首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two lentil cultivars, UJ1 and ILL, have been introduced into the farming system of the Middle East. The influence of P on their potential to fix N2 under drought conditions is lacking. A factorial field experiment was carried out at Taibeh (500 mm yr−1) and Muru (300 mm yr−1), where three rates of P, two lentil cultivars and barley were included. Phosphorus was the main plot, while lentil and barley were grown randomly in the subplots. A typical experiment treated with unlabeled 100 kg N ha−1 with similar P rates was conducted at the Taibeh site. Both cultivars on each site did not differ significantly at different levels of P regarding the biological yield. At each P level, both cultivars derived similar nitrogen percentages from atmosphere (per cent Ndfa), except at Taibeh with the intermediate rate of P, where ILL derived (66.1 %) compared to UJ1 (40.3 %). At Taibeh, the average percentages of N in the grain and straw were 4.17 % and 1.14%, respectively, and were significantly higher than at the Muru site (3.38 %, 1.29 %). The relatively drought-like conditions at Muru reduced percentage Ndfa to ∼28 but this was increased by P addition. Nitrogen addition reduced partitioning of N (N index) from ∼0.70 % to ∼0.55 % and decreased P percentage in the grain from ∼0.40 % to ∼0.31 % and in straw from 0.11% to 0.07 % due to early maturation. In spite of the indigenous Rhizobium efficiency to fix N2, only 52.0 % and 42.3 % of the plant N was derived from the atmosphere at Taibeh and Muru, respectively, causing depletion of soil N reservoir.  相似文献   

2.
Field studies were conducted during the winter seasons of 1995–96 and 1996–97 at the Agricultural Farm of Aligarh Muslim University, Aligarh, India on mustard ( Brassica juncea L. Czern & Coss., var. Alankar) under non-irrigated conditions, to evaluate the effect of foliar spray of 200 p.p.m. ethrel (2-chloroethyl phosphonic acid) at flowering growth stage along with basal 0, 40, 80 or 120 kg N ha−1 on net photosynthetic rate (PN), stomatal conductance (CS), stomatal resistance (RS), leaf K content, relative water content (RWC), leaf area index (LAI) and total dry matter (TDM) production monitored at 20 days after spray application, and plant N content, seed N content, nitrogen harvest index (NHI), nitrogen yield merit (NYM), pods plant−1, 1000 seed weight, seed yield, biological yield, harvest index (HI), seed yield merit (SYM) and merit of genotype (MOG) at harvest. Results indicated that, at 0 or 40 kg N ha−1, ethrel did not produce any significance effect, but at basal 80 kg N ha−1, ethrel affected the parameters favourably with the exception of 1000 seed weight, HI, seed N and NHI. Ethrel-sprayed plants utilized N from the soil more effectively and showed increased NYM. Yield attributes, seed yield and merit of genotype (in terms of NYM and SYM) were also enhanced. Ethrel spray enhanced seed yield under water stress conditions mainly by increasing K uptake and retaining higher RWC, thereby decreasing RS and increasing LAI, PN and TDM production.  相似文献   

3.
Pulses such as chickpea, faba bean and lentil have hypogeal emergence and their cotyledons remain where the seed is sown, while only the shoot emerges from the soil surface. The effect of three sowing depths (2.5, 5 and 10 cm) on the growth and yield of these pulses was studied at three locations across three seasons in the cropping regions of south-western Australia, with a Mediterranean-type environment. There was no effect of sowing depth on crop phenology, nodulation or dry matter production for any species. Mean seed yields across sites ranged from 810 to 2073 kg ha−1 for chickpea, 817–3381 kg ha−1 for faba bean, and 1173–2024 kg ha−1 for lentil. In general, deep sowing did not reduce seed yields, and in some instances, seed yield was greater at the deeper sowings for chickpea and faba bean. We conclude that the optimum sowing depth for chickpea and faba bean is 5–8 cm, and for lentil 4–6 cm. Sowing at depth may also improve crop establishment where moisture from summer and autumn rainfall is stored in the subsoil below 5 cm, by reducing damage from herbicides applied immediately before or after sowing, and by improving the survival of Rhizobium inoculated on the seed due to more favourable soil conditions at depth.  相似文献   

4.
More detailed information on the causes of yield variability among wheat cultivars is needed to further increase wheat yield. Field studies were conducted in Northern Greece over the two cropping seasons of 1985—1986 and 1986—1987 to assess the effects of nitrogen fertilizer and application timing of the various component traits that determine grain yield, grain nitrogen yield and nitrogen utilization efficiency of two bread ( Triticum aestivum L.) and two durum ( Triticum durum Desf.) wheat cultivars, using yield and yield component analysis. Nitrogen at a rate of 150 kg ha-1 was applied before planting or 100 N kg ha-1 before planting and then 50 N kg ha-1 top dressed at early boot stage. Nitrogen and cultivars affected all traits examined, while split nitrogen application affected only some of the traits. Grain yields in the most cases were correlated with number of grains per unit area and grain weight and grain nitrogen yields in all cases with grain number per unit area. The contribution of the number of grains per spike to total variation in grain yield among cultivars was almost consistent (37 to 55 %), while the contribution of grain weight was more significant (up to 55 %) in high yields (>6.500kg ha-1) and number of spikes per unit area (>500). The number of grains per spike contributed from 60 to 83 % to the total variation in grain nitrogen per spike. Increased grain nitrogen concentration resulted in a reduction of its contribution in grain nitrogen yield variation. Nitrogen utilization efficiency was higher during grain filling than during vegetative biomass accumulation. The contribution of nitrogen harvest index to the variation of utilization efficiency for grain yield was higher in plants receiving nitrogen application.  相似文献   

5.
A field experiment was conducted during the winter season of 1992–93 and 1993–94 at Agricultural Experimental Farm, Giridih, Bihar to evaluate the intercropping systems of legumes, gram ( Cicer arietinum L.), pea ( Pisum sativum ) and lentil ( Lens culinaris ) with wheat ( Triticum aestivum ) in 1:1 and 2:1 'row replacement series'. Intercropping systems were assessed on the basis of new indices termed as actual yield loss (AYL) and intercropping advantage (IA). This paper highlights the comparative effectiveness of evaluating the intercropping systems through the existing intercropping indices like LER, RCC, aggressivity. The indices AYL and IA seem to be more appropriate particularly when per plant yield is considered. Intercropping reduced the yield of component crops compared with respective pure stands. Wheat + pea in 1:1 row replacement series gave the highest wheat yield equivalent value (3.02 t ha−1) followed by wheat + lentil (2.91 tha−1). When the actual sown proportion was considered wheat + lentil (1:1) resulted in maximum AYL (+0.610) and IA (+0.279) values. This treatment also gave the maximum monetary advantage (Rs 5985.45 ha−1).  相似文献   

6.
A field experiment was conducted at the Division of Agronomy, Indian Agricultural Research Institute, New Delhi during 1983-84 and 1984-85 to study the effect of lentil residues on the yield and response of succeeding rice to nitrogen. Lentil residues benefitted the succeeding rice and gave longer and heavier panicles, more grains per panicle, higher 1000-grain weight and higher grain and straw yield of rice as compared to fallow. Rice responded well to applied nitrogen both in the absence and presence of lentil residues. The effect of lentil root residues and root residues plus incorporation of lentil straw was equivalent to 11 and 33 kg N ha−1 when 60 kg N ha−1 was applied to rice; the corresponding values being 54 and 60 kg N ha−1 when 120 kg N ha−1 was applied to rice.  相似文献   

7.
Relationships between grain yield attributes and response to agronomic practices of dwarf and tall genotypes in the major U.S. wheat region were investigated. Isogenic tall, semidwarf, and doubledwarf (Norin 10/5/Pawnee) 'Pawnee' winter wheat ( Triticum aestivum L.) lines were planted in a split-split-plot design with nitrogen fertilizer rates of 0, 50, and 100 kg ha−1 as main plots and seeding rates of 30, 60, and 90 kg ha−1 as subplots in four replications at Hutchinson and Manhattan, Kansas, during 1980–1981. There was no evidence that dwarf lines responded better than the tall line to nitrogen fertilizer; however, percentage fertile spikelets, spike length, harvest index, and kernel number per spike of the semidwarf line were favored by high nitrogen rates. Grain yield was more responsive to seeding rate in the doubledwarf line than in the other lines, and test weight and spike number per unit area were more responsive to seeding rate in one or both dwarf lines than in the tall line. Grain yield of each genotype depended highly on the predominant yield attributes — usually spike number per unit area and/or kernel weight — at one or both locations.  相似文献   

8.
Field experiments were conducted at Tamil Nadu Rice Research Institute, Aduthurai, India, during the wet seasons of 1992 and 1993 to study the effect of full and partial substitution of fertiliser N with green manure N (Sesbania rostrata) on nitrogen uptake, yield attributes and yield of rice. The experiment consisted of eight treatments with two levels of N (100 and 200 kg ha−1) and three sources of N application viz., fertilizer, integrated (1:1 fertilizer and green manure N) and green manure N compared to the recommended practice (150 kg fertilizer plus 6.25 t ha−1 (72 kg N) green manure) and a no N control. Nitrogen application markedly increased the N uptake. Combined use of the two N sources at 200 and 222 kg N ha−1 and of single fertilizer N at 200 kg N ha−1 recorded the maximum N uptake, increased the yield attributes such as number of panicles per unit area, weight per panicle, number of total and filled grains per panicle and test weight. At 200 kg N ha−1 full substitution of N by green manure reduced the grain yield but only partial substitution of N by green manure resulted in almost similar yield as single fertilizer N. Thus 200 kg N ha−1 applied in equal proportions of fertilizer and green manure N can be recommended for medium duration rice cultivars.  相似文献   

9.
Nitrogen management for production of bread quality wheat ( Triticum aestivum L.) in eastern Canada has received little research attention. An experiment was conducted for 2 years at each of two sites in Québec to study the effect of level and timing of nitrogen (N) fertilizer application on grain protein concentration, protein content per seed, non-protein seed dry matter, grain protein yield and nitrogen harvest index (portion of plant N in the grain) of four hard red spring wheat cultivars known to have potential as bread wheats in eastern Canada. The soil types were Bearbroock clay (fine, mixed, non-acid, frigid, Humaquept) and Ste-Rosalie clay (typic, non-acid, frigid, Humaquept). The experiment was a 4 × 4 × 2 factorial. Four cultivars were used: Columbus, Katepwa, Max and Hege 155–85. In both years 0, 60, 120 and 180 kg Nha−1 were applied either all at seeding or 60 % at seeding and 40 % at heading. Grain protein concentration and grain protein yield increased consistently with increasing N fertilizer and with split N application. Nitrogen harvest index was not increased by increasing applications of N fertilizer. Protein content per seed was more critical in determining grain protein concentration than non-protein seed dry matter content. The western Canadian cultivars Columbus and Katepwa generally had greater grain protein concentration than the European cultivars Max and Hege 155–85, With reasonable N fertility the grain protein concentration of spring wheats grown in eastern Canada are sufficient for bread production.  相似文献   

10.
In a field trial conducted during 1992–93 and 1993–94, the effect of basal (B) nitrogen (N) (45 and 60 kg N ha−1) and foliar application (F) of water (W) or 10 kg N ha−1 and 400 or 600 ppm ethrel (E) (2-Chloro ethyl phosphonic acid) at 70 days after sowing was studied on leaf area index and dry mass at 90 days and pod number per plant, seeds per pod, 1000 seed weight, seed yield, oil content and oil vield at harvest of mustard ( Brassica juncea L. Czern & Coss.) cv. T-59. Recommended basal (B) application of 90 kg N ha (BN90) was used as control. On the basis of 2 year data it was found that basal application of 60 kg N and foliar spray of 10 kg N ha −1 and 600 ppm ethrel gave higher values for growth and yield characteristics and enhanced seed yield and oil yield by 12.5 and 14.8%, respectively over control BN90.  相似文献   

11.
To improve nutrient management strategies in wheat more information is needed about the interaction effects among nutrients in their uptake and redistribution in the plants, in relation to different genotypes. Therefore, two bread ( T. aestivum L.) and two durum ( T. durum Desf.) winter wheat cultivars were grown in the field for 2 years (1986, 1987) in a silty-clay soil under different nitrogen (N) levels, in Northern Greece. Nitrogen at a rate of 150 kg ha−1 was applied before planting or 100 kg ha−1 before planting and then 50 kg ha−1 at early boot stage. Cultivar differences in phosphorus (p) concentration were observed only in vegetative parts but not in the grain. Maximum p accumulation was observed either at anthesis or at maturity. During grain filling dry matter and p accumulation in the grain followed almost the same pattern. Phosphorus translocation efficiency of the cultivars at the 2 years ranged from 70.7 to 84.3 % and the amount of p in the grain derived from translocation 52 to 100 %. Phosphorus translocation efficiency was weakly correlated with p content in grain only in 1986, while phosphorus harvest index (PHI) was positively correlated with harvest indst (HI) both years (r = 0.82** in 1986 and 0.75** in 1987). Nitrogen application mainly affected p accumulation of the cultivars via its effect on biomass production. The split N application promoted slightly the p uptake in 1987 and this resulted in the reduction of both the contribution of the translocated p to the grain and the efficiency of p utilization for total biomass. Results indicated that p accumulation and translocation and the efficiency of p utilization in wheat were mainly determined by the genotype in relation to environmental condition of growth.  相似文献   

12.
A Field trial was conducted during 1988–89 and 1989–90 at Water Management Research Station, Memari. Bidhan Chandra Krishi Viswavidyalaya, Burdwan, to study the effect of three different irrigation regimes, namely rainfed (I1) (No irrigation), one irrigation (I2) at flowering and two irrigations (I3 at flowering and at sihqua formation stages) on the grain yield and water expenses on four different rapeseed-mustard cultivars, namely Pusa Bold, Pusa Baroni, Varuna and DIR 247. The variety DIR 247 recorded maximum grain yield (12.1 qha') followed by Pusa Baroni (11.8 q ha−1). The variety Varuna showed the lowest water use efficiency (48.1 kg ha−1 cm−1) while DIR 247 showed the maximum value of 57.0 kg ha−1 cm−1. The number of irrigations significantly increased the grain yield. Two irrigations, one at flowering and at siliqua formation stage increased grain yield by 28 % over the rainfed plots. During the crop growth period the actual water expenses among the cultivars in any moisture regime were more or less similar. The interaction between varieties and irrigation levels were, however, not significant.  相似文献   

13.
A field experiment was performed to study the effect of zinc and iron supply on grain yield in four promising varieties of rice ( Oryza sativa L.) viz. IR-20, Jaya, Pusa 2–21, and IET-1444. Three doses of ZnSO4 or FeSO4 (0, 20 or 40 kg ha−1) along with all possible combinations were investigated. The varietal differences were significant in grain yield ha−1. The grain yield increased with the dose of zinc and Jaya but not significantly in IR-20. The increase in grain yield was more significant and dose dependent in IET-1444 than in Jaya in response to iron application.  相似文献   

14.
In a 3-year field experiment conducted on a Gleyic Luvisol in Stuttgart-Hohenheim, ten maize cultivars (nine commercial and one experimental hybrid) were compared in their ability to utilize a high soil nitrogen (N) supply. Total N content of the shoots at about silage maturity ranged from 213 to 328 kg N ha−1 (1986), from 177 to 223 kg N ha−1 (1987) and from 185 to 226 kg N ha−1 (1988). In all three experimental years, total shoot N uptake was significantly positively correlated to stover yield, and also to N concentrations in the ears and in the total plant dry matter. In contrast, a negative correlation between ear yields of the cultivars and total N uptake was indicated. Differences between the cultivars in N uptake were reflected in a corresponding soil nitrate depletion. At harvest, residual nitrate-N in the 0–90 cm soil layer ranged from 34–63 kg N ha−1 m 1987 and 32–71 kg N ha−1 in 1988. The results indicate, that growing of cultivars selected for high N uptake-capactiy of the shoots may contribute to an increased utilization of a high soil N supply and thus to a reduction of nitrate leaching.  相似文献   

15.
Field experiments were performed in two successive seasons at the Experimental Station, Faculty of Agriculture, Cairo University, Giza, Egypt, on the Egyptian cotton cultivar Giza 75 ( Gossypium barbadense L.). Cotton plants were sprayed with the growth regulator 1-naphthaleneace acid (NAA) once (at 90 days), or twice (at 90 and 105 days) or thrice (90, 105 and 120 days) after sowing, during the square initiation and boiling stage at the concentrations of 5, 10, 15, 20 or 25 p.p.m. The volume of solution was the same for all treatments. 9601 ha−1. The control plants were sprayed with water only. The effect of the previous treatments on yield components, cotton yield and fibre properties was studied.
The application of NAA increased the number of opened bolls plant−1, boll weight, seed index, seed cotton yield plant−1 and seed cotton and lint yields ha−1. The most significant effects were obtained with the 15 and 20 p.p.m. concentrations. Lint percentage, fibre length parameters and micronaire value were not significantly affected by NAA. Flat bundle strength was significantly affected by NAA but with no definite trend. The application of NAA twice or thrice tended to give the best results on yield components and cotton yield compared with one application. The results of this study suggested that 20 p.p.m. of NAA gave the best figures when applied twice on the Egyptian cotton plants.  相似文献   

16.
黄淮海区域现代夏玉米品种产量与养分吸收规律   总被引:6,自引:0,他引:6  
为玉米合理施肥,实现高产高效提供理论依据,2016年在济南商河国家农作物新品种展示示范中心和山东农业大学作物生物学国家重点实验室进行试验,于玉米完熟期进行植株取样,测定产量、产量构成因素和植株矿质元素含量,探究黄淮海区域现代夏玉米品种的产量与养分吸收规律。探测分析和正态分布检测结果表明单株生产力、单株生物产量、千粒重和籽粒产量分别符合正态分布N (167.0, 22.722)、N (285.0, 33.472)、N (318.0, 35.752)和N (10.9,1.502),其变化范围为141.55~246.99 g株–1、197.68~389.92 g株–1、226.58~413.76 g和5.84~13.41 t hm~(–2)。每生产100kg籽粒氮素需求量平均为1.95 kg,单位籽粒氮素需求量随籽粒产量提高呈降低趋势。当产量水平由7.0 t hm~(–2)增加到8.0~9.0 t hm~(–2)时,每生产100 kg籽粒氮素需求量从2.15 kg降低到1.96 kg,主要是收获指数升高和籽粒氮浓度降低造成的;当产量水平由8.0~9.0 t hm~(–2)增加到10.0~11.0 t hm~(–2)时,每生产100 kg籽粒氮素需求量从1.96 kg降低到1.84 kg,主要是籽粒氮浓度降低造成的;当产量水平由10.0~11.0 t hm~(–2)增加到11.0 t hm~(–2)时,单位籽粒氮素需求量基本不再变化。生产100kg玉米籽粒的磷素需求量平均为0.97kg,其与籽粒产量呈显著负相关,从产量水平7.0t hm~(–2)的1.07 kg下降到产量水平11.0 t hm~(–2)的0.92 kg,这是由收获指数升高和籽粒磷浓度降低造成的。生产100 kg玉米籽粒钾素需求量平均为1.89 kg,其与籽粒产量呈显著负相关,从产量水平7.0 t hm~(–2)的2.14 kg下降到产量水平11.0 t hm~(–2)的1.74 kg,这是由收获指数升高、茎秆钾浓度增加和叶片钾浓度降低造成的。当前黄淮海区域现代玉米品种籽粒产量为(8.91±1.23)thm~(–2),生产100kg籽粒的氮素、磷素和钾素需求量的变化范围分别为(1.95±0.24)、(0.97±0.11)和(1.89±0.28)kg。氮磷钾需求量随产量的提高而增加,但每生产100kg籽粒产量的氮素、磷素和钾素需求量随着产量升高而下降。  相似文献   

17.
A simple randomized field experiment was conducted to assess the growth and yield of rape-seed-mustard in relation to sulphur and nitrogen interaction. Three levels of sulphur (0, 40 and 60 kg ha−1) in combination with three levels of nitrogen (60, 100 and 150 kg ha−1) were tested as treatments, T1, T2, T3, T4, and T5. Results indicated significant favourable effects of sulphur and nitrogen, when applied together, on yield components, seed and oil yield. Maximum response was observed with treatment T3 (having S and N of 40 and 100 kg ha1, respectively). Percentage oil content of seed was maximal at T4 (having S and N of 60 and 100 kg ha1) in both cultivars. The increase in N dose from 100 to 150 kg ha−1 without any change in applied S, i.e. 60 kg ha1 (T5), decreased the percentage oil content. The seed and oil yield, however, were similar to T3. Favourable responses of S and N interaction on leaf area index, rate of photosynthesis and biomass production were also observed.  相似文献   

18.
Two field experiments were conducted during] 994-95 to study the effect of spray of 10−5 M GA3 at 40 days after sowing on mustard ( Brassica juncea (L.) Czern & Coss.) cv. Varuna grown with basally applied 0, 40, 80 and 120 kg N ha−1 (Expt. 1) and 0,15, 30 and 45 kg P ha−1 (Expt. 2) on pod number per plant, seeds per pod, 1000 seed weight, seed yield, biological yield, harvest index and fatty acid composition of oil. No significant difference between water and GA3 spray was found when basally applied nitrogen was 0 or 40 kg N ha−1. N80 proved to be the best for yield characteristics. In another experiment on phosphorus, GA3 and 30 kg P ha−1 individually enhanced the yield, but interaction of GA3 and P remained non-significant. The fatty acid composition of oil in both experiments was significantly affected only by nitrogen and phosphorus treatments for oleic acid and erucic acid. It was found that return in the form of yield was more for every kg applied fertilizer under GA, spray treatment. The response was more for N fertilizer in comparison to P. GA3 at a low level of fertilization significantly increased the return from fertilization.  相似文献   

19.
The effects of increased yield and grain number per unit area in barley in response to nitrogen application are well known. However, the influence of applied nitrogen on the rates and durations of developmental phases in barley are less well understood. Our objective was to investigate the effect of applied nitrogen on the duration of pre-anthesis development in barley and the number of spikelets per spike in two barley cultivars, Franklin and Schooner, in two studies. We found no effect of nitrogen on the duration of the pre-anthesis period in Schooner, when applied to pots at a rate of 0 or 55 kg N ha-1, or when applied in the held at 0, 40 or 160 kg N ha-1. However, this duration was extended in Franklin in the first study by an application of 55 kg N ha-1. Both plant biomass and grain yield at maturity were increased between 0 and 55 kg N ha-1, and 0 and 160 kg N ha-1. Meld increase was largely associated with an increase in the number of tillers per plant.  相似文献   

20.
Experiments were conducted in two consecutive years to investigate the response of two corn (Zea mays, L.) cultivars, Eperon and Challenger, to timing of N fertilizer in a desert climate. Fertilizer was applied three times (at planting, 6 weeks after sowing (6WAS) and at 9WAS) to give a seasonal total of 180 kg N ha-1 The N treatments were Nooo (control), NLOH (60 kg N ha-1 at planting, none at 6WAS and 120 kg N ha-1 at 9WAS), NLLL (60 kg N ha-1 at sowing, 6WAS and at 9WAS) and NLOH, (60 kgN ha-1 at planting, 120 kg N ha-1 at 6WAS and none at 9WAS). Generally, N ha-1 was associated with the highest grain and dry matter yields. Plants in N treated plots had significantly larger number of leaves and ear leaf N contents than the control at mid-silk. High ear leaf N was associated with high leaf area index and dry matter yield. Based on these results, it would appear that the application of 60 kg N ha-1 at planting, followed by 120 kg N ha at 6WAS (NLHO) is the most suitable for enhancing corn yields in the desert climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号