首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 7 毫秒
1.
We explored the seasonal potential fishing grounds of neon flying squid (Ommastrephes bartramii) in the western and central North Pacific using maximum entropy (MaxEnt) models fitted with squid fishery data as response and environmental factors from remotely sensed [sea surface temperature (SST), sea surface height (SSH), eddy kinetic energy (EKE), wind stress curl (WSC) and numerical model‐derived sea surface salinity (SSS)] covariates. The potential squid fishing grounds from January–February (winter) and June–July (summer) 2001–2004 were simulated separately and covered the near‐coast (winter) and offshore (summer) forage areas off the Kuroshio–Oyashio transition and subarctic frontal zones. The oceanographic conditions differed between regions and were regulated by the inherent seasonal variability and prevailing basin dynamics. The seasonal and spatial extents of potential squid fishing grounds were largely explained by SST (7–17°C in the winter and 11–18°C in the summer) and SSS (33.8–34.8 in the winter and 33.7–34.3 in the summer). These ocean properties are water mass tracers and define the boundaries of the North Pacific hydrographic provinces. Mesoscale variability in the upper ocean inferred from SSH and EKE were also influential to squid potential fishing grounds and are presumably linked to the augmented primary productivity from nutrient enhancement and entrainment of passive plankton. WSC, however, has the least model contribution to squid potential fishing habitat relative to the other environmental factors examined. Findings of this work underpin the importance of SST and SSS as robust predictors of the seasonal squid potential fishing grounds in the western and central North Pacific and highlight MaxEnt's potential for operational fishery application.  相似文献   

2.
Variability in catch-per-unit-effort (CPUE) was examined for the autumn cohort of Ommastrephes bartramii collected with research driftnets during 1979–1998 along five longitudinal transects passing through the Subarctic, Transitional and Subtropical Domains in the North Pacific. CPUE was generally low during the period of intensive commercial driftnet fishing (1980–1992) and increased following the 1992 moratorium on the use of large-scale driftnets. However, CPUE levels were low for the cohorts hatched in 1992 and 1996 (captured in subsequent years owing to a one-year life of O. bartramii ) that experienced low sea surface temperatures from hatching to recruitment. Among similar-aged squid collected from 180° and 179°30'W in June, mantle lengths were significantly greater in 1997 than during 1995–96. These findings suggest that the driftnet fishery and sea surface temperatures from hatching to recruitment strongly affected stock abundance and possibly growth.  相似文献   

3.
Our examination of the neon flying squid (Ommastrephes bartramii) winter–spring cohort catch per unit effort (CPUE, an index of stock) revealed significant positive correlations with the interannual variations of observed chlorophyll‐a (Chl‐a) concentration and autumn–winter mixed layer depth (MLD) in the winter–spring feeding grounds of paralarvae and juveniles (130–170°E, 20–27°N). These correlations suggest the importance of integrated bottom‐up effects by the autumn–winter MLD for the neon flying squid stocks. However, the influence of autumn–winter MLD interannual variation in the forage availability for paralarvae and juveniles, i.e., particulate organic matter and zooplankton, has still been unclear. In this study, we use the lower trophic ecosystem model NEMURO, which uses the physical environmental data from the ocean reanalysis dataset obtained by the four‐dimensional variational (4DVAR) data assimilation method. The model‐based investigation enables us to clarify how the autumn–winter MLD controls the particulate organic matter and zooplankton abundance in the feeding grounds. Further, our investigation of the autumn–winter MLD interannual variation demonstrates that the stronger autumn wind in the feeding grounds develops a deeper mixed layer. Therefore, the deep mixed layer entrains nutrient‐rich water and enhances photosynthesis, which results in good feeding conditions for paralarvae and juveniles. Our results underline that the wind system interannual variation has critical roles on the winter–spring cohort of the neon flying squid stock.  相似文献   

4.
In this study, we found that there were significant positive correlations between the catch per unit effort (CPUE, a squid abundance index) for the neon flying squid (Ommastrephes bartramii) winter–spring cohort and the satellite‐derived chlorophyll a concentrations in their spawning grounds located at 140–160°E where 21°C < sea surface temperature < 25°C from February to May. The spawning grounds of the winter–spring cohort are located in a quiet stream region, and a particle tracking experiment, based on the velocity field obtained from an ocean data assimilation system, showed that paralarvae and juveniles aged <90 days remained in their spawning grounds and the chlorophyll a concentration in their habitat had a significant positive correlation with the CPUE. A backward particle tracking experiment also showed that the chlorophyll a concentration in the spawning grounds had a significant positive correlation with the autumn–winter mixed layer depth. Based on these results, we hypothesize that the CPUE interannual variability is caused by variations in the feeding environment of the paralarvae and juveniles, which may be linked to autumn–winter mixed layer depth variations.  相似文献   

5.
陈新军  马金  刘必林  陆化杰  曹杰 《水产学报》2011,35(8):1191-1198
根据2007年7—10月在西北太平洋柔鱼传统作业渔场采集的样本,利用耳石微结构对其渔获群体结构、年龄与生长进行了研究。分析认为,雌性个体胴长为200~395 mm,日龄为123~258 d;雄性个体胴长为200~353 mm,日龄为127~274 d。7、8月渔获样本的优势日龄为151~180 d,9月为181~210 d,10月为211~240 d。孵化日期为2006年12月下旬至2007年6月上旬,其中1—4月为高峰期。雌性个体的胴长绝对生长率平均为(1.175±0.127) mm/d,雄性为(0.952±0.213) mm/d。其胴长、体质量与日龄的关系可分别用线性和指数方程来拟合,雌、雄个体胴长和体质量生长存在显著差异。研究认为,传统作业渔场中大多数渔获属冬春生群,7—10月各月优势日龄组呈现出随月变化一致的趋势,进一步印证了柔鱼轮纹为日周期的结论。推测认为,柔鱼孵化后,从产卵场洄游至索饵场需要4~6个月的时间。  相似文献   

6.
Habitat suitability index (HSI) models were applied to identify the potential habitat distribution of the neon flying squid (Ommastrephes bartramii) off the eastern coast of Japan during winter. We used an ocean reanalysis product, a satellite‐derived dataset, and commercial fisheries data during 2003–2008 to develop the HSI models, and illustrated the characteristics of the ocean environments at the fishing ground of the neon flying squid, focusing on a typical fishing ground formation event in 2006. The estimated HSI fields of the neon flying squid using three‐dimensional (3D) ocean environmental parameters showed a clear relationship between the squid habitat and the edge of a warm core ring south of the Oyashio water; this is considered a key characteristic of fishing ground formation, as noted in Sugimoto and Tameishi (Deep‐Sea Research, 39, 1992 and S183). This result suggests that mixing of the warm and nutrient‐poor Kuroshio water and the cold and nutrient‐rich Oyashio water at the edge of the ring could provide favorable conditions for the foraging of the neon flying squid. The warm water condition in the subsurface layers could be a further advantage to the formation of a stable fishing ground for the neon flying squid. Comparison of the Akaike Information Criteria among a satellite‐data‐based model, a reanalysis‐based model using the same parameters as the satellite‐based model, and a reanalysis‐based model using 3D ocean environmental parameters, showed an apparent improvement in the performance of the reanalysis‐based model using the 3D parameters, reproducing realistic features of the squid fishing ground during the winter of 2006.  相似文献   

7.
基于最大熵模型模拟西北太平洋柔鱼潜在栖息地分布   总被引:2,自引:1,他引:1  
为模拟西北太平洋柔鱼(Ommastrephes bartramii)潜在栖息地分布,分析柔鱼渔场时空变化和环境变化规律。利用2011—2015年中国鱿钓船在西北太平洋海域获得的柔鱼渔业生产数据,结合该海域海洋环境遥感数据,包括海表面温度(sea surface temperature, SST)、叶绿素a (Chlorophyll-a, Chl a)浓度、净初级生产力(net primary productivity, NPP)、混合层深度(mixed layer depth, MLD)及海平面异常(sea level anomaly, SLA),采用最大熵模型对柔鱼潜在栖息地进行模拟,并利用ArcGIS软件对栖息地适宜性进行评价。结果显示,7月柔鱼最适宜区主要分布在39°N~43°N, 150°E~163°E。8月柔鱼最适宜区向东移动,较适宜区向北扩张至46°N。9月柔鱼最适宜区和较适宜区面积向西缩小,主要集中在40°N~46°N, 150°E~160°E。10月最适宜区和较适宜区向南移动,主要分布在40°N~45°N,150°E~165°E。各月影响柔鱼潜在分布的重要环境因子有所差异,7—8月为SST,9月为MLD和SST,10月为NPP和SST。研究表明西北太平洋柔鱼分布受海洋环境因子的影响,时空变化明显,最大熵模型对西北太平洋柔鱼潜在栖息地分布的模拟精度非常高。  相似文献   

8.
In the Northwest Pacific, the squid jigging fisheries targeted the west winter–spring cohort of neon flying squid (Ommastrephes bartramii) from August to November. Total annual catch by the Chinese mainland squid jigging fleet during 2000–2005 ranged from 64,100 to 104,200 t. The unique life history of this squid species makes the use of traditional age- or length-structured models difficult in evaluating the effect of intensive commercial jigging on this stock. We fitted a modified depletion model to the Chinese jigging fisheries data to estimate the squid stock abundance during 2000–2005. Monthly biological data were randomly sampled from the five squid jigging vessels during the fishing seasons. Effects of using different natural mortality rates (M) and three different error assumptions were evaluated in fitting the depletion model. Based on sensitivity analyses, the log-normal error model was found to be preferred for the squid assessment. The assessment results indicated that the initial (pre-fishing season) annual population sizes ranged from 199 to 704 million squid with the M value of 0.03–0.10 during 2000–2005. The proportional escapement (M = 0.03–0.10) for different fishing seasons over the time period of 2000–2005 ranged from 15.3% (in 2000) to 69.9% (in 2001), with an average of 37.18%, which was close to the management target of 40%. Thus, the current fishing mortality of the squid jigging fishery was considered to be sustainable. We inferred its annual maximum allowable catch ranging from 80,000 to 100,000 t. This study suggests that the modified depletion model provides an alternative method for assessing short-lived species such as O. bartramii.  相似文献   

9.
Nine juvenile loggerhead sea turtles tracked during 1997 and 1998 in the central North Pacific by satellite telemetry all travelled westward, against prevailing currents, along two convergent fronts identified by satellite remotely sensed data on sea surface temperature (SST), chlorophyll and geostrophic currents. These fronts are characterized by gradients in sea surface height that produce an eastward geostrophic current, with gradients in surface chlorophyll and SST. Six of the turtles were associated with a front characterized by 17°C SST, surface chlorophyll of about 0.2 mg m–3, and eastward geostrophic current of about 4 cm s–1, while the other three turtles were associated with a front with 20°C SST, surface chlorophyll of about 0.1 mg m–3, and eastward geostrophic flow of about 7 cm s–1. These results appear to explain why incidental catch rates of loggerheads in the Hawaii longline fishery are highest when gear is set at 17°C and 20°C, SST. Further, from the seasonal distribution of longline effort relative to these fronts, it appears that the surface longline fishing ground lies largely between these two fronts during the first quarter and well to the south of the 17°C front, but including the 20°C front, in the second quarter. These findings suggest seasonal or area closures of the longline fishery that could be tested to reduce incidental catches of loggerheads. Finally, these results illustrate the insights which can be achieved by combining data on movement of pelagic animals with concurrent remotely sensed environmental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号