首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Post-weaning diarrhoea and oedema disease in weaned piglets are caused by infection with F4+ or F18+ Escherichia coli strains. There is no commercial vaccine available, but it is shown that oral immunization of weaned piglets with purified F4 fimbriae induces a protective mucosal immune response. In the present study, piglets were orally and nasally immunized with purified F18 fimbriae in the presence of the mucosal adjuvant LT(R192G) or CTA1-DD, respectively. This immunization could not lead to protection against F18+ E. coli infection. The induced F18-specific immune response was directed towards the major subunit FedA and weakly towards the adhesive subunit FedF. The results of these experiments demonstrate that it is difficult to induce protective immunity against F18+ E. coli using the whole fimbriae due to the low response against the adhesin.  相似文献   

2.
《Veterinary microbiology》1997,54(2):133-144
Enterotoxigenic (ETEC) and enterotoxaemic (ETEEC) Escherichia (E.) coli that express F18 (F107) fimbriae colonize the small intestine and cause diarrhoea and/or oedema disease in weaned pigs. So far, two antigenic variants of F18 can be distinguished with a common antigenic factor designated ‘a’ and two specific factors called ‘b’ and ‘c’. In this study the existence of crosswise anti-colonization immunity between E. coli strains that express F18ab or F18ac fimbrial variants, respectively, was demonstrated. Weaned pigs of susceptible genotype with respect to susceptibility to adhesion of E. coli with fimbriae F18 were inoculated with E. coli strains 3064STM (O157:K-:H-:F18ab; resistant to streptomycin) and 8199RIF (O141ab:K-:H4:F18ac; resistant to rifampicin). The faecal shedding was compared subsequent to immunization and homologous or heterologous challenge. An enzyme-linked immunosorbent assay (ELISA) was applied to measure IgA, IgM and IgG antibodies against the F18ab and F18ac antigens in saliva, faeces, serum and intestinal wash samples. About 8 log CFU/g of the inoculated strains were found in faeces of all pigs following immunization as well as in non-immunized controls after challenge. Bacterial counts of the inoculated strains after challenge were between 2 and 5 log lower, without any difference between homologous and heterologous challenge. Intestinal colonization with fimbriated E. coli resulted in production of significantly increased levels of anti-fimbrial antibodies, especially IgA, in serum and intestinal wash samples. There were higher levels of homologous than of heterologous anti-fimbrial antibodies. Production of antibodies against F18a or against another common fimbrial antigen is probably responsible for crosswise anti-colonization immunity between E. coli strains with F18ab and F18ac fimbrial variants. Serum F18-specific IgA may be a useful indicator of a mucosal immune response directed against F18 fimbriae.  相似文献   

3.
Oral immunization of both humans and animals with non-replicating soluble antigens often results in the induction of oral tolerance. However, receptor-dependent uptake of orally administered soluble antigens can lead to the induction of an antigen-specific immune response. Indeed, oral immunization of pigs with recombinant FaeG (rFaeG), the adhesin of the F4(K88) fimbriae of enterotoxigenic Escherichia coli (ETEC), induces an F4-specific humoral and cellular immune response. This response is accompanied with a reduction in the excretion of F4(+)E. coli following challenge. To improve the immune response against F4, rFaeG was orally co-administered with the mucosal adjuvant cholera toxin (CT). Oral immunization of pigs with rFaeG and CT significantly improved the induction of an F4-specific humoral and cellular immune response and also significantly reduced the faecal F4(+)E. coli excretion following F4(+) ETEC challenge as compared to rFaeG-immunized pigs. Therefore, the present study demonstrates that CT can act in pigs as a mucosal adjuvant for antigens that bind to the intestinal epithelium by a CT-receptor-independent mechanism.  相似文献   

4.
To prevent enterotoxigenic Escherichia coli (ETEC) induced postweaning diarrhoea, the piglet needs an active mucosal immunity at the moment of weaning. In the present study, the feasibility of oral vaccination of suckling piglets against F4+ETEC infection with F4 fimbriae was studied. Furthermore, oral vaccination with enteric-coated pellets of F4 fimbriae was compared to vaccination with F4 fimbriae in solution. Therefore, piglets were orally administered 1mg F4 fimbriae in pellets or in solution during three successive days at the age of 7 and 21 days, whereas control piglets were not vaccinated. Five days postweaning (33 days of age), all animals were orally challenged with F4+ETEC. Despite the induction of an immune response upon oral administration of both F4 fimbriae in pellets as in solution, the colonisation of the small intestine by F4+ETEC upon oral challenge could not be prevented. However, a marginal but significant reduction in F4+ E. coli faecal excretion was found in the piglets vaccinated with F4 fimbriae in pellets, indicating that the use of an enteric-coat which protects the F4 fimbriae against inactivation by milk factors and degradation by enzymes and bile improves vaccination.  相似文献   

5.
Very few antigens have been described that induce an intestinal immunity when given orally. Our laboratory demonstrated that oral administration of isolated F4 (K88) fimbriae of Escherichia coli to F4-receptor positive (F4R(+)) pigs induces protective mucosal immunity against challenge infection. However, presence of F4-receptors (F4R) on villous enterocytes is a prerequisite for inducing the immune response, as no F4-specific antibody-secreting cells (ASC) can be induced in F4R(-) pigs. In this study, the in vivo binding of isolated F4 fimbriae (F4) to the gut epithelium was examined in F4R(+) and F4R(-) pigs. It was further investigated whether binding of F4 to the F4R results in endocytosis in and translocation across the gut epithelium using microscopy. F4 did not adhere to the intestinal epithelium of F4R(-) pigs, whereas it strongly adhered to the villous epithelium and the follicle-associated epithelium (FAE) of the jejunum and ileum of F4R(+) pigs. Following binding to F4R, F4 was endocytosed by villous enterocytes, follicle-associated enterocytes and M cells. Transcytosis of F4 across the epithelium resulted in the appearance of F4 in the lamina propria and dome region of the jejunal and ileal PP. This is the first study showing transcytosis of fimbriae across the gut epithelium. This receptor-dependent transcytosis can explain the success of F4 fimbriae as oral immunogen for inducing protective immunity in F4R(+) pigs strengthening the importance of receptor-dependent endocytosis and translocation in oral vaccine strategies. Further identification of the receptor responsible for this transport is in progress.  相似文献   

6.
Parenteral immunisation normally induces a systemic antibody response characterised by high IgG and low IgA responses. In the present study, the effect of different doses of F4-fimbriae on the isotype-specific antibody response after intramuscular immunisation was studied in pigs. Pigs were injected twice with a 9 weeks interval with either 1, 0.1 or 0.01 mg of F4-ETEC fimbriae. The dose of 1mg F4 induced significantly lower primary F4-specific IgG and IgM responses than the doses of 0.1 and 0.01 mg F4, but primed for an enhanced F4-specific IgM serum antibody response after the booster immunisation. Furthermore, the dose of 0.1mg induced the highest F4-specific IgA serum response which was significantly higher than after injection with 0.01 and 1mg F4. Moreover, both lower doses (0.1 and 0.01 mg) showed a higher number of F4-specific IgA and IgG antibody secreting cells (ASC) in the local draining lymph nodes of the pigs. This study demonstrated that low doses of purified F4-ETEC fimbriae, especially the 0.1mg dose, are optimal for inducing F4-specific IgA responses after IM immunisation.  相似文献   

7.
Oral administration of F4 fimbriae of Escherichia coli induces intestinal mucosal immune responses in F4 receptor-positive (F4R(+)) pigs, but not in F4R(-) pigs. We examined whether F4 fimbriae in F4R(-) animals behave like a food antigen and can induce oral tolerance. Therefore, F4R(+) and F4R(-) pigs were fed 2mg of F4 and challenged i.m. to evaluate the effect of oral F4 on the systemic immune system. As control antigen, two different oral doses (2 and 600 mg) of OVA were used. Thirty days after the i.m. OVA challenge, the OVA-specific serum IgG titre in 600 mg-fed pigs was lower than that in non-fed animals, indicating that tolerance was induced. Conversely, in the 2mg-fed pigs a rapid increase of OVA-specific IgG with higher titres than those in non-fed pigs was seen following challenge, indicating a priming of the systemic immune system. A similar priming was seen in both F4-fed F4R(-) and F4R(+) pigs. Upon challenge, non-fed pigs displayed a primary immune response with a slow increase of F4-specific serum IgG, whereas F4-fed F4R(-) and F4R(+) pigs showed secondary responses with a rapid increase of serum IgG. This was expected in F4R(+) pigs, as in these animals oral F4 induces F4-specific antibody-secreting cells in the spleen, suggesting a priming of the systemic immune system. However, also the F4-fed F4R(-) pigs displayed a secondary response, despite the failure to detect a response upon oral F4 administration. These findings suggest that the F4 antigen, at a dose of 2 mg, behaves like a common food antigen in F4R(-) pigs, namely it induces a systemic priming.  相似文献   

8.
Enteric viruses are a major cause of diarrhea in animals and humans. Among them, rotaviruses are one of the most important causes of diarrhea in young animals and human infants. A lack of understanding of mechanisms to induce intestinal immunity and the correlates of protective immunity in neonates has impaired development of safe and effective vaccines against enteric viruses. Studies of candidate vaccines using an adult mouse model of subclinical enteric viral infections often do not predict vaccine efficacy against disease evaluated in neonatal large animals. A series of studies have been conducted using a neonatal gnotobiotic pig model of rotavirus infection and diarrhea to identify correlates of protective immunity and to evaluate traditional and novel vaccine approaches for the induction of mucosal immune responses and protection to enteric viruses. Gnotobiotic pigs recovered from infection with virulent Wa human rotavirus (HRV) (mimic natural infection) had high numbers of intestinal IgA rotavirus-specific primary antibody-secreting cells (ASCs) and memory B-cells (to recall antigen) measured by ELISPOT assay, which correlated with complete protection against rotavirus challenge. Most short-term IgA memory B-cells were resident in the ileum, the major site of rotavirus replication. Spleen, not the bone marrow, was the major resident site for longer-term IgG memory B-cells. Candidate rotavirus vaccines evaluated in pigs for their ability to induce intestinal or systemic ASC and protection against rotavirus infection and diarrhea included attenuated live virus, inactivated virus, and baculovirus-expressed double-layered rotavirus-like particles (2/6-VLPs). In combination with those candidate vaccines, various adjuvants, delivery systems, and immunization routes were tested, including incomplete Freund's adjuvant for i.m. immunization, and a mutant Escherichia coli heat labile enterotoxin R192G (mLT) for i.n. immunization. It was shown that orally administered replicating vaccines were most effective for priming for intestinal IgA ASC and memory B-cell responses, but i.n. administered non-replicating 2/6-VLPs plus mLT were effective as booster vaccines. We conclude that protective immunity depends on the magnitude, location, viral protein-specificity, and isotype of the antibody responses induced by vaccination. Therefore highly effective enteric viral vaccines should: (i) induce sufficient levels of intestinal IgA antibodies; (ii) include viral antigens that induce neutralizing antibodies; and (iii) require the use of effective mucosal adjuvants or antigen delivery systems for non-replicating oral or i.n. vaccines.  相似文献   

9.
本试验通过研究免疫状况良好的母猪群所产仔猪母源抗体的获得方式,仔猪体内母源抗体的持续时间,仔猪不同免疫程序的免疫效果,发现初生仔猪遵守被动免疫传递规律,仔猪体内的口蹄疫抗体水平也有自己的消长规律:哺乳后3~7d抗体水平达到最高,35日龄后开始下降,63日龄左右抗体保护率已经低于60%。所以,仔猪口蹄疫疫苗首次免疫的时间应定在35日龄,49日龄还需加强一次;疫苗的剂量:首免为1头份(2mL),加强时为2头份(3mL)。  相似文献   

10.
The intestinal mucosal immune system can discriminate actively between harmful pathogenic agents and harmless food antigens resulting in different immune responses namely IgA production and oral tolerance, respectively. Recently, a pig model has been developed for studying intestinal mucosal immune responses in which F4 fimbrial antigens of enterotoxigenic Escherichia coli (F4 ETEC) are used as oral antigens. A unique feature of this model is that soluble F4 antigens can be administered to pigs which have a receptor for this fimbriae (F4R(+)) on their small intestinal villous enterocytes and pigs which do not have this receptor (F4R(-)). Oral administration of F4 to the F4R(+) pigs results in an intestinal mucosal immune response that completely protects the pigs against a challenge infection. In F4R(-) pigs such an intestinal mucosal immune response does not occur. However, a priming of the systemic immune system can be seen similar to the priming in pigs fed with the same dose of a food antigen, suggesting that F4 in F4R(-) pigs behaves as a food antigen. The fact that different mucosal immune responses can be induced with soluble F4, makes it an interesting model to study mucosal immune mechanisms in the pig.  相似文献   

11.
本试验通过研究免疫状况良好的母猪群所产仔猪获得母源抗体的方式,仔猪体内母源抗体的持续时间,仔猪不同免疫程序的免疫效果等,从而制定出仔猪猪瘟的最佳免疫程序。  相似文献   

12.
猪伪狂犬病病毒gE基因缺失苗免疫试验   总被引:1,自引:0,他引:1  
为了掌握猪伪狂犬病gE基因缺失疫苗免疫效果,并制定合理的免疫程序,选用国产和进口的猪伪狂犬病gE基因缺失弱毒疫苗,用4种不同的免疫程序,对250头母猪和1000头仔猪进行了免疫试验。试验期间,按比例定时采集免疫猪的血液,用ELISA试剂盒进行抗体检测,证明猪伪狂犬gE基因缺失疫苗,无论国产苗或进口苗都可以产生良好的免疫效果;无论跟胎免疫、1年2次普免,每隔4个月定时免疫,效果均良好。种猪免疫抗体合格率达100%,仔猪49日龄前抗体合格率达100%,75日龄后抗体逐渐降低,120日龄后基本消失。为了使猪体免疫力更强,不给野毒入侵的机会,建议仔猪在首免后,适当时间进行二次加强免疫。而只给公猪、母猪春秋两季免疫,不给仔猪免疫组,仔猪在35日龄后抗体降为阴性,不能抵抗野毒的侵袭,这种免疫方法不宜推广。  相似文献   

13.
In the preliminary study mice were vaccinated orally with Actinobacillus pleuropneumoniae microsphere oral vaccine. The lung and eye mucous membranes of these mice did not contain increased immunoglobulin A (IgA) following the initial oral vaccination, possibly through antibody persistence and the phenomenon of immune exclusion. A similar tendency was found for serum IgG. However, after the second vaccination, IgA still did not increase significantly, which could be attributed to immune suppression due to the possibility of the intestine inducing immune tolerance. Only the third vaccination overcame this effect and increased the level of IgA. In order to achieve a high systemic and local immune response this study attempted to overcome the initial tolerance to oral vaccination by using temporary immunosuppression, increasing antigen dose, and prolonging vaccine influence. Triamcinolone, used in the later productive phase of the immune response after the first and second vaccinations, but restricted in the inductive phase of the second and third vaccinations, could disable immune tolerance. Suppression of antibody production before the next induction of the immune response by an oral vaccine combined with suppression of cell-suppressor activity led to the creation of systemic immunity with the possibility of high levels of A. pleuropneumoniae growth inhibition. Increased antigen doses or durable consumption of antigen could overcome immune exclusion of antigen by primary antibodies. Even very low doses of vaccine (4.5 mg) could induce a primary immune response, and a dose increased by 10-fold for the second vaccination could overcome tolerance and maintain high systemic immunity. Chronic consumption of oral vaccine led to benefits in the quantity of local (not systemic) antibodies. The outcomes of the study can be adapted for practical oral immunization of pigs.  相似文献   

14.
In this study, the adjuvanticity of methylvinylether-co-maleic anhydride (Gantrez®AN) nanoparticles (NP) was investigated in an oral immunisation experiment of pigs against F4+enterotoxigenic Escherichia coli (F4+ETEC). In addition, Wheat Germ Agglutinin (WGA)-coating of the nanoparticles was tested for enterocyte-targeting. Pigs were either vaccinated with F4 fimbriae, F4 encapsulated in Gantrez®AN NP, F4 encapsulated in Gantrez®AN NP coated with WGA or F4 fimbriae mixed with empty Gantrez®AN NP. Only vaccination with the combination of F4 mixed with empty Gantrez®AN NP improved protection against F4+ETEC infection. In addition, vaccination with this formulation also resulted in an F4-specific serum antibody response prior to F4+ETEC challenge. Encapsulation of F4 in Gantrez®AN NP only raised the serum antibody response after F4+ETEC challenge compared to soluble F4, but did not improve protection, whereas WGA-coating almost completely abolished the serum antibody response. These data indicate that nanoparticle effects after F4 encapsulation were of lesser importance for the adjuvant effect of Gantrez®AN NP, contrarily to the reactivity of the Gantrez®AN polymer used to prepare the nanoparticles.  相似文献   

15.
We previously showed that an intradermal (i.d.) FaeG DNA prime (2x)-oral F4 protein boost immunization induces a systemic response and weakly primes a mucosal IgG response in pigs, especially when plasmid vectors encoding the A and B subunit of the E. coli thermo-labile enterotoxin (LT) are added to the DNA vaccine. In the present study, we evaluated whether addition of 1alpha,25-dihydroxyvitamin D(3) (vitD(3)) to the DNA vaccine could further enhance this mucosal priming and/or modulate the antibody response towards IgA. To further clarify priming of systemic and mucosal responses by the i.d. DNA vaccination, we firstly compared the localization of the F4-specific antibody response in pigs that were orally boosted with F4 to that in pigs that received a third i.d. DNA immunization and secondly evaluated cytokine mRNA expression profiles after i.d. DNA vaccination. The i.d. DNA prime (2x)-oral F4 boost immunization as well as the 3 i.d. DNA vaccinations induced mainly a systemic response, with a higher response observed following the heterologous protocol. Co-administration of vitD(3), and especially of the LT vectors, enhanced this response. Furthermore, only the heterologous immunization resulted in a weak mucosal priming, which appeared to require the presence of the LT vectors or vitD(3) as adjuvants. In addition, the LT vectors strongly enhanced the FaeG-specific lymphocyte proliferation and this was accompanied by the absence of a clear IL-10 response. However, despite two DNA immunizations in the presence of these adjuvants and an oral F4 boost, we failed to demonstrate the secretory IgA response needed to be protective against enterotoxigenic E. coli.  相似文献   

16.
Immunoprophylaxis of porcine oedema disease and post-weaning diarrhoea caused by strains of Escherichia coli expressing fimbriae F18 is an unsolved problem. The study was designed to examine whether vaccination with a live F18ac vaccine of unweaned pigs born to sows with F18ac antibody in the colostrum requires preformed fimbriae in the vaccine, and whether protection against the heterologous fimbrial variant F18ab is induced as well. Genetically susceptible pigs were vaccinated orally on three consecutive days, beginning 10 days before weaning with 10(11) CFU of an F18ac culture. Challenge with a dose of 10(7) CFU of E. coli F18 on three consecutive days was initiated 9 or 11 days after weaning. Eighteen pigs given the fimbriated F18ac vaccine and challenged with a strain of the homologous fimbrial variant were protected against colonization; mean faecal viable counts of the challenge strain were >3 log10 lower than those from the 17 non-vaccinated control pigs. The vaccinated pigs developed a significant rise of F18ac IgA serum antibodies. The 23 pigs which had received the non-fimbriated vaccine showed no significant protection and exhibited much lower serum F18ac IgA ELISA reactivities. Eighteen pigs vaccinated with the fimbriated F18ac and challenged with an F18ab strain had faecal viable counts nearly as high as those from 16 non-vaccinated control pigs. It is concluded that only oral vaccines having preformed fimbriae induce protection limited to the homologous fimbrial variant.  相似文献   

17.
The influence of age and maternal immunity on the development and duration of postvaccinal humoral response against swine influenza viruses (SIV) were investigated under experimental conditions. Piglets born to immune and non-immune sows were vaccinated twice with bivalent inactivated vaccine. Vaccination was done according to 5 different schedules: 1+4, 1+8, 4+8, 8+10 or 8+12 weeks of age. Antibodies to the haemagglutinin type 1 and 3 were determined using the haemagglutination inhibition (HI) test. Maternally derived antibodies (MDA) against H1N1 and H3N2 in the serum of unvaccinated piglets born to immune sows were above the positive level until about 13-14 and 9-10 weeks of life, respectively. No serological responses were seen in any of the groups after the first vaccination. After the second dose of vaccine production of antibodies was observed even before the complete disappearance of maternal antibodies. MDA, however, were associated with reduced antibody response. In MDA-negative piglets, an active humoral postvaccinal response was developed in all vaccinated pigs. The age at which the vaccine was given was associated with the differences in the magnitude of antibody response to SIV. In general those pigs that were vaccinated for the first time at the age of 1 week, developed lower maximum titres after the second vaccination, and become seronegative earlier than pigs that were vaccinated for the first time at 4 or 8 weeks of age.  相似文献   

18.
The objective of this study was to compare the induction of humoral and cell-mediated immune responses by four commercially available single-dose porcine circovirus type 2 (PCV-2) vaccines. A total of 50 3-week-old piglets were assigned to five groups (10 pigs per group). Four commercial PCV-2 vaccines were administered according to the manufacturer's instructions and the piglets were observed for 154 days post vaccination (dpv). Inactivated chimeric PCV-1-2 vaccines induced higher levels of PCV-2-specific neutralizing antibodies (NA) and interferon-γ-secreting cells (IFN-γ-SC) in pigs than did the other three commercial PCV-2 vaccines. The proportions of CD4+ cells were significantly higher in animals vaccinated with inactivated chimeric PCV-1-2 and PCV-2 vaccines than in animals vaccinated with the two subunit vaccines. To our knowledge, this is the first comparison of humoral and cell-mediated immunity induced by four commercial single-dose PCV-2 vaccines under the same conditions. The results of this study demonstrated quantitative differences in the induction of humoral and cell-mediated immunity following vaccination.  相似文献   

19.
为了掌握猪伪狂犬病gE基因缺失疫苗免疫效果,并制定合理的免疫程序,选用国产和进口的猪伪狂犬病gE基因缺失弱毒疫苗,用4种不同的免疫程序,对250头母猪和1000头仔猪进行了免疫试验。试验期间,按比例定时采集免疫猪的血液,用ELISA试剂盒进行抗体检测,证明猪伪狂犬gE基因缺失疫苗,无论国产苗或进口苗都可以产生良好的免疫效果;无论跟胎免疫、1年2次普免,每隔4个月定时免疫,效果均良好。种猪免疫抗体合格率达100%,仔猪49日龄前抗体合格率达100%,75日龄后抗体逐渐降低,120日龄后基本消失。为了使猪体免疫力更强,不给野毒入侵的机会,建议仔猪在首免后,适当时间进行二次加强免疫。而只给公猪、母猪春秋两季免疫,不给仔猪免疫组,仔猪在35日龄后抗体降为阴性,不能抵抗野毒的侵袭,这种免疫方法不宜推广。  相似文献   

20.
猪繁殖与呼吸综合征母源抗体和免疫抗体的消长规律研究   总被引:1,自引:1,他引:0  
为制定科学的免疫程序,从根本上控制猪繁殖与呼吸综合征的发生,用ELISA诊断试剂盒分别对母猪、仔猪进行了母源抗体和免疫抗体检测。试验证明母猪在配种前15 d首免,怀孕2个月时二免,在下一次配种前15 d再免,如此按生产周期免疫可以抵抗猪繁殖与呼吸综合征的感染。在母猪产前1个月免疫猪繁殖与呼吸综合征灭活疫苗,所产仔猪母源抗体60日龄时为阴性,故45日龄左右对仔猪进行首免最佳,为确定仔猪首免日龄提供了理论依据。对40日龄仔猪免疫猪繁殖与呼吸综合征灭活疫苗后,仔猪58日龄时抗体S/P平均值最高,到160日龄育肥猪时抗体S/P平均值为阴性,这时不能抵抗猪繁殖与呼吸综合征的感染。对40日龄仔猪肌肉注射2 mL猪繁殖与呼吸综合征灭活疫苗,70日龄同剂量二免,85日龄时抗体S/P值平均值最高,到180日龄育肥猪时抗体S/P平均值仍为阳性,还能抵抗猪繁殖与呼吸综合征的感染,如果作为肉猪可以安全上市;作为后备母猪,在配种前进行免疫即可。非免疫母猪、仔猪对照组抗体均为阴性。通过试验基本上查明了猪繁殖与呼吸综合征母源抗体和免疫抗体的消长规律,为以后制定免疫程序提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号