首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Importance of root growth in overcoming planting stress   总被引:6,自引:2,他引:6  
Root growth is critical to the establishment of planted seedlings. Seedlings can undergo stress just after planting if root growth is not sufficient to couple the seedling to available soil water. Stress occurs when a newly planted seedling’s root system can not supply enough water to transpiring needles to maintain a proper water balance and ensure survival. Thus, a newly planted seedling’s ability to overcome planting stress is affected by its root system size and distribution, root–soil contact, and root hydraulic conductivity. This paper describes how factors of root growth and water status of newly planted seedlings are important in overcoming the phenomenon of planting stress which then allows a newly planted seedling to enter the establishment phase of development.  相似文献   

2.
The effect of warm storage (15°C) for 0, 15 or 31 days, applied after cold storage until April, and date of lifting to cold storage on the physiological condition and field performance of two-year-old oak seedlings (Quercus robur L.) was investigated. Assessments before planting included plant moisture status, root and shoot dry weight, root growth potential (RGP), while after planting root growth, shoot growth phenology, shoot and root dry matter accumulation and stem quality were assessed. Warm storage effects were large, but lift date effects were small. Warm storage for 31 days reduced height and diameter growth, stem quality, total biomass, root growth, and reduced stem quality in the field, but 15 days storage had a smaller effect. Warm storage delayed bud break and shoot growth cessation but survival was unaffected. The depletion of food reserves during storage and low moisture availability might have caused shoot dieback leading to the development of poor quality stems. There was evidence that dry weight fraction of both the shoot tip and the taproot provided good information on the quality of the stock before planting. RGP was also a good indicator of quality. Electrolyte leakage readings from fine and taproots were not reliable indicators of plant quality.  相似文献   

3.
Slash pine (Pinus elliottii Engelm.) seedlings were subjected to three wrenching treatments: One root wrenching in early August; Three root wrenchings in early August, September, and October; and No wrenchings. Seedlings were then lifted on five dates between November and February based on the number of chilling hours accumulated. All wrenched seedlings had reduced shoot dry weight, smaller shoot-root ratio, and smaller stem diameter and height. These morphological differences translated into improved survival as well as increased diameter and height growth when measured one and two years after planting. Only seedlings wrenched three times demonstrated improved root fibrosity. Furthermore, only multiple wrenched stock showed greater resistance to drying imposed prior to planting. At the time of lifting, seedlings lifted latest had greater stem diameter, increased root dry weight and number of root tips, and improved shoot-root ratio. However, no survival differences were detected across lifts, and those seedlings lifted earliest demonstrated the best height and diameter growth.This paper is Journal Series No. R00695 of the Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611.  相似文献   

4.
After cold storage, conifer seedlings in British Columbia are tested for field growth potential before planting. We compared three tests of performance potential using container-grown seedlings of Douglas-fir, interior spruce, lodgepole pine, and western larch (14 seedlots total). On several autumn dates, seedlings were lifted and stored at −2°C. The following spring we tested stored seedlings for root growth potential (RGP), chlorophyll fluorescence (CF), and stomatal conductance (Gs), and then planted seedlings in nursery beds. We assessed survival and shoot dry weight (SDW) after one growing season. Performance test results were significantly correlated with each other (r ≥ 0.47) but showed different relationships with field performance, which varied with lift date. The best performance predictor was the sum of CF and RGP (R 2 = 0.79 for 78 seedlot by lift-date combinations), which minimized the risk of planting poor seedlings and not planting good seedlings. A sum of 83 for CF (Fv/Fm %) and RGP (new roots >1 cm) provided a threshold above which survival and growth were good. For evergreen conifers, Gs was a good performance predictor, but required extra time to measure leaf area. We recommend a combination of CF and RGP to assess vigor of shoot and root systems before planting. Wolfgang D. Binder––Scientist Emeritus.  相似文献   

5.
Second-year Norway spruce seedlings [Picea abies (L.) Karst.] grown in containers were divided into three fertilization levels in August [5, 15 and 25 mg nitrogen (N) seedling?1]. The resulting foliar concentrations of N were 11.0, 13.1 and 15.8 g kg?1, respectively. Seedling height (mean 26.0 cm) did not differ among treatments. The next spring, the seedlings were tested in two experiments. (1) The seedlings were transplanted into pots containing sandy soil in the greenhouse, where they were fertilized with either pure water or nutrient solution (22 mg N l?1). (2) The outplanting performance of the autumn-fertilized seedlings was tested on a sandy field. In the greenhouse experiment, the autumn fertilization level affected height growth and root egress of the seedlings significantly, but less than fertilization with a nutrient solution after planting. In the field experiment, during the first season after transplanting shoot growth of the seedlings increased with the level of autumn fertilization. After the second and third seasons, the seedling stem volume was highest with the highest level of autumn fertilization. These results suggest that, by improving the preplanting nutrient status of seedlings, the growth of shoot, stem diameter and root biomass can be enhanced after planting, especially on nutrient-poor soils. However, heavier autumn fertilization than that used here may yield a greater and more persistent increment in growth.  相似文献   

6.
Successful forest restoration requires planting quality seedlings with optimal growth potential. Thus, nurseries need to produce seedlings with plant attributes that favor the best chance of successful establishment once they are field planted. From the mid-twentieth century on, research foresters have critically examined plant attributes that confer improved seedling growth under various restoration site conditions. This review examines the value of commonly measured seedling quality attributes (i.e., height, diameter, root mass, shoot-to-root ratio, drought resistance, freezing tolerance, nutrient status, root growth potential, and root electrolyte leakage) that have been recognized as important in explaining why seedlings with improved attributes have better growth after planting. Seedlings with plant attributes that fall within the appropriate range of values can increase the speed with which they overcome planting stress, initiate growth, and become “coupled” to the forest restoration site, thereby ensuring successful seedling establishment. Although planting high quality seedlings does not guarantee successful seedling establishment, it increases chances for successful establishment and growth.  相似文献   

7.

Sites in need of restoration typically have one or more environmental factors that limit seedling establishment. Identifying ecophysiological responses to environmental stressors can provide important insights into mitigating measures that would allow seedlings to overcome such constraints to survival. Koa (Acacia koa A. Gray) is a nitrogen-fixing tree species endemic to Hawai?i that is highly valued in restoring degraded forest ecosystems, which are often limited in available water and phosphorus. This study examined how koa seedlings respond to conditions of reduced water (65 W) and no phosphorus (0P). After 17 weeks, seedlings subjected to 65 W or 0P accumulated less biomass, smaller root-collar diameters, and lower nitrogen and phosphorus contents. Combined reductions in water and P resulted in seedlings with increased root to shoot dry biomass and shorter shoots. Seedlings subjected to 65 W also had lower instantaneous rates of CO2 assimilation, but higher instantaneous water-use efficiencies following irrigation, suggesting that koa responds to water deficits by decreasing water loss via reduced stomatal conductance. Seedlings subjected to 0P had similar rates of CO2 assimilation relative to those grown with adequate P, suggesting that koa is able to employ strategies to avoid physiological impairment from conditions of inadequate P. Future research should assess whether subjecting koa seedlings to reduced water before planting on water-limited sites cues increased drought resistance and whether uptake and storage of P by seedlings in the nursery better supports growth following outplanting, particularly on sites with anticipated low plant-available water.

  相似文献   

8.
We conducted field and pot experiments to investigate the effects of brassinolide on 1-year-old Robinia pseudoacacia L. seedlings. In the field experiment, seedling roots were soaked in brassinolide solutions containing 0–0.4 mg/l pure brassinolide before planting. Survival and growth of the seedlings were determined 8 months later. The results showed that soaking roots in brassinolide prior to planting significantly increased the survival and growth of seedlings. The best results were in the 0.2 mg/l brassinolide treatment. In the pot experiment, roots were soaked in 0–0.4 mg/l brassinolide before planting followed by a foliar application of brassinolide when the seedlings leafed out. After the seedlings were established, the soil water content in the pots was regulated to simulate drought conditions and various physiological parameters were measured. The results showed that treatment with 0.2 mg/l brassinolide decreased the transpiration rate, stomatal conductance and malondialdehyde (MDA) content of seedlings growing under moderate or severe water stress compared to untreated seedlings. Leaf water content, predawn water potential, soluble sugar content, free proline content, and superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities were all greater in water-stressed seedlings in the 0.2 mg/l brassinolide treatment compared to the control. The results indicate that the application of brassinolide can ameliorate the effects of water stress and enhance drought resistance of Robinia seedlings. Treatment of seedlings with brassinolide may be a useful management tool for afforestation projects in arid and semiarid areas.  相似文献   

9.
Growth and drought resistance of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco), lodgepole pine (Pinus contorta (Loud.)), and white spruce (Picea glauca (Moench) Voss) container seedlings, treated with paclobutrazol at different times and with concentrations up to 2.8 mM, were examined over their second growing season. In two experiments all three species were planted in sand beds in the open and subjected to different levels of moisture stress. Paclobutrazol drenches of 0.3 and 0.6 mM made twice in October, prior to planting the following March, reduced dry weight growth the least, or increased growth in lodgepole pine under dry conditions. Paclobutrazol generally decreased survival under drought stress, particularly if treatment was applied immediately before planting, rather than the previous October. In a third experiment paclobutrazol treated white spruce were grown, in 3.1 L capacity containers filled with peat and vermiculite, at different moisture supply levels and temperatures in growth chambers. Water use efficiency (WUE) was calculated from water use and increases in dry weight of these seedlings over 83 days. Paclobutrazol treatment increased WUE most strongly over the first 31 day measurement period, under all temperature and moisture conditions, but the effect was negligible during the last 24 days of the experiment, and height growth was reduced by treatment. Mineral nutrient concentrations were affected by paclobutrazol, and it was concluded that these and other responsed depended partly on seedling condition at the time of treatment.  相似文献   

10.
Containerized coastal Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings were grown with conventional soluble fertilizer and supplemented with one of four slow-release fertilizers (SRF treatments) or unsupplemented (control treatment). Seedlings were outplanted to two sites in 1998. At the time of outplanting, SRF incorporated into the growing medium resulted in larger seedlings with higher foliar nutrient concentrations as compared to conventionally fertilized seedlings. After four growing seasons, SRF-amended seedlings at both sites had significantly greater height, basal stem diameter, and stem volume, with increases up to 19, 21, and 73%, respectively, as compared to conventionally fertilized seedlings. Additionally, three stock sizes were compared at one of the sites. Increasing stock size resulted in increased growth during the first two seasons, enabling larger stock to maintain their size advantage. Seedling responses to SRF are attributed to larger initial size, increased internal nutrient reserves at planting, and continued fertilization after planting.  相似文献   

11.
Detailed root and shoot development of bareroot and container Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedling stocktypes were compared during the first growing season after outplanting. The study was installed in raised beds with ideal environmental conditions and at a field reforestation site. Survival at both sites was 98% and did not differ between stocktypes. Seedlings were excavated in spring (5, 8, 12, and 16 weeks after planting) and in fall (35, 40, and 45 weeks after planting). In spring, container seedlings had more numbers of new roots and greater new root and shoot biomass than bareroot seedlings at both sites. In fall, bareroot seedlings consistently averaged more new root growth (though nonsignificant) than container seedlings suggesting that stocktype differences may not continue long-term. Container seedlings had significantly greater water percent than bareroot seedlings at the field site (all sample dates) and the raised bed site (weeks 5, 8, and 40 only). Regardless of environmental conditions or season, seedlings at both sites maintained water percent between 60 and 70% of fresh weight. Seedlings grown in the raised beds had much greater growth than those grown in the field. However, relative growth patterns for the two stocktypes were very similar on each site. The data generated establish baseline differences between stocktypes for root initiation, growth, and allometry during the first year after planting. Challenges associated with root development research are discussed.  相似文献   

12.
Alternative methods of protection are required against feeding by the large pine weevil (Hylobius abietis) on the bark of conifer seedlings. Silicon (Si) has been shown to enhance the resistance of plants to insect herbivores. This study investigated the effects of low doses of Si-rich soil amendments on growth, mortality and bark feeding damage of Sitka spruce (Picea sitchensis) seedlings. Two-year old seedlings were grown, individually, in soil taken from a tree nursery treated with coal ash, peat ash, rice husk ash, slag, sodium metasilicate or a commercially available Si fertiliser (Pro-Tekt) and planted out on two reforestation sites in Ireland. Seedlings grew well (about 20% growth in terms of height, 66% in root collar diameter, after two growing seasons), and Si-rich amendments did not have a significant effect on growth or mortality. Bark feeding damage on Si-treated seedlings did not vary significantly from control seedlings. Bark Si concentrations were not significantly larger in treated seedlings than in control seedlings, but control seedlings already had comparatively high bark Si concentrations (560?mg?kg?1 dry tissue). In conclusion, Sitka spruce seedlings grown in the presence of Si-rich soil amendments prior to planting did not show greater resistance to weevil feeding under the present conditions.  相似文献   

13.
Heiskanen  Juha  Rikala  Risto 《New Forests》1998,16(1):27-42
Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth.) seedlings were grown in containers filled with growth media based on medium-textured sphagnum peat, coarse perlite and fine sand. The seedlings were then planted into fine and coarse sandy soils in 2.2 l pots, which were subjected to two water-content treatments (only one for birch). After the seedlings had grown five weeks in a greenhouse, rooting into the surrounding soil and shoot growth were measured. Addition of perlite and sand to peat medium slightly affected rooting; thus suggesting minor effects on seedling establishment. However, nitrogen concentration of the seedlings varied between growth media and correlated positively with rooting into the soil. The particle size and water content of the soil affected considerably rooting of the seedlings. Seedling height at the time of planting did not affect rooting or shoot growth. The fact that the fewest out-grown roots occurred in the dry fine sandy soil, suggests that dry soil together with high strength and resistance to root penetration reduce rooting and water uptake by container seedlings most and may thus cause water and nutrient stresses to seedlings after outplanting.  相似文献   

14.
Western red cedar (Thuja plicata Donn) seedlings were grown in a greenhouse and subjected to six nursery cultural treatments (long-day wet (LDW), long-day moderate (LDM), long-day dry (LDD), short-day wet (SDW), short-day moderate (SDM), and short-day dry (SDD)) during mid-summer. Seedling attributes were measured before fall and spring planting.Short-day and moisture stress treatments reduced shoot but not root growth, resulting in reduced shoot to root ratios. Fall tested LDW seedlings had a higher osmotic potential at saturation and turgor loss point than other treatments. Fall tested short-day seedlings had lower resistance to plant water movement. The LDW seedlings had the greatest new root growth in fall testing, while one of the lowest in spring testing. In the fall, LDW seedlings had the greatest net photosynthesis (Pn) at 25 °C root temperature, with all treatments having a similar decline in Pn as root temperatures decreased to 1 °C. In the spring, all treatments had a similar decline in Pn with decreasing predawn shoot water potential. Moisture stress and short-day nursery cultural treatments applied in mid-summer will not harden western red cedar seedlings for all potential field conditions.Spring, compared to fall, tested seedlings had two times the shoot and three times the root dry weight. Spring tested seedlings had a lower osmotic potential, maximum modulus of elasticity, relative water content at turgor loss point and greater dry weight fraction. Fall, compared to spring, tested seedlings had lower resistance to plant water movement and greater cuticular transpiration. In general, fall tested seedlings had more root growth than spring tested seedlings. Spring, compared to fall, tested seedlings generally had greater stress resistance.  相似文献   

15.
A two-year field trial was conducted to determine the growth response, and root emergence pattern of interior lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) seedlings in response to container type and forest floor removal. Seedlings were grown in StyroblocksTM, CopperblocksTM, or AirBlocksTM, and were planted directly into the undisturbed forest floor or into manually prepared planting spots where the forest floor had been scraped away to expose the mineral soil. Seedlings planted into scalped planting spots exhibited marginally but significantly (7%) greater above-ground growth rates (seedling stem volume); whereas seedlings planted into the forest floor produced significantly more (11%) new roots. There were no differences in above- or below-ground biomass. Seedlings grown in CopperblockTM containers produced a higher proportion of roots near the top of the plug when tested at lifting, however this pattern was not observed in the field. Given that scalping is more costly than forest floor planting, and that the increased shoot growth was relatively small, we recommend that forest floor planting be considered as an alternative to manual spot scalping for sites, such as the site tested here: those with cold, but well-drained soils and where competition from other plants is not a serious problem.  相似文献   

16.
The effect of herbaceous vegetation on growth and survival was assessed in planted eucalyptus saplings grown under four levels of weed cover. Seedlings of Eucalyptus globulus subsp. maidenii were planted with 0 (W0), 25 (W25), 50 (W50) and 100% (W100) weed cover. Weed species composition and aboveground biomass was determined. Soil water content was evaluated by the gravimetric method. Seedling leaf area, diameter and height were evaluated at planting and during the 3 months following establishment. Tree height, diameter and stem volume was estimated at 12, 24 and 36 months. First year tree survival was recorded. The ratio of cumulative stem growth under W100: cumulative stem growth under W0 was used to measure competitive performance. Regression analysis was used to determine competition thresholds. Weeds seriously threaten the growth of E. globulus subsp. maidenii. Early negative effects of competition on growth were evident as from the second month after establishment, and both seedlings and 1-year-old saplings were more affected than 2- and 3-year-old ones. A “minimum-response threshold” was determined near 500 kg/ha (corresponding to W25 cover). No clear effect was found between sapling survival and weed biomass.  相似文献   

17.
South  David B.  Rakestraw  James L.  Lowerts  George A. 《New Forests》2001,22(1-2):97-110
A seedling size/intensive management study with Pinustaeda L. was established in 1993 on two sites in the CoastalPlain of Georgia and South Carolina. Each site contained a 2 × 2split-plot study involving two seedling sizes and two levels ofestablishment intensity. Ideotype ``B' seedlings averaged 5.0 mmin diameter (at the root collar) and were 43 cm tall. Ideotype``A' seedlings averaged 8.5 mm in diameter and were 50 cm tall. ``Standard' establishment practices included herbicides(hexazinone and sulfometuron) and fertilizer (DAP) appliedduring the first year. The ``intensive' management involved twoherbicide applications during the first year and two during thesecond year, fertilizer during the first and third years, andinsecticide applications during the first two years (for controlof tip moth, Rhyacionia frustrana Comstock).Intensive management did not affect survival but planting largerseedlings increased survival slightly on one site. However,treatments affected early growth at both sites. On both sites,fourth-year plot-volumes were increased with greaterestablishment intensity and larger seedlings but there was nointeraction between stock size and establishment intensity. Early growth gains were greatest when both intensive managementand larger seedlings were combined. Depending on site, thiscombination resulted in 21% to 51% more volume (at age 4) thanthe next best treatment (standard seedlings with intensivemanagement).  相似文献   

18.
First-year survival of December-planted loblolly pine seedlings sampled from 20 nurseries ranged from 36 to 86%. Various characteristics of the seedlings including root growth potential (RGP), shoot/root ratio, root weight and stem length were correlated with survival. A regression model using the number of new roots >/= 0.5 cm and the shoot/root ratio accounted for 80% of the variation in first-year survival. Alone, the number of new roots >/= 0.5 cm accounted for 76% of the variation in survival. Foliar nutrients were not correlated with survival. Seedlings with a high proportion of quiescent buds at planting had a higher RGP and better survival than seedlings with dormant (endodormant) buds. The data suggest that seedlings with dormant buds should not be planted on sites where rapid new root growth is needed for survival.  相似文献   

19.
D. S. Thomas 《New Forests》2009,38(3):245-259
Forestry requires low mortality of transplanted seedlings. Mortality shortly after planting is often associated with inadequate hydration of transplants. Seedlings can be hardened to the drought conditions they may experience after transplanting by exposing them to controlled drought conditions in the nursery. Eucalyptus pilularis Sm. seedlings were drought hardened by providing nil (severe treatment) or half (mild treatment) the daily irrigation routinely received (control treatment) for up to two non-consecutive days per week during the last 4 weeks of growth in the nursery. Drought hardening reduced stem diameter, seedling leaf area, leaf area per root biomass and seedling quality measured by the Dickson quality index, but increased root:shoot ratio. Hardened seedlings had lower stomatal conductance and leaf water potential on the days they received less irrigation that the control treatment. Hardened seedlings had greater stomatal conductance and were less water stressed than seedlings experiencing drought for the first time indicating hardened seedlings had adjusted physiologically to drought. Survival after transplanting in the controlled drought environment in a glasshouse was enhanced by the hardening treatments. Non hardened seedlings that had had their upper leaves manually removed immediately prior to transplanting to reduce leaf area (top-clipped) had similar survival to hardened seedlings. Stomatal conductance and leaf water potential after transplanting were higher in hardened and top-clipped seedlings than unhardened control seedlings or vegetative cuttings. Survival in the field trial was over 95% for all treatments, possibly as rain fell within 4 days of planting and follow-up rain occurred in the subsequent weeks. Neither the hardened or top-clipped seedlings planted in the field trial had reduced growth, increased propensity to form double leaders or worse stem form than control seedlings when measured at age 3 years.  相似文献   

20.
This study was conducted on Alnus japonica seedlings subjected to flooding for 2, 4, and 6 weeks to examine responses in growth, morphology, and photosynthesis to different periods of flooding. Seedlings subjected to flooding for 2 and 4 weeks were drained after flooding then watered daily. Increases in biomass of leaves, roots, and whole plants were less for 6-week-flooded seedlings. Rate of photosynthesis and stomatal conductance of flooded seedlings decreased within 2 weeks. For 2-week-flooded seedlings recovery from reduced stomatal conductance and recovery of photosynthetic activity occurred after drainage. For the 6-week-flooded seedlings stomatal conductance recovered by the end of the experiment. Adventitious root formation by the 4 and 6-week-flooded seedlings was observed from the third week of flooding. These results suggest that recovery of reduced function in leaves may progress with development of adventitious roots during the period of flooding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号