首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
● Impacts of 30 cropping systems practiced on the North China Plain were evaluated. ● Trade-offs were assessed among productive, economic and environmental indicators. ● An evolutionary algorithm was used for multi-objective optimization. ● Conflict exists between productivity and profitability versus lower ground water decline. ● Six strategies were identified to jointly mitigate the trade-offs between objectives. Since the Green Revolution cropping systems have been progressively homogenized and intensified with increasing rates of inputs such as fertilizers, pesticides and water. This has resulted in higher crop productivity but also a high environmental burden due to increased pollution and water depletion. To identify opportunities for increasing the productivity and reducing the environmental impact of cropping systems, it is crucial to assess the associated trade-offs. The paper presents a model-based analysis of how 30 different crop rotations practiced in the North China Plain could be combined at the regional level to overcome trade-offs between indicators of economic, food security, and environmental performance. The model uses evolutionary multi-objective optimization to maximize revenues, livestock products, dietary and vitamin C yield, and to minimize the decline of the groundwater table. The modeling revealed substantial trade-offs between objectives of maximizing productivity and profitability versus minimizing ground water decline, and between production of livestock products and vitamin C yield. Six strategies each defining a specific combination of cropping systems and contributing to different extents to the various objectives were identified. Implementation of these six strategies could be used to find opportunities to mitigate the trade-offs between objectives. It was concluded that a holistic analysis of the potential of a diversity cropping systems at a regional level is needed to find integrative solutions for challenges due to conflicting objectives for food production, economic viability and environmental protection.  相似文献   

2.
● Agri-environmental assessment of food, feed and/or biogas cropping systems (CS). ● Four-year experiment for the agri-environmental assessment of two innovative CS. ● Biogas CS has equal soil returned biomass than food CS but higher exported biomass. ● Feed and biogas CS present higher biomass productivity, but higher CO2 emissions. ● CO2 emissions related to produced biomass are 26% (±5%) lower in biogas CS. Bioenergy, currently the largest renewable energy source in the EU (64% of the total renewable energy consumption), has sparked great interest to meet the 32% renewable resources for the 2030 bioeconomy goal. The design of innovative cropping systems informed by bioeconomy imperatives requires the evaluate of the effects of introducing crops for bioenergy into conventional crop rotations. This study aimed to assess the impacts of changes in conventional cropping systems in mixed dairy cattle farms redesigned to introduce bioenergy crops either by increasing the biomass production through an increase of cover crops, while keeping main feed/food crops, or by substituting food crops with an increase of the crop rotation length. The assessment is based on the comparison between conventional and innovative systems oriented to feed and biogas production, with and without tillage, to evaluate their agri-environmental performances (biomass production, nitrogen fertilization autonomy, greenhouse gas emissions and biogas production). The result showed higher values in the biogas cropping system than in the conventional and feed ones for all indicators, biomass productivity (27% and 20% higher, respectively), nitrogen fertilization autonomy (26% and 73% higher, respectively), methanogenic potential (77% and 41% higher, respectively) and greenhouse gas emissions (15% and 3% higher, respectively). There were no negative impacts of no-till compared to the tillage practice, for all tested variables. The biogas cropping system showed a better potential in terms of agri-environmental performance, although its greenhouse gas emissions were higher. Consequently, it would be appropriate to undertake a multicriteria assessment integrating agri-environmental, economic and social performances.  相似文献   

3.
● Cost escalation and declining profits evident in sugarcane production in China. ● Monoculture and fertilizer overuse causes poor soil health, crop productivity plateau. ● Matching crop nutrient demand and supply key to recovery of sugarcane soils. ● Inorganic inputs need to be replaced with organic sources to restore soil health and sustainability. ● Integrated multidisciplinary solution for sustainable sugarcane cropping system needed. Demand for sugar is projected to grow in China for the foreseeable future. However, sugarcane production is unlikely to increase due to increasing production cost and decreasing profit margin. The persisting sugarcane yield plateau and the current cropping system with fertilizer overuse, soil acidification and pests and diseases remain the major productivity constraints. Sugarcane agriculture supports the livelihood of about 28 million farmers in South China; hence, sustaining it is a socioeconomic imperative. More compellingly, to meet the ever-increasing Chinese market demand, annual sugar production must be increased from the current 10 Mt to 16 Mt by 2030 of which 80% to 90% comes from sugarcane. Therefore, increasing sugar yield and crop productivity in an environmentally sustainable way must be a priority. This review examines the current Chinese sugarcane production system and discuss options for its transition to a green, sustainable cropping system, which is vital for the long-term viability of the industry. This analysis shows that reducing chemical inputs, preventing soil degradation, improving soil health, managing water deficit, provision of clean planting material, and consolidation of small farm holdings are critical requirements to transform the current farming practices into an economically and environmentally sustainable sugarcane cropping system.  相似文献   

4.
● Matching nitrification inhibitors with soil properties and nitrifiers is vital to achieve a higher NUE. ● Enhancing BNF, DNRA and microbial N immobilization processes via soil amendments can greatly contribute to less chemical N fertilizer input. ● Plant-associated microbiomes are critical for plant nutrient uptake, growth and fitness. ● Coevolutionary trophic relationships among soil biota need to be considered for improving crop NUE. Soil microbiomes drive the biogeochemical cycling of nitrogen and regulate soil N supply and loss, thus, pivotal nitrogen use efficiency (NUE). Meanwhile, there is an increasing awareness that plant associated microbiomes and soil food web interactions is vital for modulating crop productivity and N uptake. The rapid advances in modern omics-based techniques and biotechnologies make it possible to manipulate soil-plant microbiomes for improving NUE and reducing N environmental impacts. This paper summarizes current progress in research on regulating soil microbial N cycle processes for NUE improvement, plant-microbe interactions benefiting plant N uptake, and the importance of soil microbiomes in promoting soil health and crop productivity. We also proposes a potential holistic (rhizosphere-root-phyllosphere) microbe-based approach to improve NUE and reduce dependence on mineral N fertilizer in agroecosystems, toward nature-based solution for nutrient management in intensive cropping systems.  相似文献   

5.
● Diversification enhances nature-based contributions to cropping system functions. ● Soil management to improve production and ecosystem function has variable outcomes. ● Management of the production-system to use legacy nutrients will reduce inputs. ● Intercrops, companion crops and cover crops improve ecological sustainability. ● Sustainable interventions within value chains are essential to future-proof agriculture. To achieve the triple challenge of food security, reversing biodiversity declines plus mitigating and adapting to climate change, there is a drive to embed ecological principles into agricultural, value-chain practices and decision-making. By diversifying cropping systems at several scales there is potential to decrease reliance on inputs, provide resilience to abiotic and biotic stress, enhance plant, microbe and animal biodiversity, and mitigate against climate change. In this review we highlight the research performed in Scotland over the past 5 years into the impact of the use of ecological principles in agriculture on sustainability, resilience and provision of ecosystem functions. We demonstrate that diversification of the system can enhance ecosystem functions. Soil and plant management interventions, including nature-based solutions, can also enhance soil quality and utilization of legacy nutrients. Additionally, this is facilitated by greater reliance on soil biological processes and trophic interactions. We highlight the example of intercropping with legumes to deliver sustainability through ecological principles and use legumes as an exemplar of the innovation. We conclude that there are many effective interventions that can be made to deliver resilient, sustainable, and diverse agroecosystems for crop and food production, and these may be applicable in any agroecosystem.  相似文献   

6.
● Virtual joint centers on N agronomy were established between UK and China. ● Key themes were improving NUE for fertilizers, utilizing livestock manures, and soil health. ● Improved management practices and technologies were identified and assessed. ● Fertilizer emissions and improved manure management are key targets for mitigation. Two virtual joint centers for nitrogen agronomy were established between the UK and China to facilitate collaborative research aimed at improving nitrogen use efficiency (NUE) in agricultural production systems and reducing losses of reactive N to the environment. Major focus areas were improving fertilizer NUE, use of livestock manures, soil health, and policy development and knowledge exchange. Improvements to fertilizer NUE included attention to application rate in the context of yield potential and economic considerations and the potential of improved practices including enhanced efficiency fertilizers, plastic film mulching and cropping design. Improved utilization of livestock manures requires knowledge of the available nutrient content, appropriate manure processing technologies and integrated nutrient management practices. Soil carbon, acidification and biodiversity were considered as important aspects of soil health. Both centers identified a range of potential actions that could be taken to improve N management, and the research conducted has highlighted the importance of developing a systems-level approach to assessing improvement in the overall efficiency of N management and avoiding unintended secondary effects from individual interventions. Within this context, the management of fertilizer emissions and livestock manure at the farm and regional scales appear to be particularly important targets for mitigation.  相似文献   

7.
● Farmer–scientist collaboration for improved farming was achieved. ● Wheat and maize yields of STB farmers improved by 13%. ● NUE increased 20% for wheat and maize production. ● GHG emissions and EEF decreased by 23% and 52%, respectively. Feeding a large and growing population with scientifically sustainable food production is a major challenge globally, especially in smallholder-based agricultural production. Scientists have conducted a considerable theoretical research and technological innovation to synergistically achieve increased food production and reduced environmental impact. However, the potential and feasibility of synergistic smallholder-led agricultural production to achieve increased food production and environmental friendliness is not yet clear. Exploring the potential and feasibility of smallholders to synergistically achieve these two goals, this research collected survey data from 162 farmers implementing standard farming practices and 112 farmers engaged in Science and Technology Backyard (STB) in Quzhou County, Hebei Province, China. Grain yield, nitrogen use efficiency (NUE), greenhouse gas emissions (GHG), and emergy ecological footprint (EEF) of the wheat-maize cropping system dominated by smallholders were analyzed. The results showed smallholders in the STB group improved wheat and maize yields by about 13% and NUE by 20%, respectively. Also, a reduction of 23% in GHG emissions and 52% in EEF were simultaneously achieved in the wheat-maize cropping system. Compared with standard farming practices, 75 kg·ha−1 nitrogen-based fertilizer was saved in the STB farmers. In summary, this study shifts the main perspective of research from scientists to smallholder, and uses a combination of greenhouse gas emission calculations, EEF and material flow analyses to demonstrate from multiple perspectives that agricultural systems under the leadership of smallholders can synergistically achieve high crop yields and low resource use and environmental impacts. The results of this study also show that the smallholder-led scientist-farmer collaborative model established by STB can fully exploit the initiative and potential, and that this collaborative model can be a successful strategy for smallholders as operators to achieve food security at low environmental impacts. The results of this study can provide useful evidence for a sustainable shift toward more sustainable agricultural production systems.  相似文献   

8.
● Challenges in reconciling multi disciplinarity with clear expressions of single disciplinary concerns. ● Participant involvement was created bridging the gap between academia and practice. ● Collaboration potentials with actor networks to co-produce shared visions were recognized. ● A common language was developed concerning unfounded perceptions of barriers for change. ● The workshop was effective for producing a shared picture of research needs. The EIP-Agri multiactor approach was exemplified during a 3-day workshop with 63 project participants from the EU H2020 funded project “Redesigning European cropping systems based on species MIXtures”. The objective was to share firsthand experience of participatory research among researchers who were mostly not familiar with this approach. Workshop participants were divided into smaller multidisciplinary groups and given the opportunity to interact with representatives from eight actor positions in the value chain of the agrifood cooperative Terrena located in Western France. The four stages of the workshop were: (1) key actor interviews, (2) sharing proposed solutions for overcoming barriers, and (3) developing possible interdisciplinary concepts. Expressions of frustration were recorded serving both as a motivation for group members to become more aware of the scientific concerns and practices of their colleagues, as well as a recognition that some researchers have better skills integrating qualitative approaches than others. Nevertheless, the workshop format was an effective way to gain a common understanding of the pertinent issues that need to be addressed to meet overall multiactor-approach objectives. Working with the actor networks was identified and emphasized as a means to overcome existing barriers between academia and practice in order to coproduce a shared vision of the benefits of species mixture benefits.  相似文献   

9.
● Data from the Park Grass Experiment shows inherent trade-offs between species richness, biomass production and soil organic carbon. ● Soil organic carbon is positively correlated with biomass production that increases with fertilizer additions. ● Variance in outcomes can be understood in terms of the dominant ecological strategies of the plant communities indicated by functional traits. ● There was an indication that data on traits associated with the spatiotemporal pattern of resource capture could be used to design species mixtures with greater resource use complementarity, increasing species richness without sacrificing productivity. ● Variance in soil organic carbon was positively correlated with pH. Quantifying the relationships between plant functional traits and ecosystem services has been promoted as an approach to achieving multifunctional grassland systems that balance productivity with other regulating, supporting and cultural services. Establishing trade-offs and synergies between traits and services has largely relied on meta-analyses of studies from different systems and environments. This study demonstrated the value of focused studies of long-term experiments in grassland systems that measure traits and services in the same space and time to better understand the ecological constraints underlying these trade-offs and synergies. An analysis is presented that uses data from the Park Grass Experiment at Rothamsted Research on above-ground productivity, species richness and soil organic carbon stocks to quantify the relationships between these three outcomes and the power of variance in plant functional traits in explaining them. There was a trade-off between plots with high productivity, nitrogen inputs and soil organic carbon and plots with high species richness that was explained by a functional gradient of traits that are indicative of contrasting strategies of resource acquisition of resource conservation. Examples were identified of using functional traits to identify opportunities for mitigating these trade-offs and moving toward more multifunctional systems.  相似文献   

10.
● For 8000 years, agricultural practices have affected atmospheric CO2 concentrations. ● Paddy rice cultivation has impacted atmospheric CH4 concentration since 5000 years ago. ● Modern agricultural practices must include carbon storage and reduced emissions. ● Sustainable management in agriculture must be combined with decarbonizing the economy and reducing population growth. Since humans started practicing agriculture at the expense of natural forests, 8000 years ago, they have affected atmospheric CO2 concentrations. Their impact on atmospheric CH4 started about 5000 years ago, as result of the cultivation of paddy rice. A challenge of modern agricultural practices is to reverse the impact cropping has had on greenhouse gas emissions and the global climate. There is an increasing demand for agriculture to provide food security as well as a range of other ecosystem services. Depending on ecosystem management, different practices may involve trade-offs and synergies, and these must be considered to work toward desirable management systems. Solution toward food security should not only focus on agricultural management practices, but also on strategies to reduce food waste, more socially-just distribution of resources, changes in lifestyle including decarbonization of the economy, as well as reducing human population growth.  相似文献   

11.
● There is huge potential for improvement of nitrogen management in Australia. ● N management should incorporate environmental, social and economic sustainability. ● Agronomic, ecological and socioeconomic approaches and efforts are needed. Nitrogen is an essential nutrient that supports life, but excess N in the human-environment system causes multiple adverse effects from the local to the global scale. Sustainable N management in agroecosystems, therefore, has become more and more critical to address the increasing concern over food security, environmental quality and climate change. Australia is facing a serious challenge for sustainable N management due to its emission-intensive lifestyle (high level of animal-source foods and fossil fuels consumption) and its diversity of agricultural production systems, from extensive rainfed grain systems with mining of soil N to intensive crop and animal production systems with excessive use of N. This paper reviews the major challenges and future opportunities for making Australian agrifood systems more sustainable, less polluting and more profitable.  相似文献   

12.
Excessive application of mineral fertilizers and synthetic pesticides poses a substantial threat to the soil and water environment and food security.Organic fertilizer and biopesticides have gradually become essential technology for reducing mineral fertilizer and pesticide inputs. In the process,the technical environment is critical for promoting farmer behavior related to the adoption of organic fertilizer and biopesticides. This paper analyzes the influence of the technical environment on far...  相似文献   

13.
● Sustainable nitrogen management strategies for Chinese vegetable production are summarized. ● Research on reactive N (Nr) losses in Chinese vegetable systems is limited compared to cereal crop systems. ● Knowledge-based optimization of N fertilizer rate strategy maintains soil N supply to meet the dynamic vegetable demand in time, space and quantity. ● Innovative products and technology strategy regulates the soil N forms and promotes the vegetable root growth to further control the Nr loss. ● Integrated knowledge and products strategy is needed to produce more vegetables with lower Nr losses. Inappropriate nitrogen fertilizer management for the intensive Chinese vegetable production has caused low N use efficiency (NUE), high reactive nitrogen (Nr) losses and serious environmental risks with limited yield increase. Innovative N management strategy is an urgent need to achieve sustainable vegetable production. This paper summarizes recent studies on Nr losses and identifies the limitations from Chinese vegetable production systems and proposes three steps for sustainable N management in Chinese vegetable production. The three N management steps include, but are not limited to, (1) knowledge-based optimization of N fertilizer rate strategy, which maintains soil N supply to meet the dynamic vegetable demand in time, space and quantity; (2) innovative products and technology, which regulates the soil N forms and promotes the vegetable root growth to reduce the Nr loss; (3) integrated knowledge and products strategy (IKPS). The knowledge-based optimization of N fertilizer rate strategy and innovative products and technology, can maintain or increase vegetable yield, significantly improve NUE, and mitigate the region-specific and crop-specific Nr losses. More importantly, IKPS, based on combination of in-season root-zone N management strategy, innovative products and technology, and best crop cultivation management, is needed to produce more vegetables with lower Nr losses.  相似文献   

14.
● A composite N management index is proposed to measure agriculture sustainability. ● Nitrogen management has been moving towards sustainability targets globally. ● The improvement was achieved mainly by yield increase, while Nitrogen Use Efficiency (NUE) stagnated. ● No country achieved both yield and NUE targets and spatial variation is large. ● Region-specific yield targets can be used to supplement the standard Sustainable Nitrogen Management Index (SNMI). To represent the sustainability of nitrogen management in the Sustainable Development Goals indicator framework, this paper proposes a sustainable nitrogen management index (SNMI). This index combines the performance in N crop yield and N use efficiency (NUE), thereby accounting for the need for both food production and environmental protection. Applying SNMI to countries around the world, the results showed improvement in the overall sustainability of crop N management over the past four decades, but this improvement has been mainly achieved by crop yield increase, while global NUE has improved only slightly. SNMI values vary largely among countries, and this variation has increased since the 1970s, implying different levels of success, even failure, in improving N management for countries around the world. In the standard SNMI assessment, the reference NUE was defined as 1.0 (considered an ideal NUE) and the reference yield was defined as 90 kg·ha−1·yr−1 N (considering a globally averaged yield target for meeting food demand in 2050). A sensitivity test that replaced the reference NUE of 1.0 with more realistic NUE targets of 0.8 or 0.9 showed overall reduction in SNMI values (i.e., improved performance), but little change in the ranking among countries. In another test that replaced the universal reference yield with region-specific attainable yield, SNMI values declined (i.e., improved performance) for most countries in Africa and West Asia, whereas they increased for many countries in Europe and South America. The index can be improved by further investigation of approaches for setting region-specific yield targets and high-quality data on crop yield potentials. Overall, SNMI offers promise for a simple and transparent approach to assess progress of countries toward sustainable N management with a single indicator.  相似文献   

15.
● Excessive application of N fertilizers in orchards and vegetable fields (OVFs) in China is particularly common. ● Long-term excessive application of N fertilizers has made OVFs hotspots for N surplus and loss in China. ● Nitrate accumulation in the soil profile is the main fate of N fertilizers in OVF systems. ● Reducing the N surplus is the most effective way to reduce N loss and increase NUE. China is the largest producer and consumer of fruits and vegetables in the world. Although the annual planting areas of orchards and vegetable fields (OVF) account for 20% of total croplands, they consume more than 30% of the mineral nitrogen fertilizers in China and have become hotspots of reactive N emissions. Excess N fertilization has not only reduced the N use efficiency (NUE) and quality of grown fruits and vegetables but has also led to soil acidification, biodiversity loss and climate change. Studies using 15N labeling analysis showed that the recovery rate of N fertilizer in OVFs was only 16.6%, and a high proportion of fertilizer N resided in soils (48.3%) or was lost to the environment (35.1%). Nitrate accumulation in the soil of OVFs is the main fate of N fertilizer in northern China, which threatens groundwater quality, while leaching and denitrification are the important N fates of N fertilizer in southern China. Therefore, taking different measures to reduce N loss and increase NUE based on the main pathways of N loss in the various regions is urgent, including rational N fertilization, substituting mineral N fertilizers with organic fertilizers, fertigation, and adding mineral N fertilizers with urease inhibitors and nitrification inhibitors.  相似文献   

16.
● Soil nitrogen fluxes and influencing factors were reviewed in the subtropical hilly regions. ● Fertilizer application and atmospheric deposition contributed largely to soil nitrogen input. ● High gaseous, runoff and leaching losses of soil nitrogen were measured. ● Soil nitrogen cycles are well modelled with the Catchment Nutrients Management Model. The subtropical hilly region of China is a region with intensive crop and livestock production, which has resulted in serious N pollution in soil, water and air. This review summarizes the major soil N cycling processes and their influencing factors in rice paddies and uplands in the subtropical hilly region of China. The major N cycling processes include the N fertilizer application in croplands, atmospheric N deposition, biological N fixation, crop N uptake, ammonia volatilization, N2O/NO emissions, nitrogen runoff and leaching losses. The catchment nutrients management model for N cycle modeling and its case studies in the subtropical hilly region were also introduced. Finally, N management practices for improving N use efficiency in cropland, as well as catchment scales are summarized.  相似文献   

17.
● Arable-ley rotations can alleviate soil degradation and erosion. ● Multispecies leys can improve livestock health and reduce greenhouse gas emissions. ● Ley botanical composition is crucial for determining benefits. ● Lack of livestock infrastructure in arable areas may prevent arable-ley uptake. ● Long-term (10–25 years) research is needed to facilitate evidence-based decisions. Agricultural intensification and the subsequent decline of mixed farming systems has led to an increase in continuous cropping with only a few fallow or break years, undermining global soil health. Arable-ley rotations incorporating temporary pastures (leys) lasting 1–4 years may alleviate soil degradation by building soil fertility and improving soil structure. However, the majority of previous research on arable-ley rotations has utilized either grass or grass-clover leys within ungrazed systems. Multispecies leys, containing a mix of grasses, legumes, and herbs, are rapidly gaining popularity due to their promotion in agri-environment schemes and potential to deliver greater ecosystem services than conventional grass or grass-clover leys. Livestock grazing in arable-ley rotations may increase the economic resilience of these systems, despite limited research of the effects of multispecies leys on ruminant health and greenhouse gas emissions. This review aims to evaluate previous research on multispecies leys, highlighting areas for future research and the potential benefits and disbenefits on soil quality and livestock productivity. The botanical composition of multispecies leys is crucial, as legumes, deep rooted perennial plants (e.g., Onobrychis viciifolia and Cichorium intybus) and herbs (e.g., Plantago lanceolata) can increase soil carbon, improve soil structure, reduce nitrogen fertilizer requirements, and promote the recovery of soil fauna (e.g., earthworms) in degraded arable soils while delivering additional environmental benefits (e.g., biological nitrification inhibition and enteric methane reduction). Multispecies leys have the potential to deliver biologically driven regenerative agriculture, but more long-term research is needed to underpin evidence-based policy and farmer guidance.  相似文献   

18.
● The 4C approach considers intercropping performances as the result of joint 4C effects. ● Partial land equivalent ratios indicate which effect(s) are the major one(s). ● A major effect of complementarity is related to a better capture of abiotic resources. Modern agriculture needs to develop transition pathways toward agroecological, resilient and sustainable farming systems. One key pathway for such agroecological intensification is the diversification of cropping systems using intercropping and notably cereal-grain legume mixtures. Such mixtures or intercrops have the potential to increase and stabilize yields and improve cereal grain protein concentration in comparison to sole crops. Species mixtures are complex and the 4C approach is both a pedagogical and scientific way to represent the combination of four joint effects of Competition, Complementarity, Cooperation, and Compensation as processes or effects occurring simultaneously and dynamically between species over the whole cropping cycle. Competition is when plants have fairly similar requirements for abiotic resources in space and time, the result of all processes that occur when one species has a greater ability to use limiting resources (e.g., nutrients, water, space, light) than others. Complementarity is when plants grown together have different requirements for abiotic resources in space, time or form. Cooperation is when the modification of the environment by one species is beneficial to the other(s). Compensation is when the failure of one species is compensated by the other(s) because they differ in their sensitivity to abiotic stress. The 4C approach allows to assess the performance of arable intercropping versus classical sole cropping through understanding the use of abiotic resources.  相似文献   

19.
● Agriculture on Loess Plateau has transformed from food shortage to green development. ● Terracing and check-dams are the key engineering measures to increase crop yields. ● Agronomic measures and policy support greatly increased crop production. ● Increasing non-agricultural income is a key part of increasing farmers’ income. ● Grain for Green Program had an overwhelming advantage in protecting environment. Loess Plateau of China is a typical dryland agricultural area. Agriculture there has transformed from food shortage toward green development over the past seven decades, and has achieved world-renowned achievements. During 1950–1980, the population increased from 42 to 77 million, increasing grain production to meet food demand of rapid population growth was the greatest challenge. Engineering measures such as terracing and check-dam were the crucial strategies to increase crop production. From 1981 to 2000, most of agronomic measures played a key role in increasing crops yield, and a series of policy support has benefited millions of smallholders. As expected, these measures and policies greatly increased crop production and basically achieved food security; but, low per capita GDP (only about 620 USD in 2000) was still a big challenge. During 2001–2015, the increase in agricultural and non-agricultural income together supported the increase in farmer income to 5781 USD·yr–1. Intensive agriculture that relies heavily on chemicals increased crop productivity by 56%. Steadfast policy support such as “Grain for Green Program” had an overwhelming advantage in protecting the natural ecological environment. In the new era, the integration of science and technology innovations, policy support and positive societal factors will be the golden key to further improve food production, protect environment, and increase smallholder income.  相似文献   

20.
● A simple model was used to evaluate how increasing temporal variability in precipitation influences crop yields and nitrogen losses. ● Crop yields are reduced and nitrogen losses are increased at current levels of precipitation variability. ● Increasing temporal variability in precipitation, as is expected (and observed) to occur with anthropogenic climate change will reduce yields and increase nitrogen losses further. A simple ‘toy’ model of productivity and nitrogen and phosphorus cycling was used to evaluate how the increasing temporal variation in precipitation that is predicted (and observed) to occur as a consequence of greenhouse-gas-induced climate change will affect crop yields and losses of reactive N that can cause environmental damage and affect human health. The model predicted that as temporal variability in precipitation increased it progressively reduced yields and increased losses of reactive N by disrupting the synchrony between N supply and plant N uptake. Also, increases in the temporal variation of precipitation increased the frequency of floods and droughts. Predictions of this model indicate that climate-change-driven increases in temporal variation in precipitation in rainfed agricultural ecosystems will make it difficult to sustain cropping systems that are both high-yielding and have small environmental and human-health footprints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号