首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Objective To determine, in mildly hypercapnic horses under isoflurane–medetomidine balanced anaesthesia, whether there is a difference in cardiovascular function between spontaneous ventilation (SV) and intermittent positive pressure ventilation (IPPV). Study design Prospective randomized clinical study. Animals Sixty horses, undergoing elective surgical procedures under general anaesthesia: ASA classification I or II. Methods Horses were sedated with medetomidine and anaesthesia was induced with ketamine and diazepam. Anaesthesia was maintained with isoflurane and a constant rate infusion of medetomidine. Horses were assigned to either SV or IPPV for the duration of anaesthesia. Horses in group IPPV were maintained mildly hypercapnic (arterial partial pressure of carbon dioxide (PaCO2) 50–60 mmHg, 6.7–8 kPa). Mean arterial blood pressure (MAP) was maintained above 70 mmHg by an infusion of dobutamine administered to effect. Heart rate (HR), respiratory rate (fR), arterial blood pressure and inspiratory and expiratory gases were monitored continuously. A bolus of ketamine was administered when horses showed nystagmus. Cardiac output was measured using lithium dilution. Arterial blood‐gas analysis was performed regularly. Recovery time was noted and recovery quality scored. Results There were no differences between groups concerning age, weight, body position during anaesthesia and anaesthetic duration. Respiratory rate was significantly higher in group IPPV. Significantly more horses in group IPPV received supplemental ketamine. There were no other significant differences between groups. All horses recovered from anaesthesia without complications. Conclusions There was no difference in cardiovascular function in horses undergoing elective surgery during isoflurane–medetomidine anaesthesia with SV in comparison with IPPV, provided the horses are maintained slightly hypercapnic. Clinical relevance In horses with health status ASA I and II, cardiovascular function under general anaesthesia is equal with or without IPPV if the PaCO2 is maintained at 50–60 mmHg.  相似文献   

2.

Objective

To compare the effects of two concentrations of oxygen delivered to the anaesthetic breathing circuit on oxygenation in mechanically ventilated horses anaesthetised with isoflurane and positioned in dorsal or lateral recumbency.

Methods

Selected respiratory parameters and blood lactate were measured and oxygenation indices calculated, before and during general anaesthesia, in 24 laterally or dorsally recumbent horses. Horses were randomly assigned to receive 100% or 60% oxygen during anaesthesia. All horses were anaesthetised using the same protocol and intermittent positive pressure ventilation (IPPV) was commenced immediately following anaesthetic induction and endotracheal intubation. Arterial blood gas analysis was performed and oxygenation indices calculated before premedication, immediately after induction, at 10 and 45 min after the commencement of mechanical ventilation, and in recovery.

Results

During anaesthesia, the arterial partial pressure of oxygen was adequate in all horses, regardless of position of recumbency or the concentration of oxygen provided. At 10 and 45 min after commencing IPPV, the arterial partial pressure of oxygen was lower in horses in dorsal recumbency compared with those in lateral recumbency, irrespective of the concentration of oxygen supplied. Based on oxygenation indices, pulmonary function during general anaesthesia in horses placed in dorsal recumbency was more compromised than in horses in lateral recumbency, irrespective of the concentration of oxygen provided.

Conclusion

During general anaesthesia, using oxygen at a concentration of 60% instead of 100% maintains adequate arterial oxygenation in horses in dorsal or lateral recumbency. However, it will not reduce pulmonary function abnormalities induced by anaesthesia and recumbency.  相似文献   

3.
ObjectiveTo compare PaO2 and PaCO2 in horses recovering from general anesthesia maintained with either apneustic anesthesia ventilation (AAV) or conventional mechanical ventilation (CMV).Study designRandomized, crossover design.AnimalsA total of 10 healthy adult horses from a university-owned herd.MethodsDorsally recumbent horses were anesthetized with isoflurane in oxygen [inspired oxygen fraction = 0.3 initially, with subsequent titration to maintain PaO2 ≥ 85 mmHg (11.3 kPa)] and ventilated with AAV or CMV according to predefined criteria [10 mL kg–1 tidal volume, PaCO2 40–45 mmHg (5.3–6.0 kPa) during CMV and < 60 mmHg (8.0 kPa) during AAV]. Horses were weaned from ventilation using a predefined protocol and transferred to a stall for unassisted recovery. Arterial blood samples were collected and analyzed at predefined time points. Tracheal oxygen insufflation at 15 L minute–1 was provided if PaO2 < 60 mmHg (8.0 kPa) on any analysis. Time to oxygen insufflation, first movement, sternal recumbency and standing were recorded. Data were analyzed using repeated measures anova, paired t tests and Fisher’s exact test with significance defined as p < 0.05.ResultsData from 10 horses were analyzed. Between modes, PaO2 was significantly higher immediately after weaning from ventilation and lower at sternal recumbency for AAV than for CMV. No PaCO2 differences were noted between ventilation modes. All horses ventilated with CMV required supplemental oxygen, whereas three horses ventilated with AAV did not. Time to first movement was shorter with AAV. Time to oxygen insufflation was not different between ventilation modes.ConclusionsAlthough horses ventilated with AAV entered the recovery period with higher PaO2, this advantage was not sustained during recovery. Whereas fewer horses required supplemental oxygen after AAV, the use of AAV does not preclude the need for routine supplemental oxygen administration in horses recovering from general anesthesia.  相似文献   

4.
One hundred sixty horses were anesthetized with xylazine, guaifenesin, thiamylal, and halothane for elective soft tissue and orthopedic procedures. Horses were randomly assigned to one of four groups. Group 1 (n = 40): Horses positioned in lateral (LRG1,; n = 20) or dorsal (DRG1,; n = 20) recumbency breathed spontaneously throughout anesthesia. Group 2 (n = 40): Intermittent positive pressure ventilation (IPPV) was instituted throughout anesthesia in horses positioned in lateral (LRG2; n = 20) or dorsal (DRG2; n = 20) recumbency. Group 3 (n = 40): Horses positioned in lateral (LRG3; n = 20) or dorsal (DRG3; n = 20) recumbency breathed spontaneously for the first half of anesthesia and intermittent positive pressure ventilation was instituted for the second half of anesthesia. Group 4 (n = 40): Intermittent positive pressure ventilation was instituted for the first half of anesthesia in horses positioned in lateral (LRG4; n = 20) or dorsal (DRG4; n = 20) recumbency. Spontaneous ventilation (SV) occured for the second half of anesthesia. The mean time of anesthesia was not significantly different within or between groups. The mean time of SV and IPPV was not significantly different in groups 3 and 4. Variables analyzed included pH, PaCO2, PaO2, and P(A-a)O2 (calculated). Spontaneous ventilation resulted in significantly higher PaCO2 and P(A-a)O2 values and significantly lower PaO2 values in LRG1, and DRG1, horses compared with LRG2 and DRG2 horses. Intermittent positive pressure ventilation resulted in normocarbia and significantly lower P(A-a)O2 values in LRG2 and DRG2 horses. In LRG2 the Pao2 values significantly increased from 20 minutes after induction to the end of anesthesia. The PaO2 and P(A-a)O2 values were not significantly different from the beginning of anesthesia after IPPV in DRG2 or DRG3. The PaO2 values significantly decreased and the P(A-a)O2 values significantly increased after return to SV in horses in LRG4, and DRG4. The PaO2 values were lowest and the P(A-a)O2 values were highest in all horses positioned in dorsal recumbency compared with lateral recumbency and in SV horses compared with IPPV horses. The pH changes paralleled the changes in PaCO2. Blood gas values during right versus left lateral recumbency in all groups were also evaluated. The PaO2 values were significantly lower and the P(A-a)O2 values were significantly higher during SV in horses positioned in left lateral (LRLG1) compared with right lateral (LRRG1) recumbency. No other significant changes were found comparing left and right lateral recumbency. Arterial hypoxemia (PaO2 < 60 mm Hg) developed in 35% of DRG1 horses and 20% of DRG2 horses at the end of anesthesia. Arterial hypercarbia (PaCO2= 50–60 mm Hg) developed in DRoi horses. Arterial hypoxemia that developed in 20% of DRG3 horses was not improved with IPPV. Arterial hypoxemia developed in 55% of DRG4 horses after return to SV. Some DRG4 horses with hypoxemia also developed hypercarbia, whereas some had PaCO2 values within normal limits. Arterial hypoxemia developed in one LRG1, and two LRG4, horses. Hypercarbia developed in onlv one LRG4 horse.  相似文献   

5.
ObjectiveTo examine the influence of direct current shock application in anaesthetized horses with atrial fibrillation (AF) and to study the effects of cardioversion to sinus rhythm (SR).Study designProspective clinical study.AnimalsEight horses successfully treated for AF (transvenous electrical cardioversion after amiodarone pre-treatment).MethodsCardioversion catheters and a pacing catheter were placed under sedation [detomidine 10 μg kg?1 intravenously (IV)]. After additional sedation (5–10 μg kg?1 detomidine, 0.1 mg kg?1 methadone IV), anaesthesia was induced with ketamine, 2.2 mg kg?1 and midazolam, 0.06 mg kg?1 (IV) in a sling and maintained with isoflurane in oxygen. Flunixin meglumine, 1.1 mg kg?1, was administered IV. Shocks were delivered as biphasic truncated exponential waves, synchronized with the R-wave of the electrocardiogram. Monitoring included pulse oximetry, electrocardiography, capnography, inhalational anaesthetic agent concentration, arterial blood pressure, LiDCO and PulseCO cardiac index (CI) and arterial blood gases. Values before and after the first unsuccessful shock and before and after cardioversion to SR were compared.ResultsValues before the first shock were comparable to reported values in healthy, isoflurane anaesthetized horses. Reliable CI measurements could not be obtained using the PulseCO technique. Intermittent positive pressure ventilation was required in most horses (bradypnea and/or PaCO2 >8 kPa, 60 mmHg), while dobutamine was administered in two horses (0.3–0.5 μg kg?1 minute?1). After the 1st unsuccessful shock application, systolic arterial pressure (SAP) was decreased (p = 0.025), other recorded values were not influenced (CI measurements not available for this analysis). SR was associated with increases in CI (p = 0.039) and stroke index (p = 0.002) and a decrease in SAP (p = 0.030).Conclusions and clinical relevanceDespite the presence of AF, cardiovascular function was well maintained during anaesthesia and was not affected by shock application. Cardiac index and stroke index increased and SAP decreased after cardioversion.  相似文献   

6.
OBJECTIVE: To compare the effects of spontaneous breathing and mechanical ventilation on haemodynamic variables, including muscle and skin perfusion measured with laser Doppler flowmetery, in horses anaesthetized with isoflurane. STUDY DESIGN: Prospective controlled study. ANIMALS: Ten warm-blood trotter horses (five males, five females). Mean mass was 492 kg (range 420-584 kg) and mean age was 5 years (range 4-8 years). MATERIALS AND METHODS: After pre-anaesthetic medication with detomidine (10 microg kg(-1)) anaesthesia was induced with intravenous (IV) guaifenesin and thiopental (4-5 mg kg(-1) IV) and maintained using isoflurane in oxygen. The horses were positioned in dorsal recumbency. In five animals breathing was initially spontaneous (SB) while the lungs of the other five were ventilated mechanically using intermittent positive pressure ventilation (IPPV). Total anaesthesia time was 4 hours with the ventilatory mode changed after 2 hours. During anaesthesia, heart rate (HR) cardiac output (Qt) stroke volume (SV) systemic arterial blood pressures (sAP), and pulmonary arterial pressure (pAP) were recorded. Peripheral perfusion was measured in the semimembranosus and gluteal muscles and on the tail skin using laser Doppler flowmetry. Arterial (a) and mixed venous (v) blood gases, pH, haemoglobin concentration [Hb], haematocrit (Hct), plasma lactate concentration and muscle temperature were measured. Oxygen content, venous admixture (s/Qt) oxygen delivery (DO(2)) and oxygen consumption (VO(2)) were calculated. RESULTS: During mechanical ventilation, HR, sAP, pAP, Qt, SV, Qs/Qt and PaCO(2) were lower and PaO(2) was higher compared with spontaneous breathing. There were no differences between the modes of ventilation in the level of perfusion, DO(2), VO(2), [Hb], (Hct), or plasma lactate concentration. After the change from IPPV to SB, left semimembranosus muscle and skin perfusion improved, while muscle perfusion tended to decrease when SB was changed to IPPV. Low-frequency flow motion was seen twice as frequently during IPPV compared with SB. CONCLUSIONS: Mechanical ventilation impaired cardiovascular function compared with SB in horses during isoflurane anaesthesia. Muscle and skin perfusion changes occurred with ventilation, although further studies are needed to elucidate the underlying mechanisms.  相似文献   

7.
Anaesthetic records of horses with colic anaesthetised between June 1987 and May 1989 were reviewed. pH and blood gas analyses were performed during 157 operations from which the horses were allowed to recover. A PaO2 of 8.0 kPa or less was measured during anaesthesia in seven of these horses. The horses were of different breeds, ages and sexes. Anaesthesia was induced with xylazine, guaifenesin and ketamine in four horses and with xylazine, guaifenesin and thiobarbiturate in three horses. Anaesthesia was maintained with inhalation anaesthetic agent and oxygen: isoflurane in five horses, halothane in one horse, and initially halothane but later isoflurane in one horse. Systolic arterial pressures during anaesthesia ranged from 80 to 150 mmHg, diastolic arterial pressures were between 60 and 128 mmHg, and heart rates were between 28 and 44 beats /min. Controlled ventilation was initiated at the start of anaesthesia. PaCO2 exceeded 6.7 kPa in three horses but was subsequently decreased by adjustment of the ventilator. PaO2 of 8.0 kPa or less was measured during early anaesthesia, with one exception, and persisted for the duration of anaesthesia. The horses' inspired air was supplemented with oxygen during recovery from anaesthesia, at which time measurement of blood gases in three horses revealed no increase in PaO2. Recovery from anaesthesia was uneventful. The surgical problems involved primarily the large intestine in five horses and the small intestine in two horses. Six horses were discharged from the hospital alive; one horse was reanaesthetised later the same day and destroyed without regaining consciousness. We concluded that none of the objective values recorded during the pre-anaesthetic evaluation could have been used to predict the complication of intraoperative hypoxaemia. We observed that once hypoxaemia developed it persisted for the duration of anaesthesia and even into the recovery period when the horses were in lateral recumbency and regaining consciousness. We assume that the altered metabolism from anaesthetic agents and hypothermia combined with adequate peripheral perfusion contributed to the lack of adverse consequences in six of the horses. The contribution of hypoxaemia to the deteriorating condition of the seventh horse is speculative.  相似文献   

8.
ObjectiveTo record the bispectral index (BIS) when horses moved during either halothane or sevoflurane anaesthesia and when they made volitional movements during recovery from these anaesthetics.Study designRandomized prospective clinical study.AnimalsTwenty-five client-owned horses undergoing surgery aged 8.8 (± 5.3; 1–19) years (mean ± SD; range).MethodsBaseline BIS values were recorded before pre-anaesthetic medication (BISB) and during anaesthesia (BISA) maintained with halothane (group H; n = 12) or sevoflurane (group S; n =13) at approximately 0.8–0.9 × minimum alveolar concentrations (MAC). Bispectral indices were recorded during the surgery when unexpected movement occurred (BISMA), during recovery when the first movement convincingly associated with consciousness was observed (BISM1) and once sternal recumbency was achieved (BISST).ResultsNo significant difference in BISM1 was found between halothane- (85 ± 7; 75–93) and sevoflurane- (87 ± 10; 70–98) anaesthetized horses although BISA was significantly (p = 0.0002) lower in group S (62 ± 7; 53–72) than group H (74 ± 7; 60–84). Differences between BISM1 and BISA were significant in sevoflurane (p = 0.00001) and halothane recipients (p = 0.002) but were greater in group S (25 ± 9; 4–38) compared with group H (12 ± 10; ?9–25). In six of eight horses, BISMA values ranged between those recorded during anaesthesia and at first movement.Conclusions and clinical relevanceBispectral indices appear to approximate levels of unconsciousness, suggesting that monitoring the BIS may assist equine anaesthesia. However, it does not predict intra-operative movement.  相似文献   

9.
ObjectiveTo evaluate the regional distribution of ventilation in horses during spontaneous breathing and controlled mechanical ventilation (CMV) using electrical impedance tomography (EIT).Study designProspective, experimental case series.AnimalsFour anaesthetized experimental horses.MethodsHorses were anaesthetized with isoflurane in an oxygen-air mixture and medetomidine continuous rate infusion, placed in dorsal recumbency with an EIT belt around the thorax, and allowed to breathe spontaneously until PaCO2 reached 13.3 kPa (100 mmHg), when volume CMV was started. For each horse, the EIT signal was recorded for at least 2 minutes immediately before (T1), and at 30 (n = 3) or 60 (n = 1) minutes after the start of CMV (T2). The centre of ventilation (CoV), dependent silent spaces (DSS) (likely to represent atelectatic lung areas), non-dependent silent spaces (NSS) (likely to represent lung areas with low ventilation) and total ventilated area (TVA) were evaluated. Cardiac output (CO) was measured and venous admixture and oxygen delivery (DO2) were calculated at T1 and T2. Data are presented as median and range.ResultsAfter the initiation of CMV, the CoV moved ventrally towards the non-dependent lung by 10% [from 57.4% (49.6–60.2%) to 48.3% (41.9–54.4%)]. DSS increased [from 4.1% (0.2–13.9%) to 18.7% (7.5–27.5%)], while NSS [21.7% (9.4–29.2%) to 9.9% (1.0–20.7%)] and TVA [920 (699–1051) to 837 (662–961) pixels] decreased. CO, venous admixture and DO2 also decreased.Conclusions and clinical relevanceIn spontaneously breathing anaesthetized horses in dorsal recumbency, ventilation was essentially centred within the dependent dorsal lung regions and moved towards non-dependent ventral regions as soon as CMV was started. This shows a major lack of ventilation in the dependent lung, which may be indicative of atelectasis.  相似文献   

10.
ObjectiveTo report the severe metabolic acidosis identified in a group of 11 healthy mules anaesthetized with halothane for castration.Study designData generated from a prospective study.AnimalsEleven mules aged 2.5–8 years, weighing 230–315 kg and 11 horses aged 1.5–3.5 years, weighing 315–480 kg.MethodsAnimals were anaesthetized for castration as part of an electroencephalographic study. Preanaesthetic medication was acepromazine (0.03 mg kg?1) administered through a preplaced jugular venous catheter. Anaesthesia was induced 30–90 minutes later with intravenous thiopental (10 mg kg?1). After orotracheal intubation, anaesthesia was maintained with halothane vaporised in oxygen. The animals’ lungs were ventilated to maintain the end-tidal CO2 concentration between 3.9 and 4.5 kPa (29–34 mmHg). Anaesthetic monitoring included invasive blood pressure measurement via the auricular artery (mules) and submandibular branch of the facial artery (horses). Arterial blood gas samples were drawn from these catheters at three time points during surgery and pH, PaCO2, base excess (ecf) and HCO3? were measured. Values were compared between groups using a Mann–Whitney test. p was taken as <0.05. Results are reported as median (range).ResultsPaCO2 did not differ between groups but pH was significantly lower in mules [7.178 (7.00–7.29)] compared to horses [7.367 (7.24–7.43)] (p = 0.0002). HCO3? values were significantly lower in the mules [16.6 (13.0–22.3) mM] compared to horses [23.7 (20.9–23.7) mM] (p = 0.0001), whilst base excess (ecf) was significantly more negative in the mules [?11.4 (?1.27 to ?16) mM] compared to horses [?1.3 (?5.8 to +2.4) mM] (p = 0.0004).Conclusion and clinical relevanceThis study demonstrated severe metabolic acidosis in healthy mules, which may have prompted intervention with drug therapies in a clinical arena. It is probable that the acidosis existed prior to anaesthesia and caused by diet, but other possible causes are considered.  相似文献   

11.
ObjectiveTo assess anesthetic induction, recovery quality and cardiopulmonary variables after intramuscular (IM) injection of three drug combinations for immobilization of horses.Study designRandomized, blinded, three-way crossover prospective design.AnimalsA total of eight healthy adult horses weighing 470–575 kg.MethodsHorses were administered three treatments IM separated by ≥1 week. Combinations were tiletamine–zolazepam (1.2 mg kg−1), ketamine (1 mg kg−1) and detomidine (0.04 mg kg−1) (treatment TKD); ketamine (3 mg kg−1) and detomidine (0.04 mg kg−1) (treatment KD); and tiletamine–zolazepam (2.4 mg kg−1) and detomidine (0.04 mg kg−1) (treatment TD). Parametric data were analyzed using mixed model linear regression. Nonparametric data were compared using Skillings–Mack test. A p value <0.05 was considered statistically significant.ResultsAll horses in treatment TD became recumbent. In treatments KD and TKD, one horse remained standing. PaO2 15 minutes after recumbency was significantly lower in treatments TD (p < 0.0005) and TKD (p = 0.001) than in treatment KD. Times to first movement (25 ± 15 minutes) and sternal recumbency (55 ± 11 minutes) in treatment KD were faster than in treatments TD (57 ± 17 and 76 ± 19 minutes; p < 0.0005, p = 0.001) and TKD (45 ± 18 and 73 ± 31 minutes; p = 0.005, p = 0.021). There were no differences in induction quality, muscle relaxation score, number of attempts to stand or recovery quality.Conclusions and clinical relevanceIn domestic horses, IM injections of tiletamine–zolazepam–detomidine resulted in more reliable recumbency with a longer duration when compared with ketamine–detomidine and tiletamine–zolazepam–ketamine–detomidine. Recoveries were comparable among protocols.  相似文献   

12.
The inhalational anaesthetic agent isoflurane was administered to 22 dogs and 21 horses undergoing a variety of surgical procedures. Satisfactory anaesthesia was produced in all the animals. The cardiopulmonary changes were similar to those observed with halothane. Rapid changes in the depth of anaesthesia were achieved and recovery from anaesthesia was rapid in both dogs and horses, which was a reflection of the relative insolubility of isoflurane. Recovery from anaesthesia in the horses was particularly smooth and rapid with the animals spending a greater part of their recumbency in the sternal position, as opposed to lateral recumbency, before standing in a well coordinated manner.  相似文献   

13.
ObjectiveTo examine the relationship between body mass and thoracic dimensions on arterial oxygen tensions (PaO2) in anaesthetized horses and ponies positioned in dorsal recumbency.Study designProspective clinical study.AnimalsThirty six client-owned horses and ponies, mean [±SD (range)] age 8.1 ± 4.8 (1.5–20) years and mean body mass 467 ± 115 (203–656) kg.MethodsBefore general anaesthesia, food and water were withheld for 12 and 1 hours respectively. Body mass (kg), height at the withers (H), thoracic circumference (C), thoracic depth (length between dorsal spinous process and sternum; D), thoracic width (between point of shoulders; W), and thoracic diagonal length (point of shoulder to last rib; L) were measured. Pre-anaesthetic medication was with intravenous (IV) romifidine (0.1 mg kg−1). Anaesthesia was induced with an IV ketamine (2.2 mg kg−1) and diazepam (0.05 mg kg−1) combination and maintained with halothane in 1:1 oxygen:nitrous oxide (N2O) mixture. Animals were positioned in dorsal recumbency and allowed to breathe spontaneously. Nitrous oxide was discontinued after 10 minutes, and arterial blood samples obtained and analysed for gas tensions at 15, 30 and 60 minutes after connection to the anaesthetic breathing circuit. Data were analysed using anova and Pearson's correlation co-efficient.ResultsThe height per unit body mass (H kg−1) and thoracic circumference per unit body mass (C kg−1) correlated strongly (r = 0.85, p < 0.001 and r = 0.82, p < 0.001 respectively) with arterial oxygen tensions (PaO2) at 15 minutes.ConclusionsThere is a strong positive correlation between H kg−1 and C kg−1 and PaO2 after 15 minutes of anaesthesia in halothane-anaesthetized horses positioned in dorsal recumbency.Clinical relevanceReadily obtained linear measurements (height and thoracic circumference) and body mass may be used to predict the ability of horses to oxygenate during anaesthesia.  相似文献   

14.
ObjectiveTo test if the addition of butorphanol by constant rate infusion (CRI) to medetomidine–isoflurane anaesthesia reduced isoflurane requirements, and influenced cardiopulmonary function and/or recovery characteristics.Study designProspective blinded randomised clinical trial.Animals61 horses undergoing elective surgery.MethodsHorses were sedated with intravenous (IV) medetomidine (7 μg kg?1); anaesthesia was induced with IV ketamine (2.2 mg kg?1) and diazepam (0.02 mg kg?1) and maintained with isoflurane and a CRI of medetomidine (3.5 μg kg?1 hour?1). Group MB (n = 31) received butorphanol CRI (25 μg kg?1 IV bolus then 25 μg kg?1 hour?1); Group M (n = 30) an equal volume of saline. Artificial ventilation maintained end-tidal CO2 in the normal range. Horses received lactated Ringer’s solution 5 mL kg?1 hour?1, dobutamine <1.25 μg kg?1 minute?1 and colloids if required. Inspired and exhaled gases, heart rate and mean arterial blood pressure (MAP) were monitored continuously; pH and arterial blood gases were measured every 30 minutes. Recovery was timed and scored. Data were analyzed using two way repeated measures anova, independent t-tests or Mann–Whitney Rank Sum test (p < 0.05).ResultsThere was no difference between groups with respect to anaesthesia duration, end-tidal isoflurane (MB: mean 1.06 ± SD 0.11, M: 1.05 ± 0.1%), MAP (MB: 88 ± 9, M: 87 ± 7 mmHg), heart rate (MB: 33 ± 6, M: 35 ± 8 beats minute?1), pH, PaO2 (MB: 19.2 ± 6.6, M: 18.2 ± 6.6 kPa) or PaCO2. Recovery times and quality did not differ between groups, but the time to extubation was significantly longer in group MB (26.9 ± 10.9 minutes) than in group M (20.4 ± 9.4 minutes).Conclusion and clinical relevanceButorphanol CRI at the dose used does not decrease isoflurane requirements in horses anaesthetised with medetomidine–isoflurane and has no influence on cardiopulmonary function or recovery.  相似文献   

15.
ObjectiveTo compare tidal volume estimations obtained from Respiratory Ultrasonic Plethysmography (RUP) with simultaneous spirometric measurements in anaesthetized, mechanically ventilated horses.Study designProspective randomized experimental study.AnimalsFive experimental horses.MethodsFive horses were anaesthetized twice (1 week apart) in random order in lateral and in dorsal recumbency. Nine ventilation modes (treatments) were scheduled in random order (each lasting 4 minutes) applying combinations of different tidal volumes (8, 10, 12 mL kg?1) and positive end-expiratory pressures (PEEP) (0, 10, 20 cm H2O). Baseline ventilation mode (tidal volume = 15 mL kg?1, PEEP = 0 cm H2O) was applied for 4 minutes between all treatments. Spirometry and RUP data were downloaded to personal computers. Linear regression analyses (RUP versus spirometric tidal volume) were performed using different subsets of data. Additonally RUP was calibrated against spirometry using a regression equation for all RUP signal values (thoracic, abdominal and combined) with all data collectively and also by an individually determined best regression equation (highest R2) for each experiment (horse versus recumbency) separately. Agreement between methods was assessed with Bland-Altman analyses.ResultsThe highest correlation of RUP and spirometric tidal volume (R2 = 0.81) was found with the combined RUP signal in horses in lateral recumbency and ventilated without PEEP. The bias ± 2 SD was 0 ± 2.66 L when RUP was calibrated for collective data, but decreased to 0 ± 0.87 L when RUP was calibrated with individual data.Conclusions and clinical relevanceA possible use of RUP for tidal volume measurement during IPPV needs individual calibration to obtain limits of agreement within ± 20%.  相似文献   

16.
ObjectiveTo assess oxygenation, ventilation‐perfusion (V/Q) matching and plasma endothelin (ET‐1) concentrations in healthy horses recovering from isoflurane anaesthesia administered with or without pulse‐delivered inhaled nitric oxide (iNO).Study DesignProspective experimental trial.AnimalsHealthy adult Standardbred horses.MethodsHorses were anaesthetized with isoflurane in oxygen and placed in lateral recumbency. Six control (C group) horses were anaesthetized without iNO delivery and six horses received pulse‐delivered iNO (NO group). After 2.5 hours of anaesthesia isoflurane and iNO were abruptly discontinued, inhaled oxygen was reduced from 100% to approximately 30%, and the horses were moved to the recovery stall. At intervals during a 30‐minute period following the discontinuation of anaesthesia, arterial and mixed venous blood gas values, shunt fraction (Qs/Qt), plasma ET‐1 concentration, pulse rate and respiratory rate were measured or calculated. Repeated measures anova and a Bonferroni post hoc test was used to analyze data with significance set at p <0.05.ResultsAt all time points in the recovery period, NO horses maintained better arterial oxygenation (oxygen partial pressure: NO 13.2 ± 2.7–11.1 ± 2.7 versus C 6.7 ± 1.1–7.1 ± 1.1 kPa) and better V/Q matching (Qs/Qt NO 0.23 ± 0.05–0.14 ± 0.06 versus C 0.48 ± 0.03–0.32 ± 0.08%) than C horses. Mixed venous oxygenation was higher in NO for 25 minutes following the discontinuation of anaesthesia (NO 6.3 ± 0.2–4.5 ± 0.07 versus C 4.7 ± 0.6–3.7 ± 0.3 kPa). In both groups of horses arterial oxygenation remained fairly stable; venous oxygenation declined over this time period in the NO group but still remained higher than venous oxygen in the C group. ET‐1 concentrations were higher at most time points in C than NO. Changes in other parameters were either minor or absent.Conclusions and Clinical RelevanceDelivery of iNO to healthy horses during anaesthesia results in better arterial and venous oxygenation and V/Q matching (as determined by lower Qs/Qt) and lower ET‐1 concentrations throughout a 30‐minute anaesthetic recovery period.  相似文献   

17.
The purpose of this study was to find out if an LMA (#1 LMA‐Classic) would provide a better airway than a face mask in spontaneously breathing anesthetized rabbits, and to test if it could be used for mechanically controlled ventilation. Sixteen rabbits (4.1 ± 0.8 kg, mean ± SD) were assigned randomly to three treatment groups; face mask with spontaneous ventilation (FM‐SV; n = 5), LMA with spontaneous ventilation (LMA‐SV; n = 5), and LMA with controlled ventilation (LMA‐CV; n = 6). Rabbits were anesthetized in dorsal recumbency using a circle circuit at constant ET isoflurane (2.3%, Datex airway gas monitor) and constant rectal temperature (38.85 °C) for 2 hours. PaCO2, PaO2, minute volume, tidal volume (Wright's respirometer), and Pe CO2 were measured at 15 minute intervals. Two individuals in the FM‐SV group had PaCO2 >100 mm Hg (>13.3 kPa). One rabbit in the FM‐SV had PaO2 <80 mm Hg (<10.7 kPa). All FM‐SV rabbits showed signs of airway obstruction and two were withdrawn from the study at 45 and 90 minutes, respectively, because of cyanosis. Tidal volume could not be measured in the FM‐SV group. No signs of airway obstructions were observed in either of the LMA groups. Four rabbits in the LMA‐CV group developed gastric tympany, and one of these refluxed after 110 minutes. The significance of differences between the two spontaneously breathing groups and between the two LMA groups were measured using Wilcoxon's rank sum test (with significance assumed at p < 0.05). There were no statistical differences between FM‐SV and LMA‐SV in any variable tested. PaCO2 and Pe ′CO2 were less in the LMA‐CV group than in the LMA‐SV group, while PaO2, tidal volume, and minute volume were all more. We conclude that biologically, the LMA provides a better airway than the face mask during spontaneous breathing and that it can be used for IPPV, but that gastric tympany is likely to occur during IPPV.  相似文献   

18.
ObjectiveTo describe some cardiorespiratory effects of an inspiratory-to-expiratory (IE) ratio of 1:1 compared with 1:3 in ventilated horses in dorsal recumbency.Study designRandomized crossover experimental study.AnimalsA total of eight anesthetized horses, with 444 (330–485) kg body weight [median (range)].MethodsHorses were ventilated in dorsal recumbency with a tidal volume of 15 mL kg–1 and a respiratory rate of 8 breaths minute–1, and IE ratios of 1:1 (IE1:1) and 1:3 (IE1:3) in random order, each for 25 minutes after applying a recruitment maneuver. Spirometry, arterial blood gases and dobutamine requirements were recorded in all horses during each treatment. Electrical impedance tomography (EIT) data were recorded in four horses and used to generate functional EIT variables including regional ventilation delay index (RVD), a measure of speed of lung inflation, and end-expiratory lung impedance (EELI), an indicator of functional residual capacity (FRC). Results were assessed with linear and generalized linear mixed models.ResultsCompared with treatment IE1:3, horses ventilated with treatment IE1:1 had higher mean airway pressures and respiratory system compliance (p < 0.014), while peak, end-inspiratory and driving airway pressures were lower (p < 0.001). No differences in arterial oxygenation or dobutamine requirements were observed. PaCO2 was lower in treatment IE1:1 (p = 0.039). Treatment IE1:1 resulted in lower RVD (p < 0.002) and higher EELI (p = 0.023) than treatment IE1:3.Conclusions and clinical relevanceThese results suggest that IE1:1 improved respiratory system mechanics and alveolar ventilation compared with IE1:3, whereas oxygenation and dobutamine requirements were unchanged, although differences were small. In the four horses where EIT was evaluated, IE1:1 led to a faster inflation rate of the lung, possibly the result of increased FRC. The clinical relevance of these findings needs to be further investigated.  相似文献   

19.
OBJECTIVE: To evaluate the effect of changing the mode of ventilation from spontaneous to controlled on the arterial-to-end-tidal CO2 difference [P(a-ET)CO2] and physiological dead space (VD(phys)/VT) in laterally and dorsally recumbent halothane-anesthetized horses. STUDY DESIGN; Prospective, experimental, nonrandomized trial. ANIMALS: Seven mixed breed adult horses (1 male and 6 female) weighing 320 +/- 11 kg. METHODS: Horses were anesthetized in 2 positions-right lateral and dorsal recumbency-with a minimum interval of 1 month. Anesthesia was maintained with halothane in oxygen for 180 minutes. Spontaneous ventilation (SV) was used for 90 minutes followed by 90 minutes of controlled ventilation (CV). The same ventilator settings were used for both laterally and dorsally recumbent horses. Arterial blood gas analysis was performed every 30 minutes during anesthesia. End-tidal CO2 (PETCO2) was measured continuously. P(a-ET)CO2 and VD(phys)NT were calculated. Statistical analysis included analysis of variance for repeated measures over time, followed by Student-Newman-Keuls test. Comparison between groups was performed using a paired t test; P < .05 was considered significant. RESULTS: P(a-ET)CO2 and VD(phys)/VT increased during SV, whereas CV reduced these variables. The variables did not change significantly throughout mechanical ventilation in either group. Dorsally recumbent horses showed greater P(a-ET)CO2 and VD(phys)/VT values throughout. PaCO2 was greater during CV in dorsally positioned horses. CONCLUSIONS AND CLINICAL RELEVANCE: Changing the mode of ventilation from spontaneous to controlled was effective in reducing P(a-ET)CO2 and physiological dead space in both laterally and dorsally recumbent halothane-anesthetized horses. Dorsal recumbency resulted in greater impairment of effective ventilation. Capnometry has a limited value for accurate estimation of PaCO2 in anesthetized horses, although it may be used to evaluate pulmonary function when paired with arterial blood gas analysis.  相似文献   

20.
Effects of intermittent positive pressure ventilation (IPPV) on cardiopulmonary function were evaluated in horses anesthetized with total intravenous anesthesia using constant rate infusions of medetomidine (3.5 µg/kg/hr), lidocaine (3 mg/kg/hr), butorphanol (24 µg/kg/hr) and propofol (0.1 mg/kg/min) (MLBP-TIVA). Five horses were anesthetized twice using MLBP-TIVA with or without IPPV at 4-week interval (crossover study). In each occasion, the horses breathed 100% oxygen with spontaneous ventilation (SB-group, n=5) or with IPPV (CV-group, n=5), and changes in cardiopulmonary parameters were observed for 120 min. In the SB-group, cardiovascular parameters were maintained within acceptable ranges (heart rate: 33–35 beats/min, cardiac output: 27–30 l/min, mean arterial blood pressure [MABP]: 114–123 mmHg, mean pulmonary arterial pressure [MPAP]: 28–29 mmHg and mean right atrial pressure [MRAP]: 19–21 mmHg), but severe hypercapnea and insufficient oxygenation were observed (arterial CO2 pressure [PaCO2]: 84–103 mmHg and arterial O2 pressure [PaO2]: 155–172 mmHg). In the CV-group, normocapnea (PaCO2: 42–50 mmHg) and good oxygenation (PaO2: 395–419 mmHg) were achieved by the IPPV without apparent cardiovascular depression (heart rate: 29–31 beats/min, cardiac output: 17–21 l /min, MABP: 111–123 mmHg, MPAP: 27–30 mmHg and MRAP: 15–16 mmHg). MLBP-TIVA preserved cardiovascular function even in horses artificially ventilated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号