首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A paired watershed manipulation study was conducted to study the qualitative and quantitative impacts of elevated acidic precipitation on the chemistry of soils, soil water, and stream water. The Bear Brook Watershed, Maine (BBWM) is drained by two first order streams, East Bear Brook and West Bear Brook. The streams were chemically and hydrologically monitored for two years (1987–1989) and exhibited similar behavior. The West Bear watershed was then chemically manipulated with the bimonthly addition of (NH4)2SO4 (150 mol ha?1 per application). To assess whether changes in stream water chemistry occurred following the chemical manipulation, and if so when, Randomized Intervention Analysis (RIA) was performed using time-paired data from the two watersheds. RIA, along with autocorrelation analysis, statistically evaluates the behavior of the various analytes under the influence of artificial acidification and therefore provided an objective basis for determining whether changes in the geochemical behavior of West Bear Brook were temporally associated with the chemical manipulation. RIA analysis using weekly data yielded higher probabilities of stream water chemistry effects being temporally linked with the manipulation than RIA analysis using monthly data. Using monthly data, there is a lower probability that short-term excursions in water chemistry related to hydrology can be detected. According to RIA analysis of weekly data for three years of manipulation (1989–1992), the statistically-determined order of impact on water chemistry was (K+, Mg2+, Na+, Ca2+, total Al, pH, SO 4 2? , NO 3 ? , DOC)>Si>Cl?. Autocorrelation analysis indicated that several analytes exhibited increasingly deterministic behavior, including SO 4 2? , base cations, and DOC. Both RIA and autocorrelation analysis indicated no temporal relationship between the manipulation and hydrology.  相似文献   

2.
The effects of watershed-scale experimental acidification on the macronutrient content and decomposition of sugar maple (Acer saccharum Marsh) leaves were investigated. Bear Brook Watershed in Maine (BBWM) is a paired forest watershed study where the West Bear (WB) watershed has been treated bi-monthly with 1800 eq ha?1 yr?1 of (NH4)2SO4 since 1989, and the adjacent East Bear (EB) watershed has acted as a reference. Leaf samples collected from the treated WB watershed had significantly higher concentrations of N and P than leaves from the reference EB watershed. Leaves from both watersheds were decomposed for a 10-day laboratory incubation. Extractable total soluble carbon (CTS) content of the leaves decreased following decomposition to a greater extent in WB leaves than in EB leaves. Spectroscopic and chromatographic chemical analyses indicated similar chemical properties for the fresh WB and EB WEOM. However, after decomposition, the WB WEOM was more humified as compared to EB WEOM indicating that the watershed treatment resulted in leaves which were more biodegradable than those in the reference watershed. Multi-dimensional fluorescence spectroscopy with parallel factor analysis (PARAFAC) modeled five components: tyrosine-like, three humic substance-like, and terrestrial/anthropogenic associated-like fluorophores. Following decomposition, the relative concentrations of two of the humic-associated components increased to a significantly greater extent for WB than for EB WEOM. These observations were consistent with greater decomposition-related changes to the WEOM from WB samples relative to EB samples. Pearson correlation analysis showed that foliar N and P concentrations were positively correlated with indices of humification. Adsorption of WEOM to goethite and gibbsite was significantly greater for decomposed WB WEOM than EB WEOM. These results demonstrate that greater leaf N and P contents can increase short-term decomposition, accelerate production of more humic-like WEOM, and thereby potentially influence the distribution of organic matter within the soil carbon pool.  相似文献   

3.
An understanding of the biogeochemistry of aluminum (Al) in acid-sensitive terrestrial and aquatic ecosystems is critical to assessments of the effects of acidic deposition. Bear Brook Watershed, Maine, USA includes paired watersheds, East Bear and West Bear. Starting in November 1989, experimental additions of ammonium sulfate ((NH4)2SO4; 900 mol/ha-yr) have been made to West Bear Brook Watershed. Chemical analysis of soil and stream waters were conducted to evaluate the speciation of Al prior to (1987–89) and following (1989–92) the experimental treatments. Before the treatments, soilwater Al occurred largely as inorganic monomeric Al (Ali). Concentrations of organic monomeric Al (Alo), Ali and dissolved organic C (DOC) were high in soil solutions draining the E horizon, and decreased in the lower mineral soilwater (Bs horizon) and streamwater. Streamwater concentrations of monomeric Al (Alm) were largely in the form of Alo. After the (NH4)2SO4 treatments were initiated in the West Bear Brook Watershed, concentrations of Alm increased in soilwater and streamwater, largely as Ali. These increases in Al accompanied decreases in pH and increases in concentrations of SO4 2? and NO3 ? in drainage waters. Increases in stream concentrations of Al were particularly evident during high flow events. This pattern, coupled with the increases in concentrations of Ali in upper soilwaters in response to the (NH4)2SO4 addition, suggests that episodic increases in Ali were due to inputs of water entering the stream from shallow hydrologic flowpaths.  相似文献   

4.
Long‐term monitoring data from eastern North America and Europe indicate a link between increased dissolved organic carbon (DOC) concentrations in surface waters over the last two decades and decreased atmospheric pollutant and marine sulphur (S) deposition. The hypothesis is that decreased acidity and ionic strength associated with declining S deposition has increased the solubility of DOC. However, the sign and magnitude of DOC trends have varied between sites, and in some cases at sites where S deposition has declined, no significant increase in DOC has been observed, creating uncertainty about the causal mechanisms driving the observed trends. In this paper, we demonstrate chemical regulation of DOC release from organic soils in batch experiments caused by changes in acidity and conductivity (measured as a proxy for ionic strength) associated with controlled SO42? additions. DOC release from the top 10 cm of the O‐horizon of organo‐mineral soils and peats decreased by 21–60% in response to additions of 0–437 µeq SO42? l?1 sulphuric acid (H2SO4) and neutral sea‐salt solutions (containing Na+, Mg2+, Cl?, SO42?) over a 20‐hour extraction period. A significant decrease in the proportion of the acid‐sensitive coloured aromatic humic acids (measured by specific ultra‐violet absorbance (SUVA) at 254 nm) was also found with increasing acidity (P < 0.05) in most, but not all, soils, confirming that DOC quality, as well as quantity, changed with SO42? additions. DOC release appeared to be more sensitive to increased acidity than to increased conductivity. By comparing the change in DOC release with bulk soil properties, we found that DOC release from the O‐horizon of organo‐mineral soils and semi‐confined peats, which contained greater exchangeable aluminium (Al) and had lower base saturation (BS), were more sensitive to SO42? additions than DOC release from blanket peats with low concentrations of exchangeable Al and greater BS. Therefore, variation in soil type and acid/base status between sites may partly explain the difference in the magnitude of DOC changes seen at different sites where declines in S deposition have been similar.  相似文献   

5.
Equilibrium studies on soil require reliable estimates of ion concentrations in the soil solution under field conditions. We evaluated the previously described iterative method to approximate the equilibrium soil solution (ESS) with four acid forest soils. We examined for which ions the ESS is suitable, making use of the fact that concentrations in water extracts are functions of the soil: solution ratio. The electric conductivity, pH, and the concentrations of base cations, Mn2+, NO?3, SO42+, and dissolved organic carbon (DOC) were usually linear with the soil:solution ratio in water extracts, whereas no relation was observed for Al (with one exception) and Fe. Assuming that the ESS can be attributed the soil solution ratio of the field moist soil at the time of sampling, concentrations appeared as the continuation of the linear relation with the soil: solution ratio for base cations, pH, and the electric conductivity. This indicates that the ESS actually represents field conditions for these solution properties. For Al water extracts allowed no evaluation of the ESS result. The ESS underestimated SO42? concentrations under field conditions, presumably because the lack of DOC in the solutions added distorts the balance amongst anions.  相似文献   

6.
Increased concentrations of solutes in drainage waters following forest clearcutting may affect downstream water quality. The objective of this study was to evaluate some of the processes regulating concentrations of trace metals and Fe in soil solutions and streamwater in a clearcut watershed by determining changes in metal release by soil horizon, stand vegetation and elevation. Commercial whole-tree harvesting of a watershed at the Hubbard Brook Experimental Forest, NH, U.S.A. resulted in increased loss of NO inf3 sup? from the study watershed. This N0 inf3 sup? loss resulted in acidification of soil solutions, which was associated with release of Mn and Zn from mineral soil to soil solutions and streamwater. Significant correlations of Pb and Fe with dissolved organic C (DOC) suggested that mobilization of these metals was linked to DOC transfer. However, there was little evidence of increased release of DOC, Fe, or Pb following the whole-tree harvest, except in a high elevation spruce-fir zone with shallow soils.  相似文献   

7.
Iodine-129 is an important radionuclide released from nuclear facilities because of its long radioactive half-life and its environmental mobility. Its retention in surface soils has been linked to pH, organic matter, and Fe and Al oxides. Its inorganic solution chemistry indicates I will most likely exist as an anion. Three investigations were carried out to provide information on the role of the inorganic and organic chemistry during sorption of I by soil. Anion competition using Cl? showed that anion exchange plays a role in I sorption in both mineral and organic soils. The presence of Cl decreased the loss of I? from solution by 30 and 50% for an organic and a carbonated sandy soil respectively. The I remaining in solution was associated primarily with dissolved organic carbon (DOC). The loss rate from solution appears to depend on two reactions of I with the soil solids (both mineral and organic) creating both a release to and a loss from solution, and the reaction of I with the DOC (from very low to high molecular weight). Composition analyses of the pore water and the geochemical modelling indicate that I sorption affects the double-charged anion species in solution the most, particularly SO4 ?. Iodide introduced to natural bog groundwater at three concentrations (10?3, 10?1 and 10 meq L?1) remained as I? and was not lost from solution quickly, indicating that the association of I with DOC is slow and does not depend on the DOC or I concentration. If sorption of I to soil solids or DOC is not sensitive to concentration, then stable I studies, which by necessity must be carried out at high environmental concentrations, can be linearly extrapolated to radioactive I at much lower molar concentrations.  相似文献   

8.
In order to evaluate micro-scale heterogeneities 55 micro suction cups were placed in an array at 15 mm intervals in a profile face of a cambic podzol. The chemistry of soil solution (mineral anions, pH, UV absorption as a measure for DOC) was compared with solid-phase properties from soil samples (2 cm3 volume), which had surrounded the suction cups. Sequential extraction techniques (water, NF4Cl, hydroxylamin-hydrochloride, citrate-bicarbonate, oxalate, dithionite-citrate-bicarbonate) and base titrations were applied to characterize the solid phase. Although the average soil solution concentrations between horizons often differed significantly, the spatial distributions of pH and SO42? did not correlate with soil horizon borders. Even if concentration isolines and soil horizon borders were parallel, marked concentration gradients could be observed within individual soil horizons. The less intense the interaction between solute ion and soil matrix, the greater was the variation in solution concentration within a soil horizon. For the soil solid phase only a weak correlation of slow buffer reactions to soil horizons was found. The distribution of extractable Fe and Al was typical for a podzol profile, however, with very steep gradients within single soil horizons. Except for pH, which was related mainly to citrate-bicarbonate extractable aluminium, no solid-phase characteristic showed a clear correlation with soil solution chemistry.  相似文献   

9.
Loss of soil nutrients due to disturbance may serve as an index of the homeostasis of biogeochemical cycling and ecosystem stability. Soil and the surrounding root system were disturbed during the installation of Soil Containment Systems (SCSs) in the hill slope at the Bear Brook Watershed in Maine (BBWM). The SCSs were constructed from high density PVC pipe (24 cm i.d. and 30 cm height) implanted at field. Leachate cations and anions, soil organic matter and exchangeable cations were analyzed. Leachate NO3 ? was higher by an order of magnitude compared to undisturbed soils from the same research site and other hardwood forest soils in the northeast U.S. The concentrations of cations in the leachate from SCSs were also higher and loss of NO3 ? was positively correlated with the loss of most cations. Calcium was the dominant cation representing 55% of the base cation composition of soil leachate. Monthly losses of Ca2+, Mg2+ and K+ were 1.8, 1.6 and 1.2% of total exchangeable pools, respectively. Disturbance of the BBWM soil ecosystem caused high rates of NO3 ? leaching which markedly changed the soil biogeochemistry. These results and other supporting data from watershed mass balances and experimental chemical additions suggest that BBWM may be N saturated.  相似文献   

10.
Longitudinal and temporal variations in water chemistry were measured in several low-order, high-elevation streams in the Great Smoky Mountains to evaluate the processes responsible for the acid-base chemistry. The streams ranged in average base flow ANC from ?30 to 28 μeq L?1 and in pH from 4.54 to 6.40. Low-ANC streams had lower base cation concentrations and higher acid anion concentrations than did the high-ANC streams. NO3 ? and SO4 2? were the dominant acid anions. NO3 ? was derived from a combination of high leaching of nitrogen from old-growth forests and from high rates of atmospheric deposition. Streamwater SO4 2? was attributed to atmospheric deposition and an internal bedrock source of sulfur (pyrite). Although dissolved Al concentrations increased with decreasing pH in the study streams, the concentrations of inorganic monomeric Al did not follow the pattern expected from equilibrium with aluminum trihydroxide or aluminum silicate phases. During storm events, pH and ANC declined by as much as 0.5 units and 15 μeq L?1, respectively, at the downstream sites. The causes of the episodic acidification were increases in SO4 2? and DOC.  相似文献   

11.
In the absence of SO infin4 sup= and NO inf3 su? in precipitation, the pH of precipitation is primarily a function of CO2?20 equilibria. Soil CO2 and organic acids, acquired during descent through soil profiles, augment the dissolving capacity of the solutions which initially may have a pH of 4 or lower. The recent man-related increase of H2SO4 and HNO3 in rainfall results in a significant lowering of pH in incident precipitation and an increase in corrosiveness of soil solutions. H2SO4 and HNO3 may contribute some Eh buffering capacity. Particularly susceptible to these changes are clay minerals and redox sensitive elements such as Fe, Mn, Ni, and Co. The overall chemical weathering trends associated with increased acidity of rainfall will be de-stabilization and eventual solution of clay minerals (and the loss of their cation exchange capacity), increased rates of chemical denudation, and solution of illuvial Fe and Al oxides and hydroxides. The latter results in the loss of the adsorbed and coprecipitated metal trace elements associated with these highly reactive phases. The general result in soils developed on non-carbonate substrates is a tendency toward extensive podsolization, with associated decrease in clay minerals, loss of cation exchange capacity, and decrease in fertility.  相似文献   

12.
A model deciduous forest soil (Schaffenaker loamy sand) was treated for 8 mo in the greenhouse in 25 cm reconstructed columns with simulated throughfall at pH 6.0 or 4.0, and SO4 2? levels of 12.8 or 24.8 mg L?1. Red oak seedlings grown in the microcosms showed no growth or foliar element response to the treatments. Sulfate loading had a greater impact on soil and leachate chemistry than pH. Higher available soil P in the A, horizon was associated with the pH 6.0 and high SO4 2?2 treatment combination. High SO4 2? loading also reduced exchangeable K+ in the A1?. Other soil horizons were unaffected by either treatment. Leachate chemistry was not significantly altered by througfall pH, but significantly greater export of Na+, Ca2+, Mg2+, Al3+, and NO3 ?, and lower SO4 2? loss, occurred with low SO4 ? input. Comparatively half as much NO3 ? loss was associated with high SO4 2? deposition. The high rate of NO3 ? leaching appeared responsible for greater equivalent mass loss of cations from the low SO4 2? treatment. Leachate removal of SO4 2? approximated input after 8 mo. The capacity of this soil to adsorb SO4 2? appeared relatively limited in the absence of normal element cycling. The sulfate component of simulated deciduous forest throughfall was shown to have a potentially greater impact than pH on ion leaching from forest soil. Additional consideration of the role of SO2? 4 deposition, in the context of throughfall rather than incident precipitation, is warranted in studies of acidic deposition effects on internal forest soil processes.  相似文献   

13.
A field experiment was designed to evaluate the effects of differing forms of acidifying S and N compounds on the chemistry of soils and soil solutions in a low elevation coniferous forest in northern New England. Treatments consisted of O, 1500, 3000, and 6000 eq of SO4 2? or NO3 ? ha?1 for the 1987 growing season applied biweekly as H2SO4 or HNO3, or in a single application as dry] (NH4)2SO4. Acidifying treatments resulted in a significant increase in soil solution SO4 2? (1.2 to 2.6) or NO3 ? (12 to 80) in the upper B horizon. Excess strong acid anion leaching was associated with an accelerated loss of base cations, particularly MG2+ As solutions passed through the upper 25 cm of the soil profile, mean SO4 2? concentrations decreased by 5 to 50% of the initial values, indicating that much of the applied SO4 2? was immobilized in the upper portion of the pedon. Elevated concentrations of adsorbed and water-soluble SO4 2? indicate that abiotic adsorption of SO4 2? by soils is the dominant mechanism for the initial attenuation of SO4 2? concentrations in these solutions. Other soil properties showed only small or no change due to treatments over the single growing season of this study. These results indicate that H2SO4, HNO3, and (NH4)2SO4 can all effectively increase strong acid anion concentrations in the soil-soil solution system.  相似文献   

14.
Chemistry of aqueous Al in a podzol on a Norway spruce (Picea abies [L.] Karst.) site in the Black Forest (SW Germany) and changes induced by experimental applications of MgSO4 were studied. Soil solution taken from the O, E and BC horizons were analyzed for the fractions ‘labile monomeric Al’, ‘non-labile monomeric Al’, and ‘acid-reactive Al’. The activities of ‘inorganic monomeric Al’ species and the saturation indices (SI) of the soil solution with respect to Al-bearing minerals were calculated using the equilibrium speciation model WATEQF. On the untreated plot, soil leachates are characterized by Altot concentrations of 0.1 mg L?1 (mineral soil). In the O horizon, the fractions ‘acidsoluble Al’ and ‘non-labile monomeric Al’ (mainly organically complexed Al) together comprise 80% of Altot. In the leachates from the mineral soil Al3+ prevails, being 50% of Altot. Al-F-complexes make up 5 to 10% in all horizons. MgSO4 and (NH4)2SO4 treatments resulted in an intense Al mobilization up to 50 mg L?1. In this situation, 60% of Altot is covered by Al3+ and 40% by non-phytotoxic Al-SO4-complexes. After rainfall events, mobilized Al is quickly translocated into the subsoil, with water flow through macropores then appearing to be an important mechanism. In both treatments, soil solution chemistry was favorable for the precipitation of the Al(OH)SO4-type minerals alunite and jurbanite. However, a control of Al solubility by this process is not likely due to kinetic restraints. Application of MgSO4 was followed by an increase of the Mg/Al molar ratio in the soil solution, whereas the Ca/Al ratio decreased. After treatment with (NH4)2SO4 both the Ca/Al and the Mg/Al ratios deteriorated.  相似文献   

15.
Acidic groundwaters and soils in Halland County (Hailands län), southwest Sweden, have been investigated with respect to conditions of soluble aluminium (Al) and sulphate (SO4 2?. Basic Al-sulphate, Fe-oxide, Al-oxide, Al-hydroxide and clay minerals, are discussed and evaluated in their roles for governing Al and SO4 2? in the groundwaters. Based on this investigation, it is suggested that Al3+ solubility is controlled by amorphous Al-hydroxide. The SO4 2? in the groundwaters will depend primarily on the H2SO4 input. The H2SO4 load enhances soil mineral weathering which enhances the production of Fe-oxides, i.e. anion exchange surface sites, to which groundwater SO4 2? attain adsorption equilibra. The factors that control solubility of Al and SO4 2? are both influenced by the acidity in the soil catenas which in the area largely depend on the H2SO4 input. Clay minerals such as illite, smectites, halloysite, and variable composition Al-silicates do not exert strong control on Al in the groundwaters investigated.  相似文献   

16.
When investigating the reversibility of soil and water acidification due to a reduction of SO42? deposition, the size and stability of the reversibly bound SO42? fraction in soils are important parameters. The desorption behaviour of SO42? in three acid forest soils was investigated using columns with undisturbed and disturbed (< 5 mm sieved) soil material. The results were compared to batch experiments. A comparison of the undisturbed and the disturbed soil samples showed that the soil structure had no effect on the chemistry of the soil solution, the S-mineralisation rates or the SO42? desorption rates. A comparison of the batch and the column method showed only minor differences in desorption rates. However, fitting the measured desorption rates to a modified Langmuir equation showed a more distinct difference between both methods. It was concluded that the batch method was more suitable to establish SO42? desorption isotherms. When investigating SO42? dynamics of soils, the heterogeneity of the soils has to be considered because the spatial variability of isotherm parameters was found to be greater than differences between the investigated methods. Furthermore, SO42? sorption showed a distinct hysteresis. While most of the sorbed SO42? was desorbed at concentrations < 5–10 mg SO42 ?1?1, a sorption of SO42? was observed only at concentrations > 20–30 mg SO42? ·1?1.  相似文献   

17.
Dissolved organic carbon (DOC) in acid‐sensitive upland waters is dominated by allochthonous inputs from organic‐rich soils, yet inter‐site variability in soil DOC release to changes in acidity has received scant attention in spite of the reported differences between locations in surface water DOC trends over the last few decades. In a previous paper, we demonstrated that pH‐related retention of DOC in O horizon soils was influenced by acid‐base status, particularly the exchangeable Al content. In the present paper, we investigate the effect of sulphate additions (0–437 µeq l?1) on DOC release in the mineral B horizon soils from the same locations. Dissolved organic carbon release decreased with declining pH in all soils, although the shape of the pH‐DOC relationships differed between locations, reflecting the multiple factors controlling DOC mobility. The release of DOC decreased by 32–91% in the treatment with the largest acid input (437 µeq l?1), with the greatest decreases occurring in soils with very small % base saturation (BS, < 3%) and/or large capacity for sulphate (SO42?) retention (up to 35% of added SO42?). The greatest DOC release occurred in the soil with the largest initial base status (12% BS). These results support our earlier conclusions that differences in acid‐base status between soils alter the sensitivity of DOC release to similar sulphur deposition declines. However, superimposed on this is the capacity of mineral soils to sorb DOC and SO42?, and more work is needed to determine the fate of sorbed DOC under conditions of increasing pH and decreasing SO42?.  相似文献   

18.
We evaluated the element budgets in a forested watershed in Jiulianshan, southern China. The element input in bulk precipitation was characterized by high depositions of H+, NH4 +, Ca2+, and SO4 2?, i.e., 400, 351, 299, and 876 eq/ha/yr, respectively. The outputs of H+, NH4 +, and SO4 2? from the watershed were very low, while those of Ca2+ and Mg2+ were high, 712 and 960 eq/ha/yr, respectively. The element budgets suggested that i) the net retentions of H+, NH4 +, and SO4 2? in this watershed were high, and ii) the net release of Mg2+ from this watershed was high mainly due to weathering. The net release of Ca2+ was not so high because of the high atmospheric deposition, while atmospheric deposition of Mg2+ was not so high (130 eq/ha/yr). Decrease of acid neutralizing capacity in the soil, i.e., net soil acidification, was caused mainly by the net release of Mg2+. Moreover, the net retention of SO4 2? also contributed to soil acidification.  相似文献   

19.
The study aimed at evaluating whether salt-induced mobilization of acidity may be modified by the type of anion. For this purpose, the effects of different neutral salts on the solution composition of acid soils were investigated. The results were compared with those of the addition of acids. Two topsoil (E and A) and two subsoil horizons (Bs and Bw) were treated with NaCl, Na2SO4, MgCl2, MgSO4, HCl, and H2SO4 at concentrations ranging from 0 to 10 mmol dm?3. With increasing inputs of Cl? the pH of the equilibrium soil solution dropped, the concentrations of Al and Ca increased, and the molar Ca/(Al3+ + AlOH2+ + Al(OH)2+) ratios decreased. These effects were the least pronounced when NaCl was added and the most at the HCl treatments. According to the release of acidity, the topsoils were more sensitive for salt-induced soil solution acidification whereas on base of the molar Ca/(Al3+ + AlOH2+ + Al(OH)2+) ratios, the salt effect seems to be more important for the subsoils. Addition of S042? salts and H2SO4 induced higher pH and lower Al concentrations than the corresponding Cl? treatments due to the SO42? sorption, especially in the subsoils. The Ca/(Al3+ + AlOH2+ + Al(OH)2+) ratios were higher than those of the corresponding Cl? treatments. In subsoils even after H2SO4 additions these ratios were not higher than those of the NaCl treatments. The results indicate (I) that speculation about the effects of episodic salt concentrations enhancement on soil solution acidification not only need to consider the ionic strength and the cation type but also the anion type, (II) that salt-induced soil solution composition may be more crucial in subsoils than in topsoils, and (III) that in acid soils ongoing input of HNO3 due to the precipitation load may induce an even more acidic soil solution than the inputs of H2SO4 of the last decade.  相似文献   

20.
To investigate the potential of synchrotron‐based X‐ray Absorption Near‐Edge Structure spectroscopy (XANES) at the sulphur (S) K‐edge for a discrimination of adsorbed and precipitated sulphate in soils and soil particles, XANES spectra of ionic sulphate compounds and Al/Fe hydroxy sulphate minerals were compared with spectra of SO42? adsorbed to ferrihydrite, goethite, haematite, gibbsite or allophane. Ionic sulphate and hydroxy sulphate precipitates had broader white‐lines (WL) at 2482.5 eV (full width at half maximum (FWHM) of edge‐normalized spectra, 2.4–4.2 eV; Al hydroxy sulphates, 3.0 eV) than SO42? adsorbed to Al/Fe oxyhydroxides or allophane (FWHM, 1.8–2.4 eV). The ratio of the white‐line (WL) height to the height of the post‐edge feature at 2499 eV (WL/PEF) was larger for SO42? adsorbed to Al/Fe oxyhydroxides or allophane (8.1–11.9) than for Al/Fe hydroxy sulphates and ionic sulphates (3.9–5.7). The WL/PEF ratio of edge‐normalized S K‐edge XANES spectra can be used to distinguish adsorbed from precipitated SO42? in soils and also at microsites of soil particles. The contribution of adsorbed and precipitated SO42? to the total SO42? pool can be roughly quantified. Adsorbed ester sulphate may result in overestimation of precipitated SO42?. The spectra of most soils could be fitted by linear combination fitting (LCF), yielding a similar partitioning between adsorbed and precipitated SO42? as an evaluation of the WL/PEF ratio. The SO42? pool of German forest soils on silicate parent material in most cases was strongly dominated by adsorbed SO42?; however, in three German forest soils subject to elevated atmospheric S deposition, a considerable portion of the SO42? pool was precipitated SO42?, most likely Al hydroxy sulphate. The same is true for Nicaraguan Eutric and Vitric Andosols subject to high volcanogenic S input. In the subsoil of the Vitric Andosol, adsorbed SO42? and Al hydroxy sulphate coexist on a micron scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号