共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
3.
针对鱼类识别面临着光照强度、各背景栖息地的变化和不同物种在视觉上具有相似性等方面的问题,提出一种新的基于多特征相结合及粒子群优化SVM的鱼类分类方法。该方法采用在原始图像中提取颜色、方向梯度直方图(HOG)和灰度共生矩阵(GLCM)特征构成特征向量,并提出选择设置最佳权重比的方法进行特征融合,采用PCA技术对提取的特征向量进行降维,以消除冗余数据。结果表明,该方法在实际采集的数据集上的准确率达94.7%,同属类鱼识别最高准确率93.75%,该方法可以应用于实际的鱼类图像数据集,实现对鱼类生物多样性的有效监测。 相似文献
4.
基于SVM-DS多特征融合的杂草识别 总被引:11,自引:0,他引:11
为解决单一特征识别杂草的低准确率和低稳定性,提出一种支持向量机(SVM)和DS(Shafer-Dempster)证据理论相结合的多特征融合杂草识别方法.在对田间植物图像处理的基础上,提取植物叶片形状、纹理及分形维数3类特征,分别以3类单特征的SVM分类结果作为独立证据构造基本概率指派(BPA),引入基于矩阵分析的DS融合算法简化决策级融合算法复杂度,根据融合结果及分类判决门限给出最终的识别结果.实验结果表明,多特征决策融合识别方法正确识别率达到96.11%,与单特征识别相比有更好的稳定性和更高的识别率. 相似文献
5.
利用叶片形状特征区分杂草和作物是杂草识别的一个重要方法。为了提高杂草识别的精度和效率,通过形态学运算和基于距离变换的阈值分割方法分离交叠叶片,从单个叶片中提取包括几何特征和矩特征的17个形状特征,用蚁群优化(ACO)算法和支持向量机(SVM)分类器进行特征选择和分类识别,选取有利于分类的较优特征并实现特征的优化组合。棉田杂草试验结果表明,该方法能实现分类特征的有效缩减,经优化组合得到的最优特征子集用于杂草识别的准确率达95%以上,识别率高,稳定性好,对识别杂草时如何兼顾准确率和实时性具有参考意义。 相似文献
6.
7.
8.
9.
基于PCA—SVM的棉花出苗期杂草类型识别 总被引:3,自引:0,他引:3
为了实现棉田中不同类型杂草的机器视觉识别,提出基于主成分分析和支持向量机的棉花出苗期杂草识别方法。该方法通过提取棉田图像中棉花和杂草的颜色、形状、纹理等特征,并利用主成分分析(PCA)降低特征变量空间维数,结合支持向量机,实现对棉田杂草类型分类。通过120个棉花杂草测试样本分类试验结果发现,经PCA降维得到的前3个主成分分量能有效减少支持向量机的训练时间和提高分类正确率;通过对比发现前3个主成分分量与径向基核函数支持向量机相结合效果最好,其训练时间为91 ms,平均分类正确率达98.33%。 相似文献
10.
11.
12.
从实时性和多特征的综合角度出发,基于虚拟仪器技术的软硬件平台,提出了一种颜色和形态特征相结合的棉田杂草实时识别与定位的方法.在HIS 颜色模型中,以色度H为特征量,用Otsu算法自动取阈值法将植物与背景分离;利用植株的形态特征,结合形态学腐蚀、膨胀方法及骨架长度与面积比得到的识别方法,将棉苗和杂草分离.同时,通过对图像的特征分析和坐标变换,完成准确定位,得到中心坐标等物理参数,从而为后续株间除草机器人控制系统的研究提供重要依据.系统采用Labview和NI-Vision软件平台搭建,多幅杂草图像研究结果表明:该系统杂草的正确识别率平均为85.32% ,处理1幅1024*768的图像平均只需196ms ,识别速度能满足实时除草要求. 相似文献
13.
14.
基于概率神经网络的玉米苗期杂草识别方法的研究 总被引:2,自引:0,他引:2
提出了一种基于计算机视觉技术和概率神经网络技术的玉米幼苗和杂草识别方法.首先利用类间方差最大自动阈值法对杂草图像的修正的超绿特征进行二值化处理;然后提取目标对象的形状特征参数作为输入向量,由概率神经网络(PNN)分类器识别出玉米幼苗.试验结果表明,该方法的有效性,对不同田间环境的玉米幼苗与杂草的准确识别率分别为92.5%和95%,效果优于使用BP网络. 相似文献
15.
针对实际稻田环境中水稻与杂草相互遮挡、难以准确区分的问题,提出一种基于改进DeepLabv3+的水稻杂草识别方法。以无人机航拍的复杂背景下稻田杂草图像为研究对象,在DeepLabv3+模型的基础上,选择轻量级网络MobileNetv2作为主干特征提取网络,以减少模型参数量和降低计算复杂度;融合通道和空间双域注意力机制模块,加强模型对重要特征的关注;提出一种基于密集采样的多分支感受野级联融合结构对空洞空间金字塔池化模块(ASPP)进行改进,扩大对全局和局部元素特征的采样范围;对模型解码器部分进行改进。设置消融试验验证改进方法的有效性,并与改进前DeepLabv3+、UNet、PSPNet、HrNet模型进行对比试验。试验结果表明,改进后模型对水稻田间杂草的识别效果最佳,其平均交并比(MIoU)、平均像素准确率(mPA)、F1值分别为90.72%、95.67%、94.29%,较改进前模型分别提高3.22、1.25、2.65个百分点;改进后模型内存占用量为11.15 MB,约为原模型的1/19,网络推算速度为103.91 f/s。结果表明改进后模型能够实现复杂背景下水稻与杂草分割,研究结果可... 相似文献
16.
17.
18.
19.
基于颜色特征与多层同质性分割算法的麦田杂草识别 总被引:1,自引:0,他引:1
针对杂草与小麦叶子交叠的情况,提出了一种利用改进的多层同质性分割算法,并综合颜色与形态特征的杂草识别方法。在颜色空间YIQ,选取I作为特征量并用改进的最大类间方差法分离植物与背景;在颜色空间HSI,选取I的同质性量和S作为特征量进行多层同质性分割分离小麦与杂草;最后结合形态学特征开闭运算滤波及二值逻辑与运算获得杂草图像;通过模拟化学除草系统,从理论上评价整个系统的除草效率。试验结果表明,杂草正确识别率达92.6%,单幅图像除草剂的减少率在35%~50%,小麦田的除草剂减少率超过78.7%。 相似文献