碳纤维布试件(RF1)、垂直梁底旋入新型木结构用自攻螺钉试件(RF2)、以45°角旋入新型木结构用自攻螺钉试件(RF3)。按照设计方案,分别进行受弯加载试验,分析底层板有无指接对胶合木梁受弯性能的影响、不同指接增强措施对胶合木梁受弯性能改善作用。结果表明:底层板指接的存在,会影响胶合木梁的受弯性能;与无指接胶合木梁相比,底层板指接胶合木梁的极限承载能力和刚度降低幅度,分别为25.4%、22.95%;采用的胶合木梁底层板3种指接增强措施(粘贴碳纤维布、垂直梁底旋入新型木结构用自攻螺钉和以45°角旋入梁底)均可改善胶合木梁的受弯性能,对指接胶合木梁的受弯极限承载能力分别提高了28.2%、17.4%、10.1%,刚度提高至与无指接胶合木梁刚度相近。  相似文献   

6.
根据使用材料的特性和试验结果,详细分析了增强木梁的受力机理;分析了各设计参数对试件工作性能的影响.研究结果表明:采用钢筋对受弯木梁进行增强是有效的,增强的效果与受拉区配筋率、木梁的高宽比以及增强方式有关;增强木梁的受弯承载力随受拉区配筋率的增加而增加,在配筋率相同的情况下,木梁截面的高宽比越大效果越好;预应力增强工程木梁比非预应力增强工程木梁对承载力的提高更为有效.  相似文献   

7.
以云杉-松木-冷杉胶合木板材(SPF板材)为试验梁原材料,采用一种新型自攻螺钉加固胶合木梁的新方法(从梁底部旋入新型自攻螺钉以实现对普通胶合木梁的加固)制作了24根2850 mm(长)×50 mm(宽)×150 mm(高)的胶合木梁,进行三分点受弯试验,分析新型自攻螺钉不同的锚入深度、旋入角度和螺钉间距对胶合木梁受弯性能的影响。结果表明:新型自攻螺钉加固,可有效提高胶合木梁的极限承载能力,提高幅度在11.40%~71.40%不等,同时也可提高胶合木梁的刚度并减小跨中挠度变形,能够实现抑制和减缓胶合木梁脆性破坏。试验梁的承载能力与新型自攻螺钉锚入深度呈正相关,刚度随新型自攻螺钉锚入深度的增加呈现先增加后减小的趋势;新型自攻螺钉的螺钉间距对试验梁的极限承载能力影响不大,但对刚度有较大的影响,在螺钉间距大于1倍的梁高时,刚度与螺钉间距呈负相关;45°旋钉加固梁的极限承载能力优于垂直旋钉加固梁,同时其刚度更好,可更好地抑制和减缓试验梁的脆性破坏。推荐加固方式:梁底45°旋钉,垂直锚入深度为2/3倍的梁高,螺钉间距为1倍梁高。  相似文献   

8.
将钢筋植入樟子松胶合木端部形成植筋胶合木杆件,研究不同钢筋直径、植入深度、胶层厚度等因素对植筋胶合木杆件拉压性能的影响。采用自行设计的14组84个植筋胶合木杆件,通过传统的两端对拉试验及创新的钢螺帽辅助受压试验,分析其荷载-位移关系曲线、极限承载力、破坏形态与破坏机理。结果表明:随钢筋直径增加,受拉试件极限承载力提高了4.1%~17.13%,受压试件极限承载力提高了25.35%~39.10%,钢筋直径对受压杆件极限承载力影响较大;随植入深度增加,受拉试件极限承载力提高了35.69%~70.21%,受压试件极限承载力提高了34.14%~41.12%,植入深度对杆件受拉及受压极限承载力均产生显著影响;胶层厚度对杆件受力性能影响较小,考虑经济性因素,同时方便试件加工制作,合理的胶层厚度选为2~4 mm。  相似文献   

9.
以冷弯薄壁型钢、胶合木为材料,利用胶合木将冷弯薄壁型钢包裹的连接方式构建新型箱形截面冷弯薄壁型钢-胶合木组合梁;运用有限元软件ABAQUS建立5组共10根组合梁模型,分析钢板厚度、钢材强度、胶合木层厚度、连接方式对组合梁抗弯性能的影响,探索组合梁在受弯破坏时的破坏形态以及破坏机理。结果表明:在有限元模拟加载过程中,组合梁的胶合木层下翼缘先于上翼缘达到抗拉强度,由此导致组合梁跨中产生弯曲裂缝,发生弯曲破坏,跨中下部胶合木层随着荷载增大出现局部顺纹剪切破坏。钢板厚度、钢材强度、胶合木层厚度、钢木连接方式对冷弯薄壁型钢-胶合木组合梁的抗弯性能均有不同程度的影响,尤以连接方式影响程度最大。将冷弯薄壁型钢与胶合木两种不同材料组合在一起,能充分发挥各自性能特长,以承担外部荷载并使组合梁的抗弯承载力比纯钢梁有大幅度提高。  相似文献   

10.
目的七架梁作为大型木结构古建筑的主要承重构件,其承载力安全性直接影响古建筑木结构整体的安全性。由于周围环境和使用长久等原因造成木梁出现不同程度的缺陷,会影响木梁弯曲拉应力和剪切应力的分布,进而影响其承载力安全性。因此,研究不同缺陷类型、尺寸、位置对古建筑七架梁承载力安全性的影响很有必要。方法采用Abaqus有限元软件模拟计算梁上存在的裂纹、腐朽和空洞等不同缺陷时的应力分布状态,通过量化缺陷大小和缺陷位置,对不同残损因素进行单参量数值模拟分析,确定带有缺陷木梁的最大工作应力位置,分析木梁破坏的敏感位置,探究木梁承载力安全性的变化规律。结果不同缺陷类型对七架梁安全性的影响不同,外部腐朽对七架梁承载力的影响最大,空洞缺陷次之,裂纹缺陷的影响相对最小;对于弹性阶段的受弯木梁而言,缺陷位于两下金瓜柱之间的受拉区域时,对七架梁承载力安全性的影响程度最大;不同缺陷大小对七架梁承载力的影响不同,随着木梁开裂深度、腐朽区域深度、空洞缺陷大小的增加,木梁安全性逐步降低。结论局部缺陷的存在会降低七架梁安全性。数值模拟结果可以精确算出木梁最大拉应力值,是定量研究缺陷对七架梁安全性影响和确定七架梁安全性监测位置点的良好方法。   相似文献   

11.
小规格型钢加筋水泥土结构作为挡土墙已应用于实际工程,但对于其组合破坏模式和刚度缺乏深入的研究.为研究加筋水泥土结构破坏模式,进行了室内采用钢板加筋的不同截面高度、不同加载方式的水泥土组合梁抗弯试验,分析了试验条件下钢板-水泥土组合梁的抗弯强度.  相似文献   

12.
研究腹杆节间间距对平行弦木桁架承载性能的影响,控制融余强度,形成平行弦木桁架强度及质量控制的理论支撑。采用Smsolve结构力学求解器对桁架进行内力分析,并对构件进行承载能力与稳定性验算,得到桁架腹杆节间间距临界值。采用静力加载方式,对平行弦木桁架挠度、轴向应变以及破坏形式进行测试,对2种工况模拟变形趋势与试验结果进行对比分析。结果表明,腹杆节间间距0 mm与65 mm的桁架,极限荷载平均值分别是设计荷载的5.26倍和3.49倍,均满足设计要求,且节间间距0 mm桁架的承载力高于节间间距65 mm桁架,2种桁架变异系数均较小,表现出较小的离散性。当达到极限荷载时,2种工况的跨中挠度值相差不大;节间间距0 mm桁架,跨中与两加载点处挠度值相差不大,变形较小;节间间距65 mm桁架,跨中与两加载点处挠度值相差1.5倍,此工况试件极限荷载均超过3倍设计荷载,满足规范设计要求。比较2种工况下桁架变形形式,可以看出节间间距0 mm桁架整体变形较小,有较高的承载能力。试验证明桁架破坏形式主要为节点齿板拔出,而导致桁架失效,破坏位置主要出现在两侧端部、跨中、加载点下端节点位置,与模型分析相一致。分析认为平行弦木桁架有较好的强度储备,在满足构件承载能力、稳定性的情况下,腹杆节间间距可在65 mm范围内进行调节,桁架失效主要发生在齿板连接节点处。  相似文献   

13.
孔洞对木梁弯曲应变分布影响的试验研究   总被引:2,自引:2,他引:0  
为了研究孔洞对木梁弯曲应变分布的影响,采用数字图像相关法进行了无疵木梁和含孔洞木梁的四点弯曲试验,分析了3种不同的孔洞位置(孔洞位于中心、受压区和受拉区)对木梁弯曲应变分布的影响,探讨了中性轴位置的偏移规律。结果表明:在极限载荷时,3种不同孔洞位置的木梁,其压应变区域均大于拉应变区域,其中孔洞位于受压区时木梁的压应变区域最大,孔洞位于中心时次之,孔洞位于受拉区时最小。并且在整个加载过程中,中性轴会随着载荷的增大向木梁下缘偏移,孔洞位于受压区时中性轴的偏移距离最大,孔洞位于中心时次之,孔洞位于受拉区时最小。在此基础上,依据平截面假定和弹塑性理论的Hoffman屈服准则,初步分析了含孔洞木梁弯曲应变分布和中性轴偏移规律的机理。研究结果为进一步从理论上定量推导含孔洞木梁的弯曲应变和应力计算公式提供了依据。   相似文献   

14.
研究钢筋锈蚀对混凝土梁破坏模式的影响.对4组共21根不同剪跨比、不同锈蚀程度的混凝土梁进行了试验,研究发现,纵向配筋率及剪跨比相同的情况下,随着纵筋、箍筋锈蚀程度的变化,梁会产生弯曲、剪压、剪切-粘结3种不同形态的破坏.针对此现象,基于试验研究结果并结合相关文献的试验结果,根据现行规范中的分析理念建立了考虑剪跨比、箍筋锈蚀率、纵筋锈蚀率及粘结退化等因素影响的锈蚀混凝土梁受剪承载力计算公式.据此再考虑弯剪区的平衡条件,分析讨论得出了试验梁产生破坏形态转变的临界条件和锈蚀混凝土梁构件的综合承载能力的变化规律,从而建立了锈蚀混凝土梁破坏模式转变的分析模型.据此模型分别以纵筋锈蚀率和箍筋锈蚀率为横、纵轴,考虑剪跨比等因素得出临界曲线划分的破坏形态区域与试验结果吻合较好.  相似文献   

15.
对不同槽深的木质工字梁(IJ)翼缘、腹板梯形槽接口的垂向承载能力作检测分析,结果表明:接口抗压破坏可分为先期破坏和终极破坏,先期破坏以翼缘与腹板胶合层的剪切破坏或翼缘槽底的横纹拉伸破坏为主,终极破坏包括了胶合层剪切、翼缘木材横纹拉伸和压缩破坏的最终综合性全面破坏,终极破坏荷载大于先期破坏;接口槽深的设计应避免发生先期破坏;接口破坏形式反映了翼缘材料的性能、接13的胶合性能和垂向承压能力。研究指出:以国标(GB/T20241-2006)90E型LVL为翼缘、以林业行标(LY/T1580-2000)OSB/3型大片定向刨花板为腹板,槽深为9~15mm的IJ可以满足我国和美国标准对接口垂向承压能力的要求,其中以12mm糟深为最佳。  相似文献   

16.
  目的  用钢材替代工字型木梁的腹板部分以解决纯木梁腹板易剪切破坏、抗弯刚度低的问题,有助于减小构件尺寸,增加其在大跨度建筑中的应用。  方法  在H型钢上下翼缘各覆一层木材并使用螺栓连接制备组合梁。对11根组合梁开展三点弯曲试验,研究螺栓间距、剪跨比对组合梁破坏模式、刚度和承载力的影响。通过4个推出试验研究钢木界面滑移对组合梁性能的影响。  结果  钢木组合梁的抗弯刚度比相同截面尺寸的矩形木梁提高了201%;H型钢在集中荷载作用下易发生上翼缘的局部屈曲,剪跨比为2时,试件出现脆性破坏特征,破坏始于上层木材,随着剪跨比增大,试件由脆性破坏转变为延性破坏,木材最先破坏位置由上层木材转变为下层木材;剪跨比增大时,组合梁抗弯刚度减小,延性系数增大,峰值荷载下降了15%以上;螺栓间距增大时,组合梁抗弯刚度增大,延性系数减小,峰值荷载上升了15%以上。考虑钢木界面滑移的屈服承载力和跨中挠度的计算公式具有较高的准确性,所得计算值与试验值误差基本在10%以内;由材性试验获取材性参数,在此基础上使用ABAQUS软件建立考虑钢木界面滑移的有限元模型,模拟结果较为准确,组合梁抗弯刚度和屈服荷载的模拟值与试验值误差基本在10%以内。  结论  钢材用作腹板部分可以显著提高梁的抗弯刚度,并防止腹板剪切破坏;考虑界面滑移后,组合梁抗弯性能的理论计算和有限元模拟结果均较为准确。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号