首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 593 毫秒
1.
以缺铁的石灰性紫色土为供试土壤进行盆栽实验,选用三株慢生型花生根瘤菌Spr3 5、Spr3 7、Spr4 5及gusA和celB标记的菌株gusA3 5、gusA3 7、gusA4 5、celB3 5、celB3 7、celB4 5接种天府9号花生。通过标记根瘤菌形成的根瘤能与检测试剂产生颜色反应的特征,检测施铁肥及施不同浓度的铁肥对花生 根瘤菌有效性和竞争性的影响。结果发现:缺铁的石灰性紫色土上单施铁肥、单接种根瘤菌、接种根瘤菌配施铁肥均能促进花生与根瘤菌的共生固氮效应和竞争结瘤能力,但接种根瘤菌配施铁肥的效果最好,单接种根瘤菌的效果次之,单施铁肥的效果差。喷施0 .2 %硫酸亚铁溶液的效果比0 .3%的好。植株全氮含量和叶绿素含量都是指示共生固氮效应的重要指标,与花生产量间存在极显著的相关性,相关系数分别为0 .76 3和0 .795。gusA和celB两种标记方法检测的结果基本一致,两种标记根瘤菌的平均占瘤率分别为79.6 4 %、75 .6 2 %、74 .4 1%。供试菌株中Spr4 5的有效性和竞争性最强,Spr3 7次之,Spr3 5最差  相似文献   

2.
施氮和接种根瘤菌对红壤旱地花生生长及氮素累积的影响   总被引:1,自引:0,他引:1  
为探讨南方红壤旱地施氮和接种根瘤菌对花生生长和氮素累积的影响,以花生品种粤油256为材料,采用田间随机区组试验,设置9个处理:不施氮肥(N0)、50%施氮量(N_(50%))、75%施氮量(N75%)、100%施氮量(N_(100%),当地习惯施氮量135 kg·hm~(-2))、125%施氮量(N_(125%))、150%施氮量(N_(150%))、50%施氮量+接种根瘤菌(N_(50%)+RI)、75%施氮量+接种根瘤菌(N_(75%)+RI)、100%施氮量+接种根瘤菌(N_(100%)+RI),研究花生的生长发育状况、产量提升水平、氮素累积特征及氮肥利用效率。结果表明,在红壤旱地上适量施氮会促进花生生长,过量施氮会产生不利影响。单施氮肥时的增产幅度在9.8%~13.5%之间,以N75%的产量最高,为4 651.0 kg·hm~(-2)。合理施氮配合接种根瘤菌对花生的生长发育促进明显,所有处理中以N75%+RI的产量最高,达到5 169.1 kg·hm~(-2),但施氮不足(N_(50%))时接种根瘤菌的效果微弱。所有处理的花生氮素累积均可用Logistic方程拟合,适量施氮(≤N75%)可以提高花生氮素累积的最大速率vmax,使之出现时间tmax略有提前,但氮素快速累积的持续时间Δt较短;过量施氮(N100%)会使Δt过长,v_(max)降低、t_(max)推迟;而适量施氮配合接种根瘤菌处理的v_(max)较高,tmax出现时间及Δt时长适中。所有处理中以N75%+RI的氮肥农学利用率和吸收利用率最高,其氮肥偏生产力和生理利用率也较高,因此,本试验条件下以施氮101.25 kg·hm~(-2)(N75%)配合接种根瘤菌的效果最佳。本研究结果为我国南方红壤区花生的高产高效种植、科学合理施肥提供了理论依据。  相似文献   

3.
应用GUS基因标记技术,可简便、快速、准确、原位、直观地确定标记花生根瘤菌株形成的根瘤,从而方便地研究标记菌株与土著根瘤菌的竞争结瘤能力。无氮水培试验表明,标记菌株gusA4-5、gusA2-9分别与土著菌混和接种占瘤率为71.4%、77.0%。盆栽试验表明,接种供试菌株Spr4-5、Spr2-9占瘤率分别为57.9%、63.0%,比对照极显著增产52.5%、22.7%;接种Spr4-5比Spr2-9极显著增产24.2%。初步说明两个供试菌株的竞争结瘤力比土著根瘤菌强,菌株Spr2-9强于Spr4-5;Spr4-5比Spr2-9有效性高,是结瘤适量,竞争结瘤能力强的高效菌株。  相似文献   

4.
Mo与花生根瘤菌的复合菌剂对盛花期花生生长的影响   总被引:2,自引:0,他引:2  
通过盆栽试验分析了"Mo+花生根瘤菌Spr2-9"复合菌剂对花生盛花期生长的影响.结果表明:(1)单接种Spr2-9(R1)能明显或显著增加植株干重、叶绿素和全氮量,分别比相应对照增加10.0%,14.6%,37.0%.(2)复合菌剂处理(R2,R3,R4)的占瘤率随钼浓度增大而增大,平均单瘤重随钼浓度增大显著降低,而总瘤数、全氮、叶绿素含量、植株干重随钼浓度的变化不显著.(3)钼能显著促进盛花期无菌处理(2,3,4)植株和根瘤的生长,平均单瘤重、叶绿素含量、植株干重、全氮量等随钼浓度增大显著增高,但对总根瘤数的影响不大.(4)等钼量的复合菌剂和无菌处理间,除无菌处理的单瘤重显著或明显高于复合菌剂外,其它都是复合菌剂处理高于无菌处理.表明供试根瘤菌是高效菌株,"Mo+供试根瘤菌"的复合菌剂对竞争结瘤、根瘤及植株生长有明显作用.  相似文献   

5.
花生根瘤菌与氮素化肥配合施用技术   总被引:1,自引:1,他引:1  
本文研究了花生根瘤与氮素化肥配合施用技术。盆栽,小区试验和大田示范结果证明,贫瘠土地花生接种根瘤菌与4.60kg/亩(纯N)的尿素配合施用,增产率能提高到36.8%,中产地每亩配施2kg纯N的尿素,增产率达27.2%,高产地不论是否接种根瘤菌或施氮素化肥,还是根瘤菌与氮素化肥配合施用效果均不明显。  相似文献   

6.
我国花生根瘤菌技术应用与研究进展   总被引:5,自引:1,他引:5  
周平贞  胡济生 《土壤学报》1990,27(4):353-360
花生根瘤菌技术应用与研究在我国已有30多年的历史,1949—1955年的资料已有总结。本文是总结1956—1985年的资料,30年来接种面积累积达3425.2万亩。1256次试验,增产5%以上的占试验总数90.9%;每亩增产花生10—35公斤的占试验总数81.8%。选育出一批优良菌株,其中以009、97-1和C1菌株应用面积最大,达300万亩以上。菌剂生产有固体或液体培养,用草炭吸附,每克菌剂含活菌数1—2亿。接种技术普遍采用直接拌种,也有再用石膏等球化技术,一般球化比直接拌种增产。深施接种或幼苗接种也有增产效果。细沙壤土接种效果最好。接种后用地膜覆盖可获良好增产。亩施2—3公斤氮素不影响结瘤固氮,可提高花生产量。缺磷条件下增施磷肥,能提高接种效果。用钼酸铵和根瘤菌拌种可促进菌剂的增产作用。  相似文献   

7.
探讨接种丛枝菌根(AM)真菌和根瘤菌对连作花生作用效果及可能机制,有益于缓解花生连作障碍,促进花生养分高效和持续高产。在花生典型种植区,选择有代表性的酸性砂姜黑土,设置不接种(CK)、接种AM真菌(AM)、接种根瘤菌(Rb)、双接种(AM+Rb)4个处理,采用微区试验,研究AM真菌与根瘤菌对花生生长、根系形态、养分吸收及土壤微生物特性的影响。结果表明:接种处理增加了花生第一侧枝长和分枝数,显著提高了花生根和地上部生物量、荚果重和根瘤数,其中AM+Rb处理提高效果最显著。同时AM+Rb处理的花生根系总根长、总表面积、总体积分别显著提高30.1%、20.2%和59.7%,土壤微生物总量、细菌/真菌、放线菌/真菌明显提高,不同部位氮、磷、钾、钙、镁积累量显著增加,效果优于单接种。比较AM真菌和根瘤菌2种接种方式,Rb处理的花生不同部位氮积累量较高,而AM处理的根系形态状况较好,且花生不同部位磷、钾、钙、镁吸收量较高。可见,在酸性砂姜黑土区,接种AM真菌和根瘤菌尤其是双接种有益于改善根系形态状况和根际微生物环境,增强花生养分吸收能力,从而促进花生的生长及产量的提高。  相似文献   

8.
试验结果表明,供试土壤缺钾是蕹菜生长的主要养分限制因子之一。单施有机肥无法满足蕹菜高产栽培的养分供给;在NP基础上施钾肥增产155 13%;有机-无机肥料配合施用,比单施化肥处理的增产8 57%,比单施有机肥处理的增产110 65%;蕹菜对氮、磷、钾养分的吸收率显著提高。  相似文献   

9.
试验结果表明,供试土壤缺钾是蕹菜生长的主要养分限制因子之一。单施有机肥无法满足蕹菜高产栽培的养分供给;在NP基础上施钾肥增产155.13%;有机-无机肥料配合施用,比单施化肥处理的增产8.57%,比单施有机肥处理的增产110.65%;蕹菜对氮、磷、钾养分的吸收率显著提高。  相似文献   

10.
低温对缺钼冬小麦幼苗生长的影响 II.对氮代谢的影响   总被引:1,自引:1,他引:1  
对三叶一心的缺钼冬小麦进行 24h低温处理 (-5~0℃) ,了解其对氮代谢诸方面的影响。结果显示 ,缺钼对植株全氮含量基本无影响 ,但能明显影响氮在植株各部位的分配。常温下 ,供钼显著降低植株地上部全氮含量 ,但根部全氮量明显增加 ;低温条件下 ,供钼与不施钼处理的冬小麦根部全氮量无大差别 ;无论温度如何 ,施钼与否 ,各处理地上部、根中可溶性蛋白含量均无显著差别。常温下 ,施钼显著提高地上部游离氨基酸含量 ,低温处理后 ,施钼和缺钼处理的植株地上部游离氨基酸含量均明显提高 ,且施钼处理显著高于缺钼处理。通过对硝酸还原酶活性的测定证实 ,常温下 ,钼对冬小麦体内硝酸还原酶活性无影响 ;在低温条件下 ,缺钼植株地上部、根中硝酸还原酶活性明显低于施钼植株 ,施钼植株硝酸还原酶活性能保持在较高水平。  相似文献   

11.
Foliar application of molybdenum (Mo) at 40 g ha‐1 25 days after plant emergence greatly enhanced nitrogenase and nitrate reductase activities of common bean (Phaseolus vulgaris L.), resulting in an increase in total nitrogen (N) accumulation in shoots. Application of 20 kg N ha‐1 as ammonium sulfate [(NH4)2SO4] at sowing decreased nodulation and nitrogenase activity. Rhizobium inoculation did not affect nitrogenase activity which demonstrated that Mo application increased the efficiency of native Rhizobia strains. Nitrogen amendment, either at planting (20 kg N ha‐1) or as a side dressing (30 kg N ha‐1) 25 days after plant emergence, did not affect the foliar nitrate reductase activity. Molybdenum foliar spray as ammonium molybdate [(NH4)6Mo7O242H2O] and N applied as a side dressing increased equally the total amount of N in the pods. A 10% increase in the seed N concentration was obtained with foliar application of Mo, while N applied as a side dressing had no effect on seed N concentration. An average increase of 41% in N export to the seeds was obtained by either Mo or N as side dressing. Nitrogen applied at sowing or Rhizobia inoculation had no effect on the characteristics evaluated 74 days after plant emergence. Plants that received either Mo as foliar spray or as side dressed N had similar yields. This demonstrated that, in certain soils, N fertilization may be replaced by a small amount of Mo as a foliar application.  相似文献   

12.
Abstract

Previous research has indicated that P application may influence plant Mo nutrition, and that both P and Mo are influenced by soil pH. This is of interest, since Mo is deficient in some soils and because large quantities of acidifying nitrogenous fertilizers are commonly applied in production of burley tobacco (Nicotiana tabacum L.).

Burley tobacco was grown in two experiments using Maury silt loam soil (Typic Paleudalfs) to determine the influence of soil acidity, form of N applied, and P application on plant growth and mineral nutrition. The studies were conducted in the greenhouse so that high root densities would develop and the data primarily reflect rhizosphere effects.

Ammonium application depressed rhizosphere pH 0.4 to 0.6 pH units. Nitrate nutrition raised soil pH less than 0.1 pH unit. Plants supplied NH4 exhibited slower early growth than plants supplied NO3. Several significant interactions involving soil pH, N source, P, and Mo occurred. In the first experiment, plant P was not affected by form of N applied, while in the second experiment NH4 application resulted in higher plant P concentration, both in presence and absence of applied P. Application of NH4 also increased plant weight in the second experiment. Plant P concentration was influenced by pH, being greatest at pH 6.2 and decreasing as pH levels decreased or increased. Plant Mo concentration did not differ among forms of N at pH 5.4, but at pH 7.2 was three times greater in the presence of NO3. When Mo was applied, P addition enhanced plant Mo concentration, but when Mo was not applied, P addition did not increase Mo concentration. This effect of P on Mo occurred only in the presence of N and was greater in the presence of NH4 than NO3. These observations suggest that enhancement of plant Mo nutrition by P application may be dependent on adequate levels of N being present.  相似文献   

13.
Abstract

Molybdenum (Mo) is an essential element of plants and animals and is of concern from human nutrition and environmental standpoints. Rational applications to soil of Mo in fertilizers, sewage sludges, or other soil amendments requires information of the concentrations of Mo in soils and plants. Two greenhouse experiments were conducted at Lexington, Kentucky, using surface samples of 12 soils (11 soil types) derived from diverse parent materials in Kentucky with soil pH ranging from 5.18 to 7.46. Molybdenum (Na2MoO4.2H2O) was added at rates equivalent to 0, 0.3, and 0.6 mg Mo kg‐1 soil. Tobacco (Nicotiana tabacum L., cv. Ky14) and soybean [Glycine max. (L.) Merrill cv. McCall] were grown to provide plant Mo data for Mo soil test correlations and comparisons. The primary purpose of these investigations was to determine the effect of pH of NH4‐oxalate extractant solution on the relationship of soil Mo and Mo uptake by tobacco and soybeans, and to evaluate the automated KI‐H2O2 procedure for use in determining Mo in soil extracting solutions. The mean dry weight and Mo concentration of tobacco and soybean were increased by applications of Mo fertilizer to soil in the greenhouse. Dry matter of tobacco was increased 11 to 25% and concentration of Mo from 40 to 82% by each increment of added Mo fertilizer. The results of this study suggest that many soils in Kentucky are not meeting the requirements for Mo sufficiency for tobacco and soybean plants. The average amount of soil Mo extracted by NH4‐oxalate decreased with increasing pH of extractant. Regression estimates for the relationship of Mo uptake by tobacco or soybean and extractable soil Mo show that the slope and the coefficients of determination increased with pH of NH4‐oxalate solution from pH 3.3 to 6.0 and then decreased again at pH 6.4. The greatest amounts of variation in Mo uptake by plants (67% and 20%, respectively, for tobacco and soybean) were accounted for by the soil Mo data at pH 6.0. Soil Mo values for the NH4‐oxalate extractant (pH 6.0) were related to values for anion exchange resin extractant (r2 = 0.61**), but not soil pH. However, values for anion exchange resin were more closely related to Mo uptake by tobacco (r2 = 0.86**) and soybean (r2 = 0.60**) than were values for NH4‐oxalate (r2 = 0.65** and r2 = 0.27**, respectively). Results of this study indicate that the automated KI‐H2O2 method used previously in analysis for plant Mo can be used to analyze Mo in soil extracts. Other instrumentation such as GFAAS and ICP may be effective in the analysis of extracts obtained by the NH4‐oxalate (pH 6.0) or by anion exchange resin procedures when the Mo concentration of extracts falls within the detection limits of the instrument.  相似文献   

14.
Effects of acidic minesoil on sericea lespedeza [Lespedeza juncea (L.F.) var. sericea (Mig.)] and its nitrogen (N2)‐fixing symbiotic relationship with Bradyrhizobium spp. were examined. Sericea lespedeza was grown in pots with N fertilization, without N fertilization, or with commercial Bradyrhizobium as a seed inoculant. Minesoil (pH 5.2) was fertilized with calcium (Ca), phosphorus (P), molybdenum (Mo), and potassium (K), and the pH level was adjusted to 4.8 or 4.5 with aluminum or iron sulfate [Al2(SO4)3; Fe2(SO4)3]. Minesoil was also limed to pH 6.1. Shoot dry weights, shoot N concentrations, nodule dry weights, and nodule numbers were significantly lower (P < 0.05) when inoculated plants were grown in soil at pH 4.5 and 4.8 compared to limed soil. Thus, the N2 fixation process was adversely affected below pH 5.0. Nitrogen‐fertilized plants grew well in acidified soil, and there were no significant differences in shoot dry weights of such plants among the soil acidification treatments including limed soil. Thus, the N2‐fixing symbiosis appeared to be more sensitive to acidified soil than the plant host. The effects of Al toxicity versus other factors could not be determined because Al2(SO4)3‐ and Fe2(SO4)3‐amended soils contained similar levels of toxic Al at the highest pH (4.8) that prevented N2 fixation.

Time periods required for cells of Bradyrhizobium strains to multiply by a factor of 104 were significantly longer (P ≤ 0.05) in extracts of Al2(SO4)3‐amended soil (pH 4.8 and 4.5) than in extracts of calcium carbonate [CaCO3]‐amended soil (pH 6.1). These increases suggested that reduced multiplication of Bradyrhizobium in acidified minesoils may have been at least partially responsible for the large decreases in nodulation and N2 fixation observed in these soils. It was also reasoned that the inability of existing bacteria to infect and nodulate plant roots may also have been a factor, based on the high inoculation rates used and the abilities of Bradyrhizobium cells to survive and multiply (albeit at a reduced rate) in extracts of acidified soil. Sericea lespedeza is known to tolerate soils of pH 4.5. However, results of this study suggested sericea lespedeza may not fix appreciable N2 in acidic soil below pH 5 when inoculated with commercial Bradyrhizobium, even after the establishment of lespedeza plants tolerant of such conditions.  相似文献   

15.
Bradyrhizobium species are symbiotic partners of soybean plants. However, some Bradyrhizobium bacteria do not form functional nodules on the roots of Rj4 genotype soybean cultivars. Our objective was to identify the strains of Bradyrhizobium (i.e., type C strains) that are least competent to form nodules on the roots of this plant genotype. We checked (i) previously isolated type C strains of Myanmar Bradyrhizobium elkanii (MMY6-1, MMY6-2, and MMY6-5), (ii) previously isolated type C strains of Myanmarese Bradyrhizobium spp. (MMY3-5 and MMY3-7), and (iii) strain Is-34 of B. japonicum, for nodule formation when associated with Rj4 and other Rj genotype soybeans. Strains in groups (i), (ii), and (iii) are known to be incompatible with Rj4 soybean genotypes. MMY3-5 and MMY3-7 produced functional nodules when associated with Rj4 and other Rj genotype soybean cultivars, except Hill (Rj4) cultivar. The ratios of ineffective nodule numbers/total nodule numbers (I/T ratios) for MMY6-1, MMY6-2, MMY6-5, and Is-34 in association with Rj4 soybean cultivars were > 0.5, demonstrating incompatibility between these bacterial strains and the Rj4 genotype. Interestingly, the I/T ratios of MMY6-1 and MMY6-2 were higher than that of Is-34 in almost all Rj4 soybean cultivars. Thus, the nodule-forming abilities of the B. elkanii strains MMY6-1 and MMY6-2 were strongly suppressed in Rj4 soybean cultivars; these strains may therefore be useful to identify the Rj4 genotype in soybean cultivars.  相似文献   

16.
A pot experiment was carried out to study the growth and pungency of Allium fisutulosum grown in Perlite as affected by colonization by the arbuscular mycorrhizal (AM) fungi Glomus etunicatum, Glomus vesiforme, and by ammonium (NH+ 4 ):nitrate (NO? 3 ) ratios of 5:95, 50:50, and 95:5 in 4 mM solutions. Plants were grown in a greenhouse for 20 weeks and then harvested. In general, NH+ 4 :NO? 3 ratio of 50:50 supplied resulted in the highest shoot dry weight regardless of non-mycorrhizal and mycorrhizal plants while the effect of inoculation treatment on plant biomass was not significant. The plant sulfur (S) concentrations were usually higher in mycorrhizal plants than controls irrespective of nitrogen ratio and therefore inoculation with G. etunicatum increased the enzyme produced pyruvic acid (EPY) while inoculation with G. versiforme decreased the EPY compared with the non-mycorrhizal plants. In general, shoot pungency was lowest when NH+ 4 :NO? 3 ratio of 95:5 supplied irrespective of mycorrhizal treatment. Colonization by both AM fungi made a substantial contribution to spring onion sulfur nutrient status but show different way on flavor characteristics of host plants.  相似文献   

17.
Summary We investigated the reliability of antibiotic resistance and colony morphology of clones of a Bradyrhizobium sp. (Lotus) strain for strain identification in nodulation competitiveness experiments in soil. There was no difference in nodulation competitiveness between the wild type strain and each of five mutants resistant to streptomycin and spectinomycin at the time of their isolation from antibiotic-containing media. However, these mutants were significantly less competitive when tested 4 months later. The apparent instability of the newly isolated mutants and their subsequently decreased nodulation competitiveness show that mutants must be examined carefully after being allowed time to stabilize. Two clones of the Bradyrhizobium sp. (Lotus) strain that differed in colony morphology on yeast mannitol medium did not differ in antigenic properties, whole cell protein electrophoresis profiles, mean cell generation times in yeast mannitol medium, N2-fixing ability, nodulation of Lotus pedunculatus in growth pouches, or in nodulation competitiveness. Both clones retained their colony morphology after numerous transfers on yeast mannitol agar over 3 years and after at least 6 months in soil. A limiting factor, which may restrict the use of colony morphology as a marker for strain identification in competition experiments, is the problem of detecting double-infected nodules when the small colony type comprises a relatively small portion of the total nodule population.  相似文献   

18.
ABSTRACT

Low concentrations of P and organic manure in savanna soils limit cowpea response to rhizobia. The study was conducted to determine the combined effect of P and organic manure on cowpea response to rhizobia in a factorial experiment arranged in randomized complete block design with three replications on smallholder farmers’ fields in northern Ghana in 2015. The factors were two levels of Bradyrhizobium inoculant, two levels of P fertilizer, three treatments of manure (fertisoil, cattle manure, and no manure). Addition of Bradyrhizobium inoculant to P and fertisoil significantly increased shoot biomass yield from 1677 kg ha?1 in the plots without Bradyrhizobium inoculation to 1913 kg ha?1. Likewise, the addition of Bradyrhizobium inoculant to P and cattle manure significantly increased shoot biomass from 1437 kg ha?1 to 1813 kg ha?1. Grain yield increases of 1427 and 1278 kg ha?1 were obtained over the control when either fertisoil or cattle manure and P, respectively, were added to Bradyrhizobium inoculant. The value cost ratio for adding Bradyrhizobium inoculant to phosphorus and fertisoil was two indicating that it could be attractive to risk-averse smallholder farmers. The study demonstrated the potential of the combined application of organic matter and P to improve cowpea response to Bradyrhizobium inoculation.  相似文献   

19.
Bradyrhizobium sp. (Vigna) strain S24 interacted differentially with eight vesicular-arbuscular mycorrhizal (VAM) fungi and caused significant variations in nodulation and growth parameters of green gram. Coinoculation with Scutellospora calospora resulted in the highest nitrogenase activity and dry biomass. The nodulation competitiveness of strain S24 was significantly higher (60–63%) in the presence of Glomus mosseae, G. fasciculatum and Scutellospora calospora when compared to treatment with single inoculation of S24 (51%). Percentage VAM colonization was higher in treatments having higher nocule occupancy of introduced strain (S24). Received: 26 June 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号