首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two hundred years of landscape changes were studied on a 3,760 ha area of central Corsica (France) representing a typical Mediterranean environment. Different historical sources, including an accurate land-cover map from 1774 and statistics on land cover from 1848 and 1913, were used. Three additional maps (1960, 1975 and 1990) were drawn, and a complete fire history from 1957 to 1997 was created. Forests expanded slowly by a border effect. Forest expansion was more rapid in unburnt sites (0.59% per year) than in burnt sites (0.23% per year), mostly because the initial amount of forests was greater. Because of the border effect, the combination of past landscape pattern and short distance colonization abilities of forest species may have allowed the shrublands to persist in some places after land abandonment. This persistence may explain the pattern of fire in the landscape, since shrubland burn more readily than forests.  相似文献   

2.
Fire has historically been an important ecological factor maintaining southeastern U.S. vegetation. Humans have altered natural fire regimes by fragmenting fuels, introducing exotic species, and suppressing fires. Little is known about how these alterations specifically affect spatial fire extent and pattern. We applied historic (1920 and 1943) and current (1990) GIS fuels maps and the FARSITE fire spread model to quantify the differences between historic and current fire spread distributions. We held all fire modeling variables (wind speed and direction, cloud cover, precipitation, humidity, air temperature, fuel moistures, ignition source and location) constant with exception of the fuel models representing different time periods. Model simulations suggest that fires during the early 1900's burned freely across the landscape, while current fires are much smaller, restricted by anthropogenic influences. Fire extent declined linearly with patch density, and there was a quadratic relationship between fire extent and percent landscape covered by anthropogenic features. We found that as little as 10 percent anthropogenic landcover caused a 50 percent decline in fire extent. Most landscapes (conservation or non-conservation areas) are now influenced by anthropogenic features which disrupt spatial fire behavior disproportionately to their actual size. These results suggest that land managers using fire to restore or maintain natural ecosystem function in pyrogenic systems will have to compensate for anthropogenic influences in their burn planning. This revised version was published online in May 2005 with corrections to the Cover Date. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Dividing regions into manageable landscape units presents special problems in landscape ecology and land management. Ideally, a landscape should be large enough to capture a broad range of vegetation, environmental and disturbance dynamics, but small enough to be useful for focused management objectives. The purpose of this study was to determine the optimal landscape size to summarize ecological processes for two large land areas in the southwestern United States. We used a vegetation and disturbance dynamics model, LANDSUMv4, to simulate a set of nine scenarios involving systematically varied topography, map resolution, and model parameterizations of fire size and fire frequency. Spatial input data were supplied by the LANDscape FIRE Management Planning System (LANDFIRE) prototype project, an effort that will provide comprehensive and scientifically credible mid-scale data to support the National Fire Plan. We analyzed output from 2,000 year simulations to determine the thresholds of landscape condition based on the variability of burned area and dominant vegetation coverage. Results show that optimal landscape extent using burned area variability is approximately 100 km2 depending on topography, map resolution, and model parameterization. Variability of dominant vegetation area is generally higher and the optimal landscape sizes are larger in comparison to those features determined from burned area. Using the LANDFIRE project as a case study, we determined landscape size and map resolution for a large mapping project, and showed that optimal landscape size depends upon geographical, ecological, and management context. This paper was written and prepared by U.S. Government employees on official time, and therefore is in the public domain and not subject to copyright. The use of trade or firm names in this paper is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service.  相似文献   

4.
We used the LANDIS disturbance and succession model to study the effects of six alternative vegetation management scenarios on forest succession and the subsequent risk of canopy fire on a 2791 km2 landscape in northern Wisconsin, USA. The study area is a mix of fire-prone and fire-resistant land types. The alternatives vary the spatial distribution of vegetation management activities to meet objectives primarily related to forest composition and recreation. The model simulates the spatial dynamics of differential reproduction, dispersal, and succession patterns using the vital attributes of species as they are influenced by the abiotic environment and disturbance. We simulated 50 replicates of each management alternative and recorded the presence of species age cohorts capable of sustaining canopy fire and the occurrence of fire over 250 years. We combined these maps of fuel and fire to map the probability of canopy fires across replicates for each alternative. Canopy fire probability varied considerably by land type. There was also a subtle, but significant effect of management alternative, and there was a significant interaction between land type and management alternative. The species associated with high-risk fuels (conifers) tend to be favored by management alternatives with more disturbances, whereas low disturbance levels favor low-risk northern hardwood systems dominated by sugar maple. The effect of management alternative on fire risk to individual human communities was not consistent across the landscape. Our results highlight the value of the LANDIS model for identifying specific locations where interacting factors of land type and management strategy increase fire risk.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

5.
To aid effective conservation and management there is a need to understand the effect of landscape on species ecology. The aim of this research was to assess the effect of landscape parameters on breeding success of barn owls throughout the Rother and Arun River catchments, Sussex, UK. We used a Geographic Information System to describe the habitat mosaic and landscape structure within an estimated home range area of 3 km2 around 85 artificial nest box sites. Results showed that land cover was less heterogeneous at successful sites, with home ranges dominated by a few habitat types of regular patch shapes. Unsuccessful nesting sites had significantly more improved grassland, suburban land and wetlands than successful sites. Cluster analysis and Principle Components Analysis was used to assess the similarity of the habitat mosaic within these areas and pellet analysis was undertaken to assess barn owl diet and prey availability. Ten prey species were recovered from pellets, field vole (Microtus agrestis), common shrews (Sorex araneus) and house mice (Mus musculus) making up nearly 90% of recoveries. However box sites varied in relative proportions of small mammal, and hence prey availability. Results indicated that land use and landscape structure can affect breeding success in barn owls. Higher levels of poor quality small mammal habitat were associated with unsuccessful sites. However, at a landscape scale, the habitat mosaic across the study area lacked variation, limiting analysis and clear correlations between habitat type and positive breeding success, suggesting that a finer scale was needed in future studies utilising this approach.  相似文献   

6.
In mountainous Mediterranean regions, land abandonment processes in past decades are hypothesized to trigger secondary vegetal succession and homogenization, which in recent years has increased the size of burned areas. We conducted an analysis of temporal changes in landscape vegetal spatial pattern over a 15-year period (1984–1998) in a rural area of 672.3 km2 in Eastern Spain to investigate the relationship between local landscape heterogeneity and wildfire occurrence. Heterogeneity was analyzed from textural metrics derived from non-classified remote sensing data at several periods, and was related to wildfire history in the study area. Several neural network models found significant relationships between local spatial pattern and future fire occurrence. In this study, sensitivity analysis of the texture variables suggested that fire occurrence, estimated as probability of burning in the near future, increased where local homogeneity was higher.  相似文献   

7.
Wang  Guan  Li  Junran  Ravi  Sujith 《Landscape Ecology》2019,34(8):2017-2031
Context

Fire and controlled grazing have been widely adopted as management interventions to counteract woody shrub proliferation in many arid and semiarid grassland systems. The actual intensity of grazing and fire, along with the timing of the interventions, however, are difficult to determine in practice.

Objectives

This study aims to establish model simulations to access the long-term landscape changes under different land management scenarios.

Methods

We developed a cellular automata model to evaluate landscape dynamics in response to scenarios of grazing, fire, time of intervention, and initial coverage of grasses and shrubs.

Results

With current grazing intensity and fire suppression, the landscape may shift to a shrub-dominated landscape in 100–150 years. An appropriate combination of grazing and fire management could help maintain over 50% of grass cover and reduce the shrub cover to less than 2%, keeping the landscape highly reversible. Even using 1% grazing intensity and periodic fire once a year, the management tools should be implemented in 60 years, otherwise, they may lose effectiveness and the vegetation transition to grasslands would become impossible.

Conclusions

This study highlighted that the reintroduction of fire not only directly removes shrubs but also reallocates soil water and resources among different microsites, which may accelerate grass recovery and suppress shrub regrowth, potentially reversing the shrub invasion process. The combined grazing and fire management plans should be carried out before a threshold time depending on the chosen management tools.

  相似文献   

8.
Mediterranean landscapes are dynamic systems that undergo temporal changes in composition and structure in response to disturbances, such as fire. Neither landscape patterns nor driving factors that affect them are evenly distributed in space. Accordingly, disturbances and biophysical factors interact in space through time. The aim of this paper is to assess the relative influence of topography and fire on the landscape patterns of a large forested area located in Sierra de Gredos (Central Spain) through time. A series of Landsat MSS images from 1975 to 1990, and a digital elevation model (DEM) were used to map fires, assess topographical complexity and evaluate changes in landscape composition and structure. Functional regions across the entire landscape were identified using different classification criteria (i.e., percentage burned area and topographic properties) to model topographic and fire impacts at regional scales. A canonical variance partition method, with a time series split-plot design, quantified the relative influence and co-variation of topography and fire on land cover patterns through time. Main results indicated that analyzing portions of the landscape under similar environmental conditions and fire histories, the effects of different fire regimes on the spatio-temporal dynamics of main land covers can be highlighted. However, the impact of fire on landscape patterns was high variable among regions due to the different regeneration abilities of main land covers, the topographic constraints and the fire histories of each region. Hence, broad patterns of fire related variance and co-variation with topography emerged across the entire area due to the different conditions of each landscape portion in which this large Mediterranean landscape was divided. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Characterizing the complexity of landscape boundaries by remote sensing   总被引:9,自引:0,他引:9  
This paper presents a method for characterizing the complexity of landscape boundaries by remote sensing. This characterization is supported by a new boundary typology, that takes into account points where three or more landcovers converge (i.e., convergency points or coverts). Landscape boundary richness and diversity indices were proposed and calculated over 19 landscapes in South-East Brazil. Results showed that landscape boundaries, especially convergency points, provided an enrichment in landscape pattern analysis. Landcover boundary diversities were significantly related to landcover shape: elongated riparian units had the highest values for boundary diversity and coverts proportion indices. On the other hand, landscape analysis showed that indices of shape, richness, diversity and coverts proportion provided an additional evaluation of landcover spatial distribution within the landscape.  相似文献   

10.
Expansion of Pinus and Juniperus species into shrub steppe in semi-arid regions of the western United States has been widely documented and attributed in part to fire exclusion. If decreased fire frequency has been an important cause of woodland expansion, one would expect to find age structures dominated by younger trees on more fire-prone sites, with old-growth pinyon-juniper woodland limited to sites with lower fire risk. We compared current old-growth distribution with spatial models for fire risk in a 19-km2 watershed in central Nevada, USA. Multiple GIS models were developed to represent fire susceptibility, according to abiotic factors representing fuels and topographic barriers to fire spread. We also developed cellular automata models to generate fire susceptibility surfaces that additionally account for neighborhood effects. Rule-based GIS models failed to predict old-growth distribution better than random models. Cellular automata models incorporating spatial heterogeneity of site productivity predicted old-growth distribution better than random models but with low accuracy, ranging from 58% agreement at the single-pixel (0.09-ha) scale to 80% agreement for 20-pixel neighborhoods. The best statistical model for predicting old-growth occurrence included the negative effect of topographic convergence index (local wetness), and the positive effects of solar insolation and proximity to rock outcrops. Results support the hypothesis that old-growth woodlands in the Great Basin are more likely to occur on sites with low fire risk. However, weak relationships suggest that old-growth woodlands have not been confined to fire-safe sites. Conservation efforts should consider the landscape context of old-growth woodlands across a broad landscape, with an emphasis on conserving landscape variability in tree age structure.  相似文献   

11.
Parameters of fire regimes, including fire frequency, spatial extent of burned areas, fire severity, and season of fire occurrence, influence vegetation patterns over multiple scales. In this study, centuries-long patterns of fire events in a montane ponderosa pine – Douglas-fir forest landscape surrounding Cheesman Lake in central Colorado were reconstructed from fire-scarred trees and inferences from forest stand ages. We crossdated 153 fire-scarred trees from an approximately 4000 ha study area that recorded 77 total fire years from 1197 to the present. Spatial extent of burned areas during fire years varied from the scale of single trees or small clusters of trees to fires that burned across the entire landscape. Intervals between fire years varied from 1 to 29 years across the entire landscape to 3 to 58 years in one stand, to over 100 years in other stands. Large portions of the landscape did not record any fire for a 128 year-long period from 1723 to 1851. Fire severity varied from low-intensity surface fires to large-scale, stand-destroying fires, especially during the 1851 fire year but also possibly during other years. Fires occurred throughout tree growing seasons and both before and after growing seasons. These results suggest that the fire regime has varied considerably across the study area during the past several centuries. Since fires influence plant establishment and mortality on the landscape, these results further suggest that vegetation patterns changed at multiple scales during this period. The fire history from Cheesman Lake documents a greater range in fire behavior in ponderosa pine forests than generally has been found in previous studies.  相似文献   

12.
Repeated sequences of digitised and geo-referenced historical aerial photography provide a powerful means of understanding landscape change. We use this method to demonstrate a landscape wide expansion of closed forest (42% increase in total coverage) in the Australian monsoon tropics over the past five decades. Retrospective habitat suitability models (HSI) of closed forest derived using four landscape measures (drainage distance, slope angle, aspect and elevation) for imagery taken in 1947 correctly forecast the subsequent spatial distribution of the expansion, with topographic fire protection primarily determining the closed-forest distribution. The dynamics of the closed forest-savanna boundary were predicted accurately by generalised linear models, with closed-forest expansion in fire-protected sites along forest edges and regression in the more fire-prone areas. Two factors may plausibly explain the expansion of closed forests. First, eco-ethnographic records stress the skilful use of fire by Aboriginal people in protecting isolated and locally resource-rich closed-forest patches. Second, the recent global increase in atmospheric CO2 may be changing the competitive balance between savanna and forest by enabling C3 trees to grow fast enough to escape the fire trap presented by flammable C4 grasses.  相似文献   

13.
A central theme in landscape ecology is that of understanding the consequences of landscape heterogeneity for ecological processes. The effects of landscape heterogeneity on parasite communities are poorly understood, although it has been shown that anthropogenic impacts may contribute to outbreaks of both parasites and pathogens. We tested for effects of landcover type, composition, configuration, and urbanisation on avian diversity and avian malaria prevalence in 26 communities of wetland-associated passerines in the Western Cape of South Africa. We predicted that avian malaria prevalence would be influenced by the pattern of farmland and urban areas in the surrounding landscapes and the sizes of the wetlands in which birds were sampled. We quantified landscape pattern using a six-class simplification of the National Landcover data set at 35 × 35 m resolution and five extents of between 1 and 20 km from each wetland. The bird community was sampled using point counts and we collected blood samples from birds at each site. We screened these for malaria using PCR and molecular techniques. Passerine species richness and infection prevalence varied significantly between different landcover types. Host richness and parasite prevalence were highest in viticultural and cropping sites respectively and lowest in urban sites. Wetlands located in indigenous vegetation had intermediate numbers of bird species and intermediate parasite prevalence. Landscape composition and habitat type surrounding wetlands emerged as useful correlates of infection prevalence. Anthropogenic landscape modification appears to have both direct and indirect effects on avian communities and their associated parasite assemblages, with attendant consequences for avian health.  相似文献   

14.
Current biodiversity conservation policies have so far had limited success because they are mainly targeted to the scale of individual fields with little concern on different responses of organism groups at larger spatial scales. We investigated the relative impacts of multi-scale factors, including local land use intensity, landscape context and region, on functional groups of beetles (Coleoptera). In 2008, beetles were suction-sampled from 95 managed grasslands in three regions, ranging from Southern to Northern Germany. The results showed that region was the most important factor affecting the abundance of herbivores and the abundance and species composition of predators and decomposers. Herbivores were not affected by landscape context and land use intensity. The species composition of the predator communities changed with land use intensity, but only in interaction with landscape context. Interestingly, decomposer abundance was negatively related to land use intensity in low-diversity landscapes, whereas in high-diversity landscapes the relation was positive, possibly due to enhanced spillover effects in complex landscapes. We conclude that (i) management at multiple scales, from local sites to landscapes and regions, is essential for managing biodiversity, (ii) beetle predators and decomposers are more affected than herbivores, supporting the hypothesis that higher trophic levels are more sensitive to environmental change, and (iii) sustaining biological control and decomposition services in managed grassland needs a diverse landscape, while effects of local land use intensity may depend on landscape context.  相似文献   

15.
Understory fire modeling is a key tool to investigate the cornerstone concept of landscape ecology, i.e. how ecological processes relate to landscape structure and dynamics. Within this context, we developed FISC??a model that simulates fire ignition and spread and its effects on the forest carbon balance. FISC is dynamically coupled to a land-use change model to simulate fire regimes on the Amazonian landscapes of the Xingu Headwaters under deforestation, climate change, and land-use management scenarios. FISC incorporates a stochastic cellular automata approach to simulate fire spread across agricultural and forested lands. CARLUC, nested in FISC, simulates fuel dynamics, forest regrowth, and carbon emissions. Simulations of fire regimes under modeled scenarios revealed that the major current and future driver of understory fires is forest fragmentation rather than climate change. Fire intensity proved closely related to the landscape structure of the remaining forest. While climate change may increase the percentage of forest burned outside protected areas by 30% over the next four decades, deforestation alone may double it. Nevertheless, a scenario of forest recovery and better land-use management would abate fire intensity by 18% even in the face of climate change. Over this time period, the total carbon balance of the Xingu??s forests varies from an average net sink of 1.6?ton?ha?1?year?1 in the absence of climate change, fire and deforestation to a source of ?0.1?ton?ha?1?year?1 in a scenario that incorporates these three processes.  相似文献   

16.
Forty-eight years of landscape change on two contiguous Ohio landscapes   总被引:5,自引:0,他引:5  
This study analyzes the current and historic structure of two contiguous, rural landscapes covering approximately 242 km2 in central Ohio, USA: a till plain landscape with relatively homogeneous topography and soils, and a moraine landscape with greater geomorphological diversity and heterogeneity. These landscapes were chosen because they were both heavily dominated by agriculture during 1900–1940 and were both initially surveyed by the metes-and-bounds system. They differed, however, in the temporal pattern of settlement and development and in the inherent agricultural capability of their soils. We combined analysis of aerial photographs from 1940, 1957, 1971, and 1988 with historical archives and other available mapped data in a GIS data base to facilitate analysis of both spatial and temporal patterns of change. On the moraine, the agricultural matrix decreased over time as forest, urban/suburban areas, and industry increased. In contrast, on the till plain agricultural landcover increased through 1988, with concommitant decreases in upland forest and oak savanna. The moraine landscape exhibited greater diversity and equitability than the till plain on each date. The till plain had its greatest diversity and equitability in 1940, whereas the moraine increased in diversity and equitability during each time period. The undulating topography of the moraine encouraged landcover dynamism rather than stability, whereas the more homogeneous till plain exhibited considerable inertia. Patch and matrix shape remained constant and predominantly angular over the 48 year study period. Differences in the physical environment, especially topography and soil capability, and the socioeconomic environment, especially agricultural policies and patterns of urbanization, resulted in these two contiguous landscapes having different trajectories of change. It is clear from this study that socioeconomic factors must be combined with the physical setting to fully understand patterns of change in human-dominated landscapes.  相似文献   

17.
Current knowledge of patterns and abundance of deciduous trees in thepre-industrial landscape of boreal Sweden is limited. This is due to a dramatictransformation of the forest landscape during the last 100 years and the lackofrepresentative forest reserves. We used historical records to study change infive mixed deciduous forests between 1866 and 1999. The results show that largechanges occurred due to complex interactions between fire disturbance, firesuppression, logging and silviculture. Before fire suppression, the presence ofdeciduous trees was mainly determined by earlier fire influence. Laterselectivelogging disturbed natural succession and favoured regeneration of deciduoustrees. During the 20th century deciduous trees were removed bygirdling, thinning and herbicide spraying. Much of the mixed deciduous standschanged to coniferous stands between 1906–15 and 1969–70, and thendeciduous trees were totally removed from these stands between late 1960s and1999. Today mixed deciduous forest occurs mainly in young stands and on othersites than previously. Our results also show that large coniferous trees andmulti-aged forest occurred in all sites in the early 1900s. Most sites weredominated by coniferous species and forest dominated by deciduous treesoccurredonly in smaller areas. These results are not consistent with the current viewthat deciduous-dominated forest occupied substantial areas in boreal Swedenbefore fire suppression. Appropriate changes in forest management arediscussed,as is the value of historical data in interpreting changes in forestlandscapes.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

18.

Context

Although logging has affected circumboreal forest dynamics for nearly a century, very few studies have reconstructed its influence on landscape structure at the subcontinental scale.

Objectives

This study aims to document spatiotemporal patterns of logging and fire since the introduction of logging in the early twentieth-century, and to evaluate the effects of these disturbances on landscape structure.

Methods

We used historical (1940–2009) logging and fire maps to document disturbance patterns across a 195,000-km2 boreal forest landscape of eastern Canada. We produced multitemporal (1970s–2010s) mosaics providing land cover status using Landsat imagery.

Results

Logging significantly increased the rate of disturbance (+74 %) in the study area. The area affected by logging increased linearly with time resulting in a significant rejuvenation of the landscape along the harvesting pattern (south–north progression). From 1940 to 2009, fire was the dominant disturbance and showed a more random spatial distribution than logging. The recent increase of fire influence and the expansion of the proportion of area classified as unproductive terrestrial land suggest that regeneration failures occurred.

Conclusions

This study reveals how logging has modified the disturbances dynamics, following the progression of the logging frontier. Future management practices should aim for a dispersed spatial distribution of harvests to generate landscape structures that are closer to natural conditions, in line with ecosystem-based management. The challenges of defining sustainable practices will remain complex with the predicted increase in fire frequency, since this factor, in combination with logging, can alter both the structure and potentially the resilience of boreal forest.
  相似文献   

19.
Historical records provide information to land managers and landscape ecologists attempting to understand current trajectories in altered landscapes. In this study, we synthesized a heterogeneous array of historical sources to reconstruct historical land cover in California’s Santa Clara Valley (a.k.a. “Silicon Valley”). To increase and assess accuracy, we used the triangulation of overlapping, independent data sources and the application of certainty level standards. The region has been subject to extensive urbanization, so we also evaluated the applicability of historical landscape reconstructions to the altered landscape. We found evidence for five major land cover types prior to significant Euro–American modification. Valley freshwater marsh, wet meadow, alkali meadow, willow grove, and valley oak savanna have all experienced extreme decline (85–100%) since Euro–American settlement. However, comparison of historical land cover patterns to contemporary land use suggested several new strategies for environmental recovery, despite the limitations of surrounding urbanization. We also observed a temporal shift in riparian habitat along the mainstem of Coyote Creek, from a relatively open mixture of riparian scrub, sycamore woodland, and unvegetated gravel bars to dense riparian forest, likely resulting from stream flow regulation. By identifying former land cover patterns we provide a basis for evaluating local landscape change and setting restoration targets, including the identification of residual features and under-recognized land cover types. These findings suggest that reliable historical landscape reconstructions can be developed in the absence of standardized historical data sources and can be of value even in highly modified regions.  相似文献   

20.
Our research illustrates how a landscape mosaic changes in association with a mixed natural-anthropogenic disturbance history. Our study area is the Northwest Wisconsin (USA) Sand Plain (NWSP), a region with a rich disturbance history including fire, insects and clearcut forestry. We integrated historic airphotos from 1938, 1960, 1980 and 1998 within a GIS to describe change among four landcover classes describing a canopy-closure gradient: closed forests, woodlands, savannas and “open barrens”. Our work addresses two literature needs: empirical studies of mixed-disturbance landscapes, and nonforest habitats within a forest matrix. Our analysis shows that: the area of open barrens fluctuated, woodlands and savannas declined severely and closed forests increased through time. Falling median patch sizes and other landscape metrics suggest that the woodlands are becoming more fragmented. The landcover transitions driving this change vary according to time and place. The dominant transitions are toward closed forests from all classes, and transitions toward open barrens are also consistently important. The woodlands, savannas and open barrens habitats are mostly comprised of transient patches, persisting for less than 20 years. This contrasts with closed forests that often persist for 40 plus years. These changes are consistent with the disturbance regime that is shifting from fire- to forestry-dominance. Our results show a trend towards landscape simplification, manifest as losses of intermediate-density habitats (woodland and savanna) and shrinking patch sizes. The transient nature of the nonforest habitats shows that disturbance resulting in total or partial canopy removal will be vital for their conservation at a landscape scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号