首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Effects of increasing level of field pea (variety: Profi) on intake, digestion, microbial efficiency, and ruminal fermentation were evaluated in beef steers fed growing diets. Four ruminally and duodenally cannulated crossbred beef steers (367+/-48 kg initial BW) were used in a 4 x 4 Latin square. The control diet consisted of 50% corn, 23% corn silage, 23% alfalfa hay, and 4% supplement (DM basis). Treatments were field pea replacing corn at 0, 33, 67, or 100%. Diets were formulated to contain a minimum of 12% CP, 0.62% Ca, 0.3% P, and 0.8% K (DM basis). Each period was 14 d long. Steers were adapted to the diets for 9 d. On d 10 to 14, intakes were measured. Field pea was incubated in situ, beginning on d 10, for 0, 2, 4, 8, 12, 16, 24, 36, 48, 72, and 96 h. Bags were inserted in reverse order, and all bags were removed at 0 h. Ruminal fluid was collected and pH recorded at -2, 0, 2, 4, 6, 8, 10, and 12 h after feeding on d 13. Duodenal samples were taken for three consecutive days beginning on d 10 in a manner that allowed for a collection to take place every other hour over a 24-h period. Linear, quadratic, and cubic contrasts were used to compare treatments. There were no differences in DMI (12.46 kg/d, 3.16% BW; P > 0.46). Ruminal dry matter fill (P = 0.02) and mean ruminal pH (P = 0.009) decreased linearly with increasing field pea level. Ruminal ammonia-N (P < 0.001) and total VFA concentrations (P = 0.01) increased linearly with increasing field pea level. Total-tract disappearance of OM (P = 0.03), N (P = 0.01), NDF (P = 0.02), and ADF (P = 0.05) increased linearly with an increasing field pea level. There were no differences in total-tract disappearance of starch (P = 0.35). True ruminal N disappearance increased linearly (P < 0.001) with increasing field pea level. There were no differences in ruminal disappearance of OM (P = 0.79), starch (P = 0.77), NDF (P = 0.21), or ADF (P = 0.77). Treatment did not affect microbial efficiency (P = 0.27). Field pea is a highly digestible, nutrient-dense legume grain that ferments rapidly in the rumen. Because of their relatively high level of protein, including field peas in growing diets will decrease the need for protein supplementation. Based on these data, it seems that field pea is a suitable substitute for corn in growing diets.  相似文献   

2.
Four ruminally and duodenally cannulated steers (703.4 +/- 41 kg initial BW) were used in a 4 x 4 Latin square to evaluate the effects of field pea inclusion level on intake and site of digestion in beef steers fed medium-concentrate diets. Steers were offered feed ad libitum at 0700 and 1900 daily and were allowed free access to water. Diets consisted of 45% grass hay and 55% by-products based concentrate mixture and were formulated to contain a minimum of 12% CP (DM basis). Treatments consisted of (DM basis) 1) control, no pea; 2) 15% pea; 3) 30% pea; and 4) 45% pea in the total diet, with pea replacing wheat middlings, soybean hulls, and barley malt sprouts in the concentrate mixture. Experimental periods consisted of a 9-d dietary adjustment period followed by a 5-d collection period. Grass hay was incubated in situ, beginning on d 10, for 0, 2, 5, 9, 14, 24, 36, 72, and 98 h; and field pea and soybean hulls for 0, 2, 5, 9, 14, 24, 36, 48, and 72 h. Total DMI (15.0, 13.5, 14.1, 13.5 +/- 0.65 kg/d) and OM intake (13.4, 12.0, 12.6, 12.0 +/- 0.58 kg/d) decreased linearly (P = 0.10) with field pea inclusion. Apparent ruminal (17.5, 12.0, 0.6, 6.5 +/- 4.31%) and true ruminal CP digestibility (53.5, 48.7, 37.8, 46.2 +/- 3.83) decreased linearly (P < 0.10) with increasing field pea. Neutral detergent fiber intake (8.9, 7.9, 7.8, 7.0 +/- 0.3 kg/d) and fecal NDF output (3.1, 2.9, 2.6, 2.3 +/- 0.2 k/d) decreased linearly (P < 0.03) with increasing field pea. No effects were observed for microbial efficiency or total-tract digestibility of OM, CP, NDF, and ADF (P > or = 0.16). In situ DM and NDF disappearance rates of grass hay and soybean hulls decreased linearly (P < 0.05) with increasing field pea. Field pea in situ DM disappearance rate responded quadratically (P < 0.01; 5.9, 8.4, 5.5, and 4.9 +/- 0.52%/h, for 0, 15, 30, and 45% field pea level, respectively). Rate of in situ CP disappearance of grass hay decreased linearly (P < 0.01) with increasing field pea level. Field pea is a suitable ingredient for beef cattle consuming medium-concentrate diets, and the inclusion of up to 45% pea in by-products-based medium-concentrate growing diets decreased DMI, increased dietary UIP, and did not alter OM, NDF, or ADF digestibility.  相似文献   

3.
Four ruminally and duodenally cannulated crossbred beef steers (397+/-55 kg initial BW) were used in a 4 x 4 Latin square to evaluate the effects of increasing level of field pea supplementation on intake, digestion, microbial efficiency, ruminal fermentation, and in situ disappearance in steers fed moderate-quality (8.0% CP, DM basis) grass hay. Basal diets, offered ad libitum twice daily, consisted of chopped (15.2-cm screen) grass hay. Supplements were 0, 0.81, 1.62, and 2.43 kg (DM basis) per steer daily of rolled field pea (23.4% CP, DM basis) offered in equal proportions twice daily. Steers were adapted to diets on d 1 to 9; on d 10 to 14, DMI were measured. Field pea and grass hay were incubated in situ, beginning on d 10, for 0, 2, 4, 8, 12, 16, 24, 36, 48, 72, and 96 h. Ruminal fluid was collected and pH recorded at -2, 0, 2, 4, 6, 8, 10, and 12 h after feeding on d 13. Duodenal samples were taken for three consecutive days beginning on d 10 in a manner that allowed for a collection to take place every other hour over a 24-h period. Linear, quadratic, and cubic contrasts were used to evaluate the effects of increasing field pea level. Total DMI and OMI increased quadratically (P = 0.09), whereas forage DMI decreased quadratically (P = 0.09) with increasing field pea supplementation. There was a cubic effect (P < 0.001) for ruminal pH. Ruminal (P = 0.02) and apparent total-tract (P = 0.09) NDF disappearance decreased linearly with increasing field pea supplementation. Total ruminal VFA concentrations responded cubically (P = 0.008). Bacterial N flow (P = 0.002) and true ruminal N disappearance (P = 0.003) increased linearly, and apparent total-tract N disappearance increased quadratically (P = 0.09) with increasing field pea supplementation. No treatment effects were observed for ruminal DM fill (P = 0.82), true ruminal OM disappearance (P = 0.38), apparent intestinal OM digestion (P = 0.50), ruminal ADF disappearance (P = 0.17), apparent total-tract ADF disappearance (P = 0.35), or in situ DM disappearance of forage (P = 0.33). Because of effects on forage intake and ruminal pH, field peas seem to act like cereal grain supplements when used as supplements for forage-based diets. Supplementing field peas seems to effectively increase OM and N intakes of moderate-quality grass hay diets.  相似文献   

4.
Whole field peas were fed at 0, 10, 20, and 30% of DM to 139 yearling steers (British cross; 409 ± 31 kg of initial BW) for a 119-d finishing period. Carcass data and Choice grade strip loins (n = 98) were collected from a commercial abattoir in Lexington, Nebraska. Consumer sensory and Warner-Bratzler shear force analyses were performed on 2.5-cm strip steaks. No differences (P ≥ 0.17) were observed in final BW, ADG, DMI, and G:F of steers. Likewise, no differences (P ≥ 0.23) were observed for HCW, LM area, fat thickness at the 12th rib, yield grade, and marbling scores. However, KPH responded quadratically to increasing dietary amount of field peas (P = 0.02). Regarding the sensorial analysis, feeding peas linearly increased subjective tenderness (P < 0.01) and led to a quadratic response of overall like ratings (P = 0.01) and flavor like ratings (P = 0.12). Feeding peas did not alter (P ≥ 0.64) juiciness, but decreased shear force values linearly when quantities were increased (P = 0.02). These data suggest that feeding peas does not affect steer performance or carcass characteristics differently from dry-rolled corn, but does improve objective and subjective tenderness, overall desirability, and flavor of beef. Field peas could be fed to cattle and give positive attributes to the quality of the meat up to 30% inclusion in the diet.  相似文献   

5.
Two experiments were conducted to evaluate the use of pulse grains in receiving diets for cattle. In Exp. 1, 8 Holstein (615 +/- 97 kg of initial BW) and 8 Angus-crossbred steers (403 +/- 73 kg of initial BW) fitted with ruminal and duodenal cannulas were blocked by breed and used in a randomized complete block design to assess the effects of pulse grain inclusion in receiving diets on intake, ruminal fermentation, and site of digestion. Experiment 2 was a 39-d feedlot receiving trial in which 176 mixed-breed steers (254 +/- 19 kg of initial BW) were used in a randomized complete block design to determine the effects of pulse grains on DMI, ADG, and G:F in newly received feedlot cattle. In both studies, pulse grains (field peas, lentils, or chickpea) replaced corn and canola meal as the grain component in diets fed as a total mixed ration. Treatments included 1) corn and canola meal (control); 2) field pea; 3) lentil; and 4) chickpea. Preplanned orthogonal contrasts were conducted between control vs. chickpea, control vs. field pea, and control vs. lentil. In Exp. 1, there were no differences among treatments for DMI (11.63 kg/d, 2.32% of BW daily, P = 0.63) or OM intake (P = 0.63). No treatment effects for apparent ruminal (P = 0.10) and total tract OM digestibilities (P = 0.40) were detected when pulse grains replaced corn and canola meal. Crude protein intake (P = 0.78), microbial CP flow (P = 0.46), total tract CP digestibility (P = 0.45), and microbial efficiency (P = 0.18) were also not influenced by treatment. Total-tract ADF (P = 0.004) and NDF (P = 0.04) digestibilities were greater with field pea vs. control. Total VFA concentrations were lower for field pea (P = 0.009) and lentil (P < 0.001) compared with control. Chickpea, field pea, and lentil had lower (P < or = 0.03) acetate molar proportion than control. Ruminal pH (P = 0.18) and NH3 (P = 0.14) were not different among treatments. In Exp. 2, calves fed chickpea, field pea, and lentil had greater overall DMI (7.59 vs. 6.98 kg/d; P < or = 0.07) and final BW (332 vs. 323 kg; P < or = 0.04), whereas chickpea and lentil had greater ADG (1.90 vs. 1.71 kg/d; P < or = 0.04) than control. Gain efficiency (P = 0.18) did not differ among treatments. Steers fed pulse grains had similar CP and OM digestibilities compared with a combination of corn and canola meal in receiving diets. Pulse grains are a viable alternative for replacement of protein supplements in receiving diets for beef cattle.  相似文献   

6.
Three trials were conducted to evaluate poultry manure as a CP and mineral supplement in high concentrate diets limit-fed to gestating and lactating beef cows and heifers. Trial 1 used 67 pregnant Simmental x Angus beef cows (BW, 640 ± 6 kg). During this 126-d trial, no differences (P>0.10) in BW changes or body condition scores (BCS) were observed between cows provided supplemental CP and minerals from either poultry manure or a soybean meal-based protein and mineral supplement. Feed costs per day were lower for cows fed diets supplemented with poultry manure ($0.82) than for those fed diets supplemented with the soybean meal-based protein and mineral supplement ($1.11) and were much lower than those for cows fed an all hay diet offered for ad libitum intake ($1.46). In Trial 2, 26 pregnant Simmental x Angus beef heifers (BW, 503 ± 11 kg) were used to determine the efficacy of poultry manure as a source of energy, protein, and minerals. No differences (P>0.10) in performance were observed between heifers consuming a low poultry manure diet (4.6 kg/d corn and 1.1 kg/d poultry manure) or a high poultry manure diet (3.1 kg/d corn and 3.2 kg/d poultry manure). Feed costs per day were lower for heifers on the high poultry manure treatment ($0.61 vs $0.73 for high and low poultry manure treatments, respectively). Trial 3 was conducted with 61 beef cows and 23 beef heifers in late gestation. Animals consuming the poultry manure-supplemented, corn-based diet lost more weight during both the gestation (P<0.10) and lactation periods (P<0.05) than those fed the soybean meal-based protein and mineral supplement. Overall BCS change was similar among treatments (P=0.31). Feed costs per day were lower for cows fed supplemental poultry manure ($0.82) than for those fed the soybean meal-based protein and mineral supplement ($1.11). Poultry manure was a more economical source of supplemental CP and minerals than a soybean meal-based protein and mineral supplement when fed to meet nutrient needs of cows that were limit-fed a corn-based diet. Effects on cow performance were minimal.  相似文献   

7.
Three experiments were conducted to evaluate influences of supplemental alfalfa quality on intake and use of low-quality meadow grass roughages (MG) by beef cattle. In Exp. 1, 15 steers (250 kg) were assigned to three treatments: 1) MG (5.2% CP), no supplement; 2) MG plus high-quality alfalfa (18.8% CP); and 3) MG plus low-quality alfalfa (15.2% CP). High- and low-quality alfalfa supplements were fed at .45 and .55% BW, respectively. Total DMI was greater (P < .01) for alfalfa-supplemented steers than for MG. Likewise, intake of digestible DM, DM digestibility (DMD), and ruminal ammonia level were greater (P < .01) for supplemented steers. In Exp. 2, 96 pregnant Hereford x Simmental cows (537 kg; body condition [BC] score 4.86) were assigned to the same treatments as in Exp. 1. For d 0 to 42, cows grazed on 19.1 ha of stockpiled MG (4,539 kg/ha; 6.8% CP), whereas, on d 43 to 84, cows received MG hay (5.2% CP). Supplemented cows gained more BW (P < .01), BC score (P < .01), and had heavier calf birth weight (P < .01) than nonsupplemented cows. However, there were no treatment effects (P > .10) on cow cyclicity, pregnancy rate, or calving interval. In Exp. 3, 90 pregnant Angus x Hereford cows (475 kg; BC score 4.59) were assigned to three treatments: 16.1%, 17.8% or 20.0% CP alfalfa supplement, with levels of .63, .55, and .50% of BW, respectively. Weight gain and BC score for the 84-d study displayed a quadratic response (P < .10), yet represented only 7 kg BW and .2 units of BC score. In conclusion, alfalfa hay supplementation was effective in increasing DMI and digestibility. However, alfalfa hay quality did not dramatically affect BW, BC score, and(or) calf birth weight, when fed on an isonitrogenous basis.  相似文献   

8.
Two experiments were conducted to evaluate the impacts of increasing levels of supplemental soybean meal (SBM) on intake, digestion, and performance of beef cattle consuming low-quality prairie forage. In Exp. 1, ruminally fistulated beef steers (n = 20; 369 kg) were assigned to one of five treatments: control (forage only) and .08, .16, .33, and .50% BW/d of supplemental SBM (DM basis). Prairie hay (5.3% CP; 49% DIP) was offered for ad libitum consumption. Forage OM intake (FOMI) and total OM intake (TOMI) were increased (cubic, P = .01) by level of supplemental SBM, but FOMI reached a plateau when the daily level of SBM supplementation reached .16% BW. The concomitant rises in TOMI and OM digestibility (quadratic, P = .02) resulted in an increase (cubic, P = .03) in total digestible OM intake (TDOMI). In Exp. 2, spring-calving Hereford x Angus cows (n = 120; BW = 518 kg; body condition [BC] = 5.3) grazing low-quality, tall-grass-prairie forage were assigned to one of three pastures and one of eight treatments. The supplemental SBM (DM basis) was fed at .08, .12, .16, .20, .24, .32, .40, and .48% BW/d from December 2, 1996, until February 10, 1997 (beginning of the calving season). Performance seemed to reach a plateau when cows received SBM at approximately .30% BW/d. Below this level, cows lost approximately .5 unit of BC for every .1% BW decrease in the amount of supplemental SBM fed. Providing supplemental SBM is an effective means of improving forage intake, digestion, and performance of beef cattle consuming low-quality forages.  相似文献   

9.
Three experiments were conducted to compare soybean meal/sorghum grain (SBM/SG), alfalfa hay or dehydrated alfalfa pellets (DEHY) as supplemental protein sources for beef cattle grazing dormant range forage. In Exp. 1 (35-d digestion study), 16 ruminally cannulated steers were stratified by weight (average BW 259 kg) and assigned randomly within stratification to: 1) control, no supplement; 2) SBM/SG (25% CP) fed at .48% BW; 3) alfalfa hay (17% CP) fed at .70% BW; or 4) DEHY (17.4% CP) fed at .67% BW. Steers receiving protein supplements displayed at least a twofold increase in forage intake (P less than .10). In addition, steers supplemented with DEHY consumed approximately 15% more forage (P less than .10) than SBM/SG- or alfalfa hay-supplemented steers. Digestible DM intake (kg/d), however, was similar between alfalfa hay- and DEHY-supplemented steers and 20% greater (P less than .10) than for SBM/SG-supplemented steers. In Exp. 2, 82 mature, nonlactating Hereford x Angus cows (average BW 489 kg) were assigned randomly to SBM/SG, alfalfa hay or DEHY supplement treatments, which were replicated in three pastures. Cows supplemented with DEHY gained more weight (P less than .05) during the first 84 d of supplementation and displayed the least amount of weight loss at calving (d 127; P less than .05) and just prior to breeding (P less than .10). In contrast, calving interval (361 d) and pregnancy rate (94%) were unaffected (P greater than .10) by dam's previous supplemental treatment. In Exp. 3, one block (pasture) of cows from Exp. 2 was selected at random and grazing behavior was monitored during week-long periods in January and February. A treatment X time interaction (P less than .05) occurred for total time spent grazing; treatments did not differ in January, but cows supplemented with alfalfa hay spent less time grazing in the February grazing period. In conclusion, DEHY and alfalfa hay appear to be at least as effective as SBM/SG as a supplemental protein source for pregnant grazing cows when supplements are fed on an equal CP and ME basis.  相似文献   

10.
A 2 x 2 factorial study evaluated effects of cow wintering system and last trimester CP supplementation on performance of beef cows and steer progeny over a 3-yr period. Pregnant composite cows (Red Angus x Simmental) grazed winter range (WR; n = 4/yr) or corn residue (CR; n = 4/yr) during winter and within grazing treatment received 0.45 kg/d (DM) 28% CP cubes (PS; n = 4/yr) or no supplement (NS; n = 4/yr). Offspring steer calves entered the feedlot 14 d postweaning and were slaughtered 222 d later. Precalving BW was greater (P = 0.02) for PS than NS cows grazing WR, whereas precalving BCS was greater (P < 0.001) for cows grazing CR compared with WR. Calf birth BW was greater (P = 0.02) for CR than WR and tended to be greater (P = 0.11) for PS than NS cows. Prebreeding BW and BCS were greater (P 0.32) by PS. Calf weaning BW was less (P = 0.01) for calves from NS cows grazing WR compared with all other treatments. Pregnancy rate was unaffected by treatment (P > 0.39). Steer ADG, 12th-rib fat, yield grade, and LM area (P > 0.10) were similar among all treatments. However, final BW and HCW (P = 0.02) were greater for steers from PS-WR than NS-WR cows. Compared with steers from NS cows, steers from PS cows had greater marbling scores (P = 0.004) and a greater (P = 0.04) proportion graded USDA Choice or greater. Protein supplementation of dams increased the value of calves at weaning (P = 0.03) and of steers at slaughter regardless of winter grazing treatment (P = 0.005). Calf birth and weaning BW were increased by grazing CR during the winter. Calf weaning BW was increased by PS of the dam if the dam grazed WR. Compared with steers from NS cows, steer progeny from PS cows had a greater quality grade with no (P = 0.26) effect on yield grade. These data support a late gestation dam nutrition effect on calf production via fetal programming.  相似文献   

11.
The objective of this study was to compare fatty acid weight percentages and cholesterol concentrations of longissimus dorsi (LD), semitendinosus (ST), and supraspinatus (SS) muscles (n = 10 for each) of range bison (31 mo of age), feedlot-finished bison (18 mo of age), range beef cows (4 to 7 yr of age), feedlot steers (18 mo of age), free-ranging cow elk (3 to 5 yr of age), and chicken breast. Lipids were analyzed by capillary GLC. Total saturated fatty acids (SFA) were greater (P < 0.01) in range bison than in feedlot bison and were greater (P < 0.01) in SS of range beef cattle than in feedlot steers. Muscles of elk and range bison were similar (P > 0.05) in SAT. In LD, polyunsaturated fatty acids (PUFA) were highest (P < 0.01) for elk and range bison and lowest (P < 0.01) for feedlot steers within each muscle. Range bison and range beef cows had greater (P < 0.01) PUFA in LD and ST than feedlot bison or steers, respectively. Range-fed animals had higher (P < 0.01) n-3 fatty acids than feedlot-fed animals or chicken breast. Chicken breast n-6 fatty acids were greater (P < 0.01) than for muscles from bison, beef, or elk. Elk had higher (P < 0.01) n-6 fatty acids than bison or beef cattle; however, range-fed animals had higher (P < 0.01) n-6 fatty acids than feedlot-fed animals in ST. Conjugated linoleic acid (CLA, 18:2cis-9, trans-11) in LD was greatest (P < 0.01) for range beef cows (0.4%), and lowest for chicken breast and elk (mean = 0.1%). In ST, CLA was greatest (P < 0.01) for range and feedlot bison and range beef cows (mean = 0.4%) and lowest for elk and chicken breast (mean = 0.1%). Also, SS CLA was greatest (P < 0.01) for range beef cows (0.5%) and lowest for chicken breast (0.1%). Mean total fatty acid concentration (g/100 g tissue) for all muscles was highest (P < 0.01) for feedlot bison and feedlot cattle and lowest (P < 0.01) for range bison, range beef cows, elk, and chicken. Chicken breast cholesterol (mg/100 g tissue) was higher (P < 0.01) than LD and ST cholesterol, which were lowest (P < 0.01; 43.8) for range bison and intermediate for the other species. Cholesterol in SS was highest (P < 0.01) for feedlot bison and steers, which were similar to chicken breast (mean = 61.2 vs 52.8 for the mean of the other species). We conclude that lipid composition of bison muscle varies with feeding regimen, and range-fed bison had muscle lipid composition similar to that of forage-fed beef cows and wild elk.  相似文献   

12.
The objective of this trial was to determine if daily supplementation of flaxseed for 85 d to steers finished on grasslands of the northern Great Plains would influence growth and carcass characteristics or the fatty acid profile, tenderness, and sensory characteristics of beef steaks. Eighteen Angus yearling steers (initial BW 399 ± 21 kg) were randomly divided into 3 groups. Steers in treatment 1 (FLX; n = 6) received a daily supplement of ground flaxseed (0.20% of BW), whereas steers in treatment 2 (CSBM; n = 6) received a daily supplement of ground corn and soybean meal (0.28% of BW), with contents of CP and TDN being similar to the supplement for FLX. Control steers (CONT; n = 6) were not supplemented. Treatments were given to each individual steer in side-by-side stalls and were fed from mid-August to November 7, 2007, the day before slaughter. All steers grazed growing forage from early May through the first week of November. Growth rate of steers fed FLX was 25% greater (P < 0.01) than that of steers fed CONT, but was similar (P = 0.45) to that of steers fed CSBM. No differences were observed for carcass characteristics (P ≥ 0.14), tenderness (Warner-Bratzler shear force; P ≥ 0.24), or sensory attributes (P ≥ 0.40) except for a slight off-flavor detected in steaks from steers fed FLX compared with CONT (7.4 vs. 7.8, respectively, with 8 indicating no off-flavor and 1 indicating extreme off-flavor; P = 0.07) and CSBM (7.9; P = 0.01). The n-3 fatty acids α-linolenic acid and eicosapentaenoic acid were 62 and 22% greater, respectively, in beef from steers fed FLX compared with those fed CONT (P < 0.001). The ratio of n-6 to n-3 fatty acids was smaller (P < 0.001) in beef from steers fed FLX compared with the ratios in beef from steers fed CONT and CSBM. Daily supplementation of flaxseed to steers grazing growing vegetation on the northern Great Plains may improve growth rate and enhance the n-3 fatty acid profile of the steaks.  相似文献   

13.
Experiments were conducted to determine the effects of increasing supplement protein concentration on performance and forage intake of beef cows and forage utilization of steers consuming stockpiled bermudagrass forage. Bermudagrass pastures were fertilized with 56 kg of N/ha in late August. Grazing was initiated during early November and continued through the end of January each year. Treatments for the cow performance trials were: no supplement or daily equivalents of 0.2, 0.4, and 0.6 g of supplemental protein per kilogram of BW. Supplements were formulated to be isocaloric, fed at the equivalent of 0.91 kg/d, and prorated for 4 d/wk feeding. Varying the concentration of soybean hulls and soybean meal in the supplements created incremental increases in protein. During yr 1, supplemented cows lost less weight and condition compared to unsupplemented animals (P < 0.05). During yr 2, supplemented cows gained more weight (P = 0.06) and lost less condition (P < 0.05) compared to unsupplemented cows. Increasing supplement protein concentration had no affect on cumulative cow weight change or cumulative body condition score change. Forage intake tended to increase (P = 0.13, yr 1 and P = 0.07, yr 2) in supplemented cows. Supplement protein concentration did not alter forage intake. In a digestion trial, four crossbred steers were used in a Latin square design to determine the effects of supplement protein concentration on intake and digestibility of hay harvested from stockpiled bermudagrass pasture. Treatments were no supplement; or 0.23, 0.46, and 0.69 g of supplemental protein per kilogram of BW. Forage intake increased (P < 0.05) 16% and OM intake increased (P < 0.01) 30% in supplemented compared to unsupplemented steers. Diet OM digestibility increased (P = 0.08) 14.5% and total digestible OM intake increased (P < 0.05) 49% in supplemented compared to unsupplemented steers. Supplement protein concentration did not alter forage intake, total digestible OM intake, or apparent digestibility of OM or NDF. During the initial 30 d after first killing frost, beef cows did not respond to supplementation. However, later in the winter, supplementation improved utilization of stockpiled bermudagrass forage.  相似文献   

14.
A 2-yr study was conducted using a 3 × 2 factorial arrangement of treatments to evaluate the effects of feeding dried distillers grains throughout a beef production system on performance, carcass characteristics, and fatty acid profile of beef. Factors were wheat pasture supplement [no supplement (CON), dry-rolled corn (DRC), and dried distillers grains (DDG)] fed at 0.5% BW daily and finishing diet [steam-flaked corn based diet containing 0 (SFC) or 35% (35DDG) DDG]. Each year, 60 preconditioned Hereford steers (initial BW = 198 kg ± 3) grazed winter wheat pasture with or without supplement. Body weight gain was 8% greater for steers consuming DDG supplement compared with CON and DRC steers (P < 0.01). After the grazing period, pastures within supplement treatment were randomly assigned to SFC or 35DDG. There was no supplement by finishing diet interaction for any performance or carcass variable of interest (P ≥ 0.41). Previous supplementation on winter wheat affected BW at feedlot entry and adjusted G:F (P ≤ 0.05) but had no effect on finishing ADG or carcass traits (P ≥ 0.12). On a carcass-adjusted basis, steers consuming 35DDG had reduced final BW, ADG, G:F, and total BW gain throughout the system (P ≤ 0.04) compared with SFC. Additionally, steers consuming 35DDG had reduced HCW, dressing percent, and fat thickness (P ≤ 0.03) compared with SFC. There was a supplement by finishing diet interaction (P = 0.02) for 18:0, in which cattle supplemented with DRC and fed the SFC finishing diet had the lowest concentration of 18:0 but DRC supplemented steers fed the 35DDG diet had the greatest concentration. The interaction was not significant (P ≥ 0.18) for other fatty acids. Main effects of supplement and finishing diet affected (P ≤ 0.05) several other fatty acids of interest, particularly 18:2, which is associated with reduced flavor-stability of beef. The use of DDG as a supplement to wheat pasture resulted in greater ADG during wheat grazing and heavier BW at feedlot entry, but final BW was not different from CON or DRC groups. Feeding DDG at 35% DM in steam-flaked corn-based finishing diets reduced ADG, G:F, and HCW, and affected the fatty acid composition of beef.  相似文献   

15.
Decreasing dietary N inputs into beef cattle feeding operations could potentially decrease environmental concerns relating to air and water quality. Previous studies with sheep suggest that oscillating dietary CP concentrations may improve N use efficiency and thereby decrease dietary N requirements. Therefore, two studies were conducted to determine the effects of oscillating dietary CP concentrations on performance, acid-base balance, and manure characteristics of steers fed high-concentrate diets. Steers were fed to a constant backfat thickness in both studies. In the first trial, 92 steers (mean BW = 408 +/- 2.8 kg; four pens/treatment) were fed the following diets: 1) constant 12% CP, 2) constant 14% CP, and 3) 10 and 14% CP oscillated at 2-d intervals. Steer performance and carcass characteristics were measured. In the second trial, 27 steers were individually fed the same three experimental dietary regimens (nine steers/treatment). Animal performance, arterial acid-base balance, plasma metabolites, and fecal characteristics were measured. In both trials, steers fed the 14% CP diet tended (P < 0.10) to have greater ADG and gain:feed than steers fed the 12% CP diet. Steers fed the oscillating CP regimen had intermediate performance. In Trial 1, steers fed the 14% CP diet tended (P = 0.09) to have smaller longissimus area and higher quality grades than steers fed the oscillating CP regimen. Protein retentions (g/d) calculated from NRC (2000) equations were greater (P = 0.04) for steers fed the 14% CP diet than steers fed the 12% CP diet. Steers fed the oscillating CP regimen tended (P = 0.08) to have greater calculated protein retention (g/d) than steers fed the 12% CP diet. Steers fed the 14% CP diet had greater (P < 0.05) calculated urinary N excretion than steers fed the 12% CP or oscillating CP regimens. Venous plasma concentrations of urea N were greater (P < 0.001) in steers fed the 14% CP diet than in steers fed the 12% CP diet; steers fed the oscillating CP regimen were intermediate but fluctuated over days. Based on arterial blood gas concentrations, acid-base balance was not significantly affected by dietary CP regimen. Results of these trials suggest that the CP requirement of steers in these studies was greater than 12% of the diet DM, and/or that the degradable CP requirement was greater than 6.3% of diet DM. However, the effects of oscillating dietary CP were minimal.  相似文献   

16.
Two experiments were conducted to evaluate the influence of supplemental protein concentration on the intake and utilization of dormant range forage by beef cattle. In Exp. 1,97 pregnant Hereford x Angus cows (avg wt = 454 kg) were assigned randomly to three isocaloric treatment supplements: 1) low protein (LP), 13% CP; 2) moderate protein (MP), 25% CP; and 3) high protein (HP), 39% CP. In Exp. 2, 15 ruminally and 12 esophageally cannulated steers (avg wt = 319 and 355 kg, respectively) were assigned randomly to LP, MP and HP treatments and were used in a 22-d winter grazing trial to evaluate forage intake and utilization characteristics. In Exp. 1, cow body condition (BC) and BW changes responded in linear (P less than .01) and quadratic (P less than .01) fashions to increasing protein concentration, with MP and HP displaying the least BC and BW loss from trial initiation (d 1) through d 84. From d 84 to calving (avg calving date = d 120), only the HP supplement continued to be effective in minimizing BC loss (P less than .01). Calf birth weight tended (P = .17) to increase in a linear fashion to increasing supplemental protein concentration, but calf ADG and cow reproductive efficiency were unaffected (P greater than .10). In Exp. 2, forage OM intake responded in a quadratic fashion (P less than .10), with the MP treatment having the highest NDF digestibility and ruminal OM fill. In conclusion, beef cow BC and BW losses during the winter grazing period were minimized with increasing supplemental CP concentration. Intake and utilization of dormant forage by steers were improved with moderate (26%) levels of CP in the supplement.  相似文献   

17.
Relative effects of Beef Quality Assurance (BQA)-related defects in market beef and dairy cows and bulls on selling price at auction was evaluated during 2008. The presence and severity of 23 BQA-related traits were determined during sales in Idaho, California, and Utah. Overall, 18,949 unique lots consisting of 23,479 animals were assessed during 125 dairy sales and 79 beef sales. Mean sale price ± SD (per 45.5 kg) for market beef cows, beef bulls, dairy cows, and dairy bulls was $45.15 ± 9.42, $56.30 ± 9.21, $42.23 ± 12.26, and $55.10 ± 9.07, respectively. When combined, all recorded traits explained 36% of the variation in selling price in beef cows, 35% in beef bulls, 61% in dairy cows, and 56% in dairy bulls. Premiums and discounts were determined in comparison with a "par" or "base" animal. Compared with a base BCS 5 beef cow (on a 9-point beef scale), BCS 1 to 4 cows were discounted (P < 0.0001), whereas premiums (P < 0.05) were estimated for BCS 6 to 8. Compared with a base BCS 3.0 dairy cow (on a 5-point dairy scale), more body condition resulted in a premium (P ≤ 0.001), whereas a less-than-desirable BCS of 2.0 or 2.5 was discounted (P < 0.0001). Emaciated or near-emaciated cows (beef BCS 1 or 2; dairy BCS 1.0 or 1.5) were discounted (P < 0.0001). Compared with base cows weighing 545 to 635 kg, lighter BW beef cows were discounted (P < 0.0001), whereas heavier beef cows received (P < 0.05) a premium. Compared with a base dairy cow weighing 636 to 727 kg, lighter BW cows were discounted (P < 0.0001), whereas heavier cows (727 to 909 kg) received a premium (P < 0.01). Beef and dairy cows with any evidence of lameness were discounted (P < 0.0001). Presence of ocular neoplasia in the precancerous stage discounted (P = 0.05) beef cows and discounted (P < 0.01) dairy cows, whereas at the cancerous stage, it discounted (P < 0.0001) all cows. Hide color influenced (P < 0.0001) selling price in beef cattle but had no effect (P = 0.17) in dairy cows. Animals that were visibly sick were discounted (P < 0.0001). Results suggest that improving BCS and BW, which producers can do at the farm or ranch level, positively affects sale price. Furthermore, animals that are visibly sick or have a defect associated with a possible antibiotic risk will be discounted. Ultimately, animals with minor quality defects should be sold in a timely manner before the defect advances and the discount increases.  相似文献   

18.
Background: Grain legumes represent a valuable energy source in pig diets due to their high starch content. The present study was conducted to determine the content and apparent ileal digestibility(AID) of starch in different grain legume cultivars for pigs by means of both a polarimetric and enzymatic method for starch determination.Methods: Three experiments were conducted with six barrows each which were fitted with ileal T-cannulas. In total, 18 diets including six different cultivars of faba beans(Vicia faba L.) and peas(Pisum sativum L.), five different cultivars of lupins(Lupinus luteus L., Lupinus angustifolius L.), and one diet with a soybean meal(SBM) were fed.Results: The starch content of faba beans and peas was greater(P 0.05) when determined polarimetrically than enzymatically(438 vs. 345 g/kg dry matter(DM) in faba beans and 509 vs. 390 g/kg DM in peas, respectively).Considerable lower starch contents were obtained in lupins and SBM, with 82 and 48 g/kg DM(analyzed polarimetrically) and 1.1 and 3 g/kg DM(analyzed enzymatically), respectively. Mean values for contents of neutral detergent fiber(NDF) and acid detergent fiber(ADF) in grain legumes ranged from 111 and 79 g/kg DM in peas to248 and 207 g/kg DM in lupins, respectively. Contents of condensed tannins in the colored flowered faba bean cultivars ranged from 2.1 to 7.4 g/kg DM. The AID of starch was greater(P 0.05) in pea than in faba bean cultivars,and using the polarimetric starch determination method resulted in greater(P 0.05) digestibility values than using enzymatic starch analysis(84 vs. 80% in faba beans and 86 vs. 83% in peas). Moreover, AID of starch differed(P 0.05)within pea cultivars and starch digestibility in faba beans decreased linearly(P 0.05) as the content of condensed tannins increased. However, there was no relationship between contents of NDF and ADF and AID of starch in pea and faba bean cultivars.Conclusion: Both contents and AID of starch in grain legumes can vary as influenced by the analytical method used for starch determination. Generally, starch digestibility is greater when measured by polarimetric rather than enzymatic methods.  相似文献   

19.
Effect of supplementation frequency and supplemental urea level on forage use (Exp. 1) and performance (Exp. 2 and 3) of beef cattle consuming low-quality tallgrass-prairie were evaluated. For Exp. 1 and 2, a 2 x 2 factorial treatment structure was used, such that two supplements (30% CP) containing 0 or 30% of supplemental degradable intake protein (DIP) from urea were fed daily or on alternate days. In Exp. 1 and 2, supplement was fed at 0.41% BW daily or at 0.83% BW (DM basis) on alternate days. For Exp. 3, a 2 x 4 factorial treatment structure was used, such that four supplements (40% CP) containing 0, 15, 30, or 45% of supplemental DIP from urea were fed daily or 3 d/wk. Supplements were group-fed at 0.32% BW daily or at 0.73% BW (DM basis) 3 d/wk. In Exp. 1, 16 Angus x Hereford steers (initial BW = 252 kg) were blocked by BW and assigned to treatment. Urea level x supplementation frequency interactions were not evident for forage intake, digestion, or rate of passage. Forage OM intake (OMI) and total digestible OMI (TDOMI) were not significantly affected by treatment. Total-tract digestion of OM (P = 0.03) and NDF (P = 0.06) were greater for steers supplemented daily. In Exp. 2, 48 Angus x Hereford cows (initial BW = 490 kg) grazing winter tallgrass prairie were used. Significant frequency x urea interactions were not evident for BW and body condition (BC) change; similarly, the main effects were not substantive for these variables. In Exp. 3, 160 Angus x Hereford cows (initial BW = 525 kg) grazing dormant, tallgrass prairie were used. Supplement refusal occurred for cows fed the highest urea levels, particularly for cows fed the supplement with 45% of the DIP from urea 3 d/wk, and supplement refusal increased closer to calving. A frequency x urea interaction (P = 0.02) was observed for prepartum BW changes. As supplemental urea level increased, prepartum BW loss increased quadratically (P = 0.02); however, a greater magnitude of loss occurred when feeding supplements containing > or = 30% of DIP from urea 3 d/ wk. Cumulative BC change followed a similar trend. In conclusion, moderate protein (< or = 30% CP) supplements with < or = 30% of supplemental DIP from urea can be fed on alternate days without a substantive performance penalty. However, infrequent feeding of higher protein (> 30% CP) supplements with significant urea levels (> 15% of DIP from urea) may result in decreased performance compared with lower urea levels.  相似文献   

20.
Two experiments were conducted to compare ruminal, physiological, and performance responses of forage-fed cattle consuming grain-based supplements without (NF) or with the inclusion (10%; DM basis) of a rumen-protected PUFA (PF) or SFA source (SF). Supplements were offered and consumed at 0.6% of BW/animal daily (DM basis). In Exp. 1, DMI and ruminal in situ forage degradability were evaluated in 3 Angus × Hereford cows fitted with ruminal cannulas and allocated to a 3 × 3 Latin square design. Within each experimental period, hay was offered in amounts to ensure ad libitum access from d 1 to 13, DMI was recorded from d 8 to 13, and cows were limited to receive 90% of their average hay DMI (d 1 to 13) from d 14 to 21. On d 16, polyester bags containing 4 g of ground hay (DM basis) were incubated within the rumen of each cow for 0, 4, 8, 12, 24, 36, 48, 72, and 96 h. Hay and total DMI were reduced (P < 0.05) in cows receiving PF compared with cows receiving SF and NF. No treatment effects were detected (P > 0.48) for ruminal disappearance rate and effective ruminal degradability of hay DM and NDF. In Exp. 2, preconditioning DMI, ADG, carcass traits, and plasma concentrations of cortisol, fatty acids, acute-phase proteins, and proinflammatory cytokines were assessed in 72 Angus × Hereford steers receiving supplement treatments during a 28-d preconditioning period. All steers were transported to a commercial growing lot after preconditioning (d 1) and were later moved to an adjacent commercial finishing yard (d 144), where they remained until slaughter. No treatment effects were detected (P ≥ 0.52) for preconditioning ADG and G:F, but DMI tended (P = 0.09) to be reduced in steers receiving PF compared with those receiving NF and SF. Plasma PUFA concentrations were greater in steers receiving PF compared with those receiving NF and SF (P = 0.01). After transportation, concentration of tumor necrosis factor-α increased for steers receiving NF, did not change for steers receiving SF, but decreased for steers receiving PF (treatment × day interaction, P < 0.01). Steers fed PF had greater (P = 0.02) ADG compared with those fed NF during the growing phase. Carcass yield grade and marbling were greater (P < 0.05) for steers fed PF compared with those fed NF. In conclusion, PUFA supplementation did not affect ruminal forage degradability but did impair DMI in beef cows. Further, PUFA supplementation to steers during preconditioning reduced plasma concentrations of tumor necrosis factor-α after transportation, and benefited growing lot ADG and carcass marbling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号