首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin-like growth factor-I (IGF-I) plays a pivotal role in cattle fertility, acting as a monitoring signal that allows reproductive events to occur when nutritional conditions for successful reproduction are reached. However, endocrine IGF-I is not a predictor of reproductive events, but rather an indirect estimator of the suitability of the animal to achieve the reproductive event in question. Although measuring circulating IGF-I concentrations might not have any clinical application in the cattle industry, endocrine IGF-I screening will continue to be important for the study of interactions between nutrition and reproduction. In addition, endocrine IGF-I screening could be used as an ancillary test for the selection of cattle for high reproductive potential, especially in herds of high genetic merit for milk production, in which a decline in fertility has been identified.  相似文献   

2.
The objective of this study was to clarify the origin of the increase in plasma insulin-like growth factor-I (IGF-I) during estrus in goats. Focusing on the uterus, the effect of estradiol-17 beta (E2) on the secretion of IGF-I was examined using ovariectomized and hysterectomized animals. A single 5 microg/kg BW of E2 was injected intramuscularly into ovariectomized and hysterectomized goats for 3 consecutive days, and plasma IGF-I concentrations in the two groups were compared. The concentrations of IGF-I rose after the treatments in both groups. The concentrations were significantly higher from 3 to 8 days after the treatment than before the treatment in ovariectomized goats (P<0.05), and from 1 to 3 days after the treatment than before in hysterectomized goats (P<0.05). Thus higher concentrations of plasma IGF-I tended to last longer in ovariectomized than hysterectomized goats. The area under the IGF-I response curve for the 8-day period after the first injection of E2 tended to be greater in ovariectomized than in hysterectomized goats. The results show that E2 increases plasma IGF-I concentrations in goats, and suggest that E2-stimulated IGF-I in plasma may originate mainly from the uterus.  相似文献   

3.
Goat anterior pituitary cells were cultured to investigate the effects of insulin-like growth factor-I (IGF-I), insulin, and growth hormone (GH) on basal and GH-releasing hormone (GHRH)-induced GH release. Changes in cellular Ca2+ concentrations were also assessed to enable discussion of the cellular mechanisms of IGF-I. The cells were cultured for 48 h, and then stimulated with GHRH (10 nmol/l) for 30 min, with or without each test substance. In the control cells, IGF-I (10 and 100 ng/ml) significantly raised the basal, but did not change GHRH-induced GH release, resulting in the abolishment of GH release induced by GHRH in the presence of 100 ng/ml IGF-I. However, there was no significant effect of insulin (10, 100, and 1000 microU/ml) on basal and GHRH-induced GH release. In the cells cultured for 48 h with each test substance but stimulated for 30 min without the test substance, no significant change in the basal and GHRH-stimulated GH release was observed. Regardless of treatment, there was no significant effect on intra-cellular GH content. Analysis with a confocal laser microscope revealed that IGF-I (100 ng/ml) significantly increased the basal, but significantly reduced GHRH (10 nmol/l)-induced increase in cellular Ca2+ concentrations. From these findings we conclude that IGF-I exerts an acute suppressing action on the GHRH-induced GH release, which partly involves changes in cellular Ca2+ metabolism in goat somatotrophs.  相似文献   

4.
1. We examined the influence of refeeding after 2 d of fasting on plasma insulin-like growth factor-I (IGF-I) concentration and hepatic IGF-I gene expression in chickens at 6 weeks of age. 2. Hepatic IGF-I mRNA was measured by ribonuclease protection assay and plasma IGF-I concentration was determined by radioimmunoassay. 3. Plasma IGF-I concentration decreased following fasting, increased to the level of fed controls after 2 h of refeeding but then fell back to the level of fasted chickens after 6 h of refeeding. 4. Fasting reduced hepatic IGF-I mRNA concentrations to less than half of those in the fed controls. Refeeding increased IGF-I mRNA sharply at 2 h after refeeding, but by 6 h after refeeding they had taller back again to levels significantly lower than at 2 h. 5. A significant correlation between plasma IGF-I concentration and hepatic IGF-I gene expression was found, suggesting that when chicks are refed after 2 d of fasting, the short-term increase in plasma IGF-I concentration may be partly regulated by the alteration in hepatic IGF-I mRNA.  相似文献   

5.
Insulin-like growth factor plays a paracrine/autocrine role in regulating testicular function in the stallion, but its presence in the equine epididymis remains unknown. The aim of this study was to test the hypothesis that insulin-like growth factor-I (IGF-I) and IGF-I receptor (IGF-IR) are localized in the caput, corpus, and cauda of the epididymis in an age-dependent manner. Immediately after castration, epididymal tissue was fixed, paraffin-embedded, and processed for immunohistochemistry (IHC). Western blot was also performed using equine epididymal extracts to verify the specificity of the antibodies against IGF-I and IGF-IR. Immunolabeling of IGF-I was observed in the cytoplasm of principal and basal cells in the caput, corpus, and cauda at the pre-pubertal (3–7 months), pubertal (12–18 months), post-pubertal (2–4 years), and adult stages (4.5–8 years). Immunolabeling of IGF-IR was observed in the cytoplasm of principal cells in all regions of the epididymis in each age group. Immunolabeling of IGF-IR was also detected in the cytoplasm of basal cells from animals of all ages. Bands observed by Western blot corresponded to the molecular weights of IGF-I and IGF-IR, ~23 kDa and 95 kDa, respectively. These results suggest that IGF-I might function as an autocrine and/or paracrine factor during the development, maintenance and/or secretions of the stallion epididymis.  相似文献   

6.
To determine whether the hormonal regulation of IGF-I production differs between granulosa and thecal cells in cattle, granulosa and thecal cells from bovine follicles were collected, cultured for 2 d in medium containing 10% fetal calf serum, washed, and then treated for an additional 24 h in serum-free medium with various hormones. In Exp. 1, granulosa cells were treated with 0 or 100 ng/mL of insulin and(or) 50 ng/mL of follicle-stimulating hormone (FSH), insulin plus 10 ng/mL of epidermal growth factor, or insulin plus 10 ng/mL of basic fibroblast growth factor. In Exp. 2, thecal cells were treated as described in Exp. 1 except that 100 ng/mL of luteinizing hormone (LH) was used instead of 50 ng/mL of FSH. In Exp. 3, granulosa and thecal cells were treated with 0 or 30 ng/mL of cortisol with or without 100 ng/mL of insulin, 300 pg/mL of glucagon, or glucagon plus insulin. In Exp. 4, granulosa and thecal cells were treated with 0 or 300 ng/mL of estradiol with or without 100 ng/mL of insulin and(or) 100 ng/mL of LH. At the end of treatment, medium was collected, concentrated with Centricon-3 concentrators, and assayed for IGF-I by radioimmunoassay. Cell numbers were determined by Coulter counting at the end of culture. Thecal cells produced low amounts of IGFI (0.48 +/- 0.04, 0.63 +/- 0.03, and 0.82 +/- 0.03 ng per 100,000 cells per 24 h in Exp. 2, 3, and 4, respectively), and this production was not influenced (P > 0.05) by the various treatments. In contrast, IGF-I production by granulosa cells (2.0 to 6.2 ng per 100,000 cells per 24 h) was influenced by treatment in Exp. 1, 3, and 4 and was greater than IGF-I production by thecal cells (Exp. 2, 3, and 4). Alone, insulin, FSH, LH, and cortisol (but not estradiol) each decreased (P < 0.05) granulosa-cell IGF-I production by 20 to 57%; combined treatments of insulin plus FSH or insulin plus cortisol decreased IGF-I production to levels seen with insulin alone. Glucagon had no effect (P > 0.10) on IGF-I production in the absence or presence of insulin. In the presence of insulin, epidermal growth factor, basic fibroblast growth factor, and estradiol decreased (P < 0.05) IGF-I production below that observed for insulin alone. These results indicate that, during follicular development in cattle, changes in intrafollicular levels of IGF-I may be due to hormonally-induced changes in granulosa-cell, but not thecal-cell, IGF-I production.  相似文献   

7.
A survey of standardbred horses was conducted to build up a normal population profile for insulin like growth factor-I (IGF-I) concentrations in racing standardbreds and to ascertain how age, sex and geographic location affect IGF-I. Blood samples were drawn by jugular venepuncture from 202 racing standardbred horses aged one to eight years located in five different geographic regions of New Zealand. IGF-I concentrations were determined by insulin like growth factor-I binding protein (IGFBP)-blocked radioimmunoassay validated for the horse. As described in other species, age played a significant (P<0.05) role in IGF-I concentrations with the highest concentrations occurring in the younger horses. There was a significant (P<0.05) sex effect, intact males having significantly higher IGF-I concentrations compared of mares and/or geldings. Geographic location had a significant (P<0.05) influence on IGF-I. A significant (P<0.05) trainer effect also was noted both within and between geographic locations. We concluded that IGF-I concentrations in racing standardbred horses are affected by age, sex, trainer and geographic location.  相似文献   

8.
Steers were made hyperthyroid or hypothyroid to study the effects of physiological alterations in thyroid hormone status on plasma growth hormone (GH) profiles, plasma insulin-like growth factor-I (IGF-I) concentrations, and relative abundance of IGF-I mRNA in skeletal muscle and liver. Eighteen yearling crossbred steers (360 to 420 kg) were randomly allotted to hyperthyroid (subcutaneous injection 0.6 μg/kg BW L-thyroxine for 10 d), hypothyroid (oral thiouracil; 0.25% diet plus 12.5 g capsule/d for 17 d), or control (subcutaneous injection 0.9% NaCl) treatment groups. Blood samples were taken for measurement of GH, IGF-I, thyroxine (T4) and triiodothyronine (T3) by RIA. Samples of liver and skeletal muscle were taken by biopsy for measurement of IGF-I mRNA by solution hybridization. Steers receiving thiouracil had 57 and 53% (P<.05) lower T4 and T3, respectively, than control steers (84.1 and 1.7 ng/ml). The hyperthyroid steers had 228 and 65% greater (P<.05) T4 and T3 than control steers. Neither increased nor decreased thyroid status had any significant effects on plasma GH profiles, liver IGF-I mRNA, or plasma concentration of IGF-I. There was no effect of thyroid hormone alteration on skeletal muscle IGF-I mRNA concentrations. The results of this study suggest that short-term changes in thyroid status of cattle had no major impact on the GH-IGF-I axis or skeletal muscle IGF-I mRNA.  相似文献   

9.
The effect of exogenous IGF-I on the reproductive performance of female rats was examined by infusing either recombinant human IGF-I (400 micrograms/d; n = 19) or vehicle (n = 18) over a four-day period (the time of one reproductive cycle) beginning on the day following estrus. The females were exposed to male rats one day after the infusions had commenced, and were euthanized 15 d later. There was no treatment effect on serum progesterone levels at this time or on the number of fetuses. Furthermore, the number of corpora lutea were not different between the IGF-I and vehicle infused groups (15.8 vs. 14.8; P = 0.09). Total serum IGF-I concentrations, as determined with a polyclonal antiserum based RIA, were increased approximately three-fold in samples obtained 20 hr after commencing the IGF-I infusion. These samples were also analyzed for IGF-I with a monoclonal antibody based RIA previously shown to detect human, but not rat, IGF-I. By subtraction, the concentration of endogenous rat IGF-I was found to be approximately 60% higher in IGF-I-infused rats than in control rats. This increase was likely due to a reduced clearance rate of IGF-I from the circulation, caused by a marked induction of 42-46 kDa and 30-34 kDa IGF-I binding proteins observed in these samples with a ligand blot technique. The binding protein induction indicates that the infused IGF-I was bioactive. This induction may have attenuated the effects of IGF-I on ovarian function.  相似文献   

10.
The effects of estradiol, insulin, and gonadotropins on levels of insulin-like growth factor binding protein (IGFBP)-2, -3, -4, and -5 mRNA levels in bovine granulosa and theca cells were evaluated in vitro using serum-free medium containing various hormone treatments arranged in four different experiments. Amounts of IGFBP-2, -3, -4 and -5 mRNA were quantitated using fluorescent quantitative real-time RT-PCR. In small-follicle (1-5 mm) granulosa cells, follicle-stimulating hormone (FSH) in the presence or absence of insulin increased (P<0.05) IGFBP-3 mRNA but did not change IGFBP-2, -4, or -5 mRNA levels; estradiol was without effect on IGFBP-2, -3, -4, or -5 mRNA levels in the absence of insulin but increased (P<0.05) IGFBP-2 mRNA levels in the presence of insulin. Luteinizing hormone (LH) in the absence (but not presence) of insulin increased (P<0.05) small-follicle granulosa cell IGFBP-3 mRNA levels. In large-follicle (>7.9 mm) granulosa cells, insulin alone increased (P<0.05) IGFBP-2 gene expression while LH, FSH, and estradiol were without effect (P>0.10). Estradiol (3 and 300 ng/ml) decreased (P<0.05) IGFBP-5 mRNA levels in large-follicle granulosa cells. In theca cells, insulin decreased (P<0.05) IGFBP-4 expression, but had no effect (P>0.10) on IGFBP-2, -3, or -5 mRNA levels. Estradiol decreased (P<0.05) IGFBP-2, -3, and -4 mRNA levels but had no effect on IGFBP-5 mRNA levels in theca cells. LH had no effect on levels of IGFBP-2, -3, -4, or -5 mRNA in theca cells. These results indicate that expression of IGFBP-2, -3, -4, and -5 mRNA by granulosa and theca cells are differentially regulated by estradiol, insulin and gonadotropins, therefore discretely modulating the amount of bioavailable IGFs to these cells depending upon the specific hormonal stimuli. In particular, these studies are the first in cattle to show that estradiol selectively inhibits IGFBP-2, -3, and -4 gene expression in theca cells, inhibits IGFBP-5 gene expression in large-follicle granulosa cells, and stimulates IGFBP-2 gene expression in small-follicle granulosa cells.  相似文献   

11.
Recombinant bovine somatotropin (rbGH) was administered by subcutaneous injection at daily doses of 0.5 or 2.5 mg/kg for a two week period in female broiler chicks between 4 and 6 weeks of age. Half of the chicks received dietary corticosterone at a 1 ppm level. Growth rate was significantly increased 6.1% and 6.9% following one week of treatment with 0.5 or 2.5 mg/kg rbGH respectively. Treatment with the same respective doses of rbGH in the presence of 1 ppm corticosterone, supplied to suppress any possible immune response elicited by the heterologous somatotropin, resulted in an 8.0% and 7.8% increase (P less than .05) in growth rate during the first week of treatment. The rbGH-associated increase in growth rate was accompanied by a significant increase in food intake, higher circulating levels of IGF-I, and lower plasma T4 concentrations, while plasma T3 levels were unchanged. All effects were attenuated during the second week of treatment, concomitant with the development of high antibody titer against rbGH regardless of dietary corticosterone administration. Carcass parameters relating to bone, muscle and fat were not different between rbGH-treated and control chickens at the end of the two week treatment period. Thus rbGH is capable of stimulating a short-term improvement in growth rate, which is related to increased feed consumption and is of limited duration.  相似文献   

12.
The effects of a Sarcocystis miescheriana infection on insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding proteins (IGFBPs) were investigated to determine possible mechanisms of growth retardation in growing pigs. Sixteen pigs averaging 14 kg body weight were divided into 4 groups of 4 pigs each and infected either with 0.5, 1.0, or 3.0 × 106 sporocysts of S. miescheriana. Four pigs were retained as non-infected controls; however, they became serologically positive during the course of the infection. Effects also were investigated in 2 groups of 3 pregnant sows. One group was infected with 0.5 × 106 sporocysts and the other group was retained as uninfected controls. Body weights of infected growing pigs were depressed as compared to controls following the acute phase 15 d after infection (dai). Serum concentrations of IGF-I dropped significantly (p < 0.05) during the acute phase of infection in all infected groups of growing pigs. Conversely, the amounts of unsaturated serum IGFBPs were elevated significantly (p < 0.05) during the acute phase of infection. Specifically, serum concentrations of IGFBP-1, IGFBP-2, and IGFBP-4 were elevated at this time, as determined by ligand blot analysis. There was no association between growth factor alterations and tissue damage as measured by serum creatinine kinase and aspartate aminotransferase levels. The extent of effects in growing pigs was related to the amount of the original parasite inoculum.

During the acute phase of infection 2 of 3 pregnant sows aborted. The third sow went to term, but piglets were stillborn or died within 24 hr. Compared to uninfected controls, serum concentrations of IGF-I in infected pregnant sows were depressed during and after the acute phase of the infection. Levels of unsaturated serum IGFBPs in pregnant sows were not affected.

These data suggest that decreased IGF-I levels and/or elevated levels of specific forms of IGFBPs may be a mechanism by which growth is affected in feeder pigs infected with S. miescheriana.  相似文献   


13.
The growth rate of the young pig is generally much less than its potential and may be constrained by endocrine status as well as by nutrient intake. The aim of this study was to determine whether porcine somatotropin (pST) could increase growth in the nursing pig. Fourteen sows nursing litters of 6 (n = 7) or 12 (n = 7) piglets were utilized to establish a high and low plane of nutrition for sucking pigs. On Day 4 of lactation, the median two male pigs from each litter were randomly allocated to one of two doses of pST (0 or 60 micrograms/kg/d) until weaning on Day 31. Pigs were bled on Days 4, 13, 22, and 31 of lactation and the plasma was analyzed for insulin-like growth factor (IGF)-I, IGF-II, and IGF binding protein-3 (IGFBP-3). Pigs were weaned into conventional accommodation and further weighed on Days 63, 91, and 119. Pigs from litters of 6 grew more quickly and weighed 2.2 kg (P = 0.01) and 3.5 kg (P = 0.04) more than pigs from litters of 12 at 31 and 63 d of age, respectively. There was no effect of pST on preweaning growth of sucking pigs (261 vs. 258 g/d, P = 0.68), although growth rate increased in the final 3 d before weaning at 31 d (241 vs. 294 g/d, P = 0.01). IGFBP-3 was greater (1.09 vs. 0.78 micrograms/ml, P < 0.001), whereas IGF-I tended to be greater (206 vs. 176 ng/ml, P = 0.14), in pigs from the small litters. There was no effect of pST on plasma IGF-I (182 vs. 195 ng/ml, P = 0.454) or IGFBP-3 (0.93 vs. 0.94 microgram/ml, P = 0.85) concentrations. Plasma IGF-I and IGFBP-3 were highly correlated with the growth rate of nursing pigs (R = 0.638 and 0.756, respectively). There were no effects of pST (340 vs. 328 ng/ml, P = 0.48) or litter size (336 vs. 333 ng/ml, P = 0.88) on IGF-II. In conclusion, pST had no little or no effect on growth performance or plasma IGF-I, IGF-II, or IGFBP-3 in sucking pigs on either a high or low plane of nutrition.  相似文献   

14.
15.
The objectives of this study were to evaluate the effect of feed restriction and re-alimentation on the onset of puberty and IGF status in peripubertal male calves and to compare the radioimmunoassay (RIA) and western ligand blotting (WLB) methods for bovine IGFBP-2. Twelve prepubertal 290 d-old Belgian Blue bulls (mean weight: +/- 290 kg) were randomly assigned in three groups: a control group (NG; n = 4) receiving a classic fattening diet to induce "normal" growth (1.48 kg/d), a feed restricted group (RG; n = 4) to obtain reduced growth (0.50 kg/d) and, a severely restricted group (SG; n = 4) to nearly stop growth (0.08 kg/d). The feed restriction period was maintained over a period of 114 d. After the period of differential feeding, all animals received the control feed regime over a period of 100 d. Blood samples were collected at fortnightly intervals. Circulating IGF-I was measured by RIA whereas plasma IGFBPs was evaluated by WLB; IGFBP-2 was additionally quantified by RIA procedure. At the beginning of the trial, IGF-I levels were low (<100 ng/ml) and similar in the three groups in accordance with prepubertal status. In the NG group, a progressive rise in IGF-I was observed from Day 42 to Day 142 whereas in the RG and SG groups, IGF-I levels did not change until the experimental restriction period ended. The delay of the rise in plasma IGF-I was longer for the SG group, IGF-I remained low until 2 wk after the end of the period of restricted feeding. Surprisingly, although differences were detected for IGF-I levels between the three groups, the IGFBP-2 and -3 data, evaluated by WLB could only discriminate between NG and SG group and not between NG and RG. However, by using a RIA method, an IGFBP-2 decrease was observed in the NG group coincident with increasing IGF-I levels. For both RG and SG groups, IGFBP-2 levels remained high throughout the feed restriction period whereas plasma IGFBP-2 levels declined upon feeding in both groups. During this feed restriction period, IGFBP-2 was significantly lower in NG than in RG or SG groups. Moreover, SG group animals had higher levels in plasma IGFBP-2 than RG animals. In conclusion, puberty is characterized by developmental changes in plasma IGF-I and IGFBPs that were altered by feed restriction. Moreover, RIA evaluation of plasma IGFBP-2 is able to better reflect group differences than WLB.  相似文献   

16.
This study examined seasonal differences in progesterone (P4) production by granulosa cells (GC) and thecal cells (TC) that were luteinized in vitro during the winter or the summer; it also compared plasma P4 concentrations of lactating dairy cows in the two seasons. First-wave dominant follicles obtained from Holstein cows were dissected on day 6 of the cycle, GC and TC were separated, enzymatically dispersed, and cultured for 9 days in media containing 1% fetal calf serum, forskolin (10 micromol/mL) and insulin (2 microg/mL), to induce cell luteinization. All experimental procedures were identical and characteristics of the follicles were similar in the two seasons. During 9 days of culture, P4 production by luteinized GC was higher in winter than in summer, but the difference only tended to be significant. In contrast, luteinized TC produced three times as much P4 in winter as in summer (324 versus 100 ng/10(5)cells). In the in vivo experiment, P4 concentrations in plasma collected during entire estrous cycles in winter and summer were compared. The cows were, on average, at 70 days postpartum and yielded similar amounts of milk. Concentrations of progesterone in plasma were significantly higher in winter than in summer; during the mid-luteal phase the difference between the two seasons was 1.5 ng/mL. These results indicate that chronic effects of heat-stress are possibly carried over from an impaired follicle to an impaired corpus luteum (CL), and that luteinized TC are more susceptible to heat-stress than luteinized GC.  相似文献   

17.
Ge X  Yu J  Jiang H 《Journal of animal science》2012,90(4):1126-1133
Growth hormone is a major stimulator of skeletal muscle growth in animals, including cattle. In this study, we determined whether GH stimulates skeletal muscle growth in cattle by direct stimulation of proliferation or fusion of myoblasts, by direct stimulation of protein synthesis, or by direct inhibition of protein degradation in myotubes. We also determined whether these direct effects of GH are mediated by IGF-I produced by myoblasts or myotubes. Satellite cells were isolated from cattle skeletal muscle and were allowed to proliferate as myoblasts or induced to fuse into myotubes in culture. Growth hormone at 10 and 100 ng/mL increased protein synthesis in myotubes (P < 0.05), but had no effect on protein degradation in myotubes or proliferation of myoblasts (P > 0.05). Insulin-like growth factor-I at 50 and 500 ng/mL stimulated protein synthesis (P < 0.01), and this effect of IGF-I was much greater than that of GH (P < 0.05). Besides stimulating protein synthesis, IGF-I at 50 and 500 ng/mL also inhibited protein degradation in myotubes (P < 0.01), and IGF-I at 500 ng/mL stimulated proliferation of myoblasts (P < 0.05). Neither GH nor IGF-I had effects on fusion of myoblasts into myotubes (P > 0.1). These data indicate that GH and IGF-I have largely different direct effects on bovine muscle cells. Growth hormone at 10 and 100 ng/mL had no effect on IGF-I mRNA expression in either myoblasts or myotubes (P > 0.1). This lack of effect was not because the cultured myoblasts or myotubes were not responsive to GH; GH receptor mRNA was detectable in them and the expression of the cytokine-inducible SH2-containing protein (CISH) gene, a well-established GH target gene, was increased by GH in bovine myoblasts (P < 0.05). Overall, the data suggest that GH stimulates skeletal muscle growth in cattle in part through stimulation of protein synthesis in the muscle and that this stimulation is not mediated through increased IGF-I mRNA expression in the muscle.  相似文献   

18.
This study was designed to determine whether leptin modulates growth hormone (GH)- and insulin like growth factor-I (IGF-I)-stimulated progesterone (P4) production by corpora lutea (CL). Luteal cells were recovered from early developing (ELP) and mature (MLP) corpora lutea and cultured in defined medium with various combinations of GH, IGF-I, and leptin (0-200 ng/ml). P4 concentrations in the media were determined after 48 h of culture. During the early luteal phase, leptin at all used doses had no effect on basal P4 secretion, but it did suppress caspase-3 activity. When added in combination with GH, it had no effect on either GH-stimulated P4 secretion or apoptosis. Concomitant treatment with IGF-I and leptin decreased P4 secretion and parallelly increased the apoptosis rate. In mature corpora lutea of full secreting capacity, leptin at all doses had no effect on basal and GH-stimulated P4 secretion and caspase-3 activity. Only at the highest dose (200 ng/ml) when leptin was added with IGF-I did P4 secretion decrease with no effect on the caspase-3 activity. We conclude that the role of leptin is to restrict the stage of CL formation. During this luteal phase, leptin acts as an antiapoptotic factor and, at the same time, reverses antiapoptotic action of IGF-I, thereby protecting cells from excessive apoptosis and supporting retention of appropriate cell numbers, which is necessary for maintenance of homeostasis in developing CL.  相似文献   

19.
Effects of insulin and insulin-like growth factor I (IGF-I) on [3H]thymidine incorporation, in vitro, by mammary tissue slices obtained from prepartum and lactating cows were investigated. Both insulin and IGF-I induced up to a 10-fold increase in [3H]thymidine incorporation in the mammary slices cultured in serum-free media. The effect of insulin-stimulated [3H]thymidine incorporation occurred at a threshold of greater than 1.75 pmol/ml and appeared to reach maximum at greater than 8.8 nmol/ml. The response to IGF-I occurred at greater than 6.5 pmol/ml and reached the equivalent of maximal insulin-stimulated incorporation at 39 pmol/ml. No synergistic or additive effects were observed between these two factors. The in vitro response took 3 to 4 d to reach maximum and was inhibited by cytarabine. Mammary tissue obtained from lactating cows incorporated more [3H]thymidine per microgram DNA in response to insulin (175 pmol/ml) than mammary tissue from pregnant cows. Culture of mammary tissue slices with growth hormone, cortisol, prolactin, or triiodothyronine showed no stimulation of [3H]thymidine incorporation over control. Autoradiography of the cultured lactating tissue showed incorporation of [3H]thymidine by 51, 24 and 29% of the ductal epithelial, secretory alveolar epithelial and myoepithelial cells, respectively. All alveolar epithelial cells that incorporated [3H]thymidine contained secretory products. Among nonsecretory cells, 25 and 28% of the fibroblasts and white blood cells, respectively, were labeled. Insulin-like growth factor I, but not bovine somatotropin, stimulated [3H]thymidine uptake into DNA in lactating bovine mammary tissue. Thus, our data support the concept that bovine somatotropin acts through IGF-I to increase DNA synthesis in mammary cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号