首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experiment was conducted to determine the efficacy of dietary betaine, CLA, or both as growth promotants and carcass modifiers in growing Iberian pigs. Twenty gilts (20 kg of BW) were individually penned and fed barley- and soybean meal-based diets (12% CP, 0.81% Lys, and 14.8 MJ of ME/kg of DM) containing either no added betaine or CLA (control), 0.5% betaine, 1% CLA, or 0.5% betaine + 1% CLA, at 95% of ad libitum energy intake. An additional group of 5 pigs was slaughtered at the beginning of the experiment to obtain the initial body composition. At 30 kg of BW, a balance experiment was conducted. At 50 kg of BW, pigs were slaughtered and viscera was removed and weighed. Betaine or CLA alone did not affect growth performance. However, betaine + CLA increased ADG (601 vs. 558 g, P = 0.03) and gain relative to ME intake (25.4 vs. 22.2 g/MJ, P = 0.03) compared with control pigs. Digestibility of nutrients and metabolizability of energy did not differ among diets (P = 0.46 to 0.75). Carcass protein, water, and lean deposition (g/d) increased (19.8, 24.2, and 23.4%, respectively, P < 0.01) in pigs fed betaine + CLA compared with control pigs. Similarly, protein deposition relative to ME intake increased by 28% in betaine + CLA-supplemented pigs (P < 0.05). Fat and mineral deposition did not differ among treatments. Carcass protein, water, and lean content (g/kg of carcass) of pigs fed betaine + CLA-supplemented diets tended to increase (P = 0.07 to 0.09) and carcass fat content tended to decrease (P = 0.09). Similarly, estimated composition of carcass gain was affected, such that water and lean content tended to increase (P = 0.06 to 0.08), whereas fat tended to decrease (P = 0.08) in pigs fed betaine + CLA-supplemented diets. Longissimus muscle area was not altered by treatments (P = 0.49). The liver of pigs fed betaine + CLA diets had increased weight (19%, P < 0.05) compared with control pigs. Overall, dietary supplementation of betaine + CLA increased ADG, protein, water, and lean deposition in growing Iberian gilts. There appears to be a synergistic action when betaine and CLA are used together.  相似文献   

2.
An experiment was conducted to determine the effect of dietary betaine (0, 0.125, 0.250, or 0.500%) on growth, carcass traits, pork quality, plasma metabolites, and tissue betaine concentrations of cross-bred finishing pigs. Four replications of three pigs (two barrows and one gilt) each were used for each treatment. The basal diet contained 0.85 (69 to 88 kg BW) or 0.65% Lys (88 to 115 kg BW). Overall ADG and gain:feed were not affected (P > 0.10) by betaine, but overall ADFI was decreased (quadratic, P < 0.05; 0 vs betaine, P < 0.01) by betaine; pigs fed 0.250% betaine had the lowest ADFI. Loin muscle area, average back-fat, dressing percentage, percentage lean, total fat, lean:fat, and leaf fat weight were not affected (P > 0.10) by betaine. Tenth-rib backfat thickness was decreased (quadratic, P < 0.05; 0 vs betaine, P < 0.05); pigs fed 0.250% betaine had the lowest 10th-rib backfat thickness. Carcass length was increased (linear, P < 0.05; 0 vs betaine, P < 0.10) as the level of betaine was increased. Fat-free lean, lean gain per day, ham weight, ham fat-free lean, and ham percentage lean were increased (quadratic, P < 0.10), but percentage fat, total ham fat, percentage ham fat, and butt-fat thickness were decreased (quadratic, P < 0.10); these traits were respectively highest or lowest in pigs fed 0.250% betaine. Thaw loss and 24-h pH were increased (quadratic, P < 0.10; 0 vs betaine, P < 0.05) and cook loss was decreased (linear, P < 0.05) in pigs fed betaine. The CIE L* value for the biceps femoris was decreased (quadratic, P < 0.10; 0 vs betaine, P < 0.10); pigs fed 0.250% betaine had the lowest CIE L* value. Subjective color, firmness-wetness, marbling, percentage moisture and bound water of the loin muscle, and shear force were not affected (P > 0.10) by betaine. Betaine was not detectable (< 0.07 mg/g) in the loin muscle of pigs fed 0% betaine, but betaine was detectable and relatively constant in pigs fed 0.125, 0.250, or 0.500% betaine (0.22, 0.17, and 0.21 mg/g, respectively). Plasma urea N, total protein, albumin, triglycerides, and HDL cholesterol concentrations were not affected (P > 0.10). Plasma total cholesterol (linear, P < 0.10) and NEFA (quadratic, P < 0.10) were increased in pigs fed betaine. Betaine improved carcass traits when provided at 0.250% of the diet and improved some aspects of pork quality.  相似文献   

3.
A restriction/realimentation feeding strategy was applied to pigs to increase the age at market weight and final ADG, modify protein and lipid deposition rates at carcass and muscle levels, and thereby improve eating quality of the pork. A total of 126 Duroc x (Large White x Landrace) pigs (females and castrated males) were used. At the average BW of 30 kg, within litter and sex, pairs of littermates (blocked by BW) were randomly assigned to ad libitum (AL) feeding during growing (30 to 70 kg of BW) and finishing (70 to 110 kg of BW) periods (AL, n = 56), or restricted feeding at 65% of the ADFI of the AL pigs, on a BW basis, during the growing period and AL feeding during finishing (compensatory growth, CG; n = 56). In each feeding regimen, 15 pigs were slaughtered at 70 kg of BW, and 41 pigs were slaughtered at 110 kg of BW. Additionally, 14 pigs were slaughtered at 30 kg of BW to calculate tissue deposition rates. The CG pigs showed decreased ADG (-35%, P = 0.001) during growing but increased ADG (+13%, P = 0.001) during finishing (i.e., compensatory growth) due to greater (P = 0.001) ADFI and G:F. Hence, CG pigs were 19 d older at 110 kg of BW than AL pigs. The CG pigs were leaner at 70 kg of BW than AL (e.g., 11.7 vs. 13.5 mm of average backfat thickness for CG and AL pigs, respectively, P = 0.023), whereas the differences were reduced at 110 kg of BW (20.6 vs. 21.0 mm of average backfat thickness for CG and AL pigs, respectively, P = 0.536). At 70 kg of BW, intramuscular fat (IMF) content of LM did not differ between CG and AL pigs (1.25 vs. 1.49%, respectively, P = 0.118), whereas CG pigs had less IMF in LM at 110 kg of BW (2.19 vs. 2.53% for CG and AL pigs, respectively, P = 0.034). Feeding regimen influenced the composition of weight gain. From 30 to 70 kg of BW, feed restriction reduced (P = 0.001) lean and adipose tissue deposition at the carcass level and protein and lipid deposition at the muscle level. From 70 to 110 kg of BW, the CG feeding strategy increased (P = 0.016) deposition of adipose but not of lean tissue at the carcass level. However, lipid and protein deposition at the muscle level were not affected. Thus, realimentation promoted deposition of subcutaneous fat over IMF. Feeding regimen hardly affected technological meat quality at 110 kg of BW. The CG feeding strategy decreased (P = 0.014) the meat juiciness score in relation to the decreased IMF but did not influence other sensory traits. Elevated IMF content and improved pork quality might be achieved by modifying the onset or duration of the restriction and realimentation periods.  相似文献   

4.
Carcass and live measurements of 45 barrows were used to evaluate the magnitude of ractopamine (RAC) treatment prediction biases for measures of carcass composition. Barrows (body weight = 69.6 kg) were allotted by weight to three dietary treatments and fed to an average body weight of 114 kg. Treatments were: 1) 16% crude protein, 0.82% lysine control diet (CON); 2) control diet + 20 ppm RAC (RAC16); 3) a phase feeding sequence with 20 ppm RAC (RAC-P) consisting of 18% crude protein (1.08% lysine) during wk 1 and 4, 20% crude protein (1.22% lysine) during wk 2 and 3, 16% crude protein (0.94% lysine) during wk 6, and 16% crude protein (0.82% lysine) during wk 6. The four lean cuts from the right side of the carcasses (n = 15/treatment) were dissected into lean and fat tissue. The other cut soft tissue was collected from the jowl, ribs, and belly. Proximate analyses were completed on these three tissue pools and a sample of fat tissue from the other cut soft tissue. Prediction equations were developed for each of five measures of carcass composition: fat-free lean, lipid-free soft tissue, dissected lean in the four lean cuts, total carcass fat tissue, and soft-tissue lipid mass. Ractopamine treatment biases were found for equations in which midline backfat, ribbed carcass, and live ultrasonic measures were used as single technology sets of measurements. Prediction equations from live or carcass measurements underpredicted the lean mass of the RAC-P pigs and underpredicted the lean mass of the CON pigs. Only 20 to 50% of the true difference in fat-free lean mass or lipid-free soft-tissue mass between the control pigs and pigs fed RAC was predicted from equations including standard carcass measurements. The soft-tissue lipid and total carcass fat mass of RAC-P pigs was overpredicted from the carcass and live ultrasound measurements. Prediction equations including standard carcass measurements with dissected ham lean alone or with dissected loin lean reduced the residual standard deviation and magnitude of biases for the three measures of carcass leanmass. Prediction equations including the percentage of lipid of the other cut soft tissue improved residual standard deviation and reduced the magnitude of biases for total carcass fat mass and soft-tissue lipid. Prediction equations for easily obtained carcass or live ultrasound measures will only partially predict the true effect of RAC to increase carcass leanness. Accurate prediction of the carcass composition of RAC-fed pigs requires some partial dissection, chemical analysis, or alternative technologies.  相似文献   

5.
Impact of betaine on pig finishing performance and carcass composition   总被引:2,自引:0,他引:2  
Two experiments were conducted to evaluate the effect of betaine supplementation of finishing diets on growth performance and carcass characteristics of swine. Experiment 1 included 288 pigs in a 2 x 2 x 3 factorial arrangement of treatments consisting of barrows and gilts of two genetic populations fed diets with 1.25 g/kg supplemental betaine from either 83 or 104 kg to 116 kg and control pigs fed betaine-devoid diets. Pigs were housed three pigs per pen with eight replicate pens per treatment. Diets were corn-soybean meal-based with 300 ppm added choline. Genetic populations differed (P < 0.05) in fat depth (2.24 vs 2.93 cm) and longissimus muscle depth (53.8 vs 49.1 mm) at 116 kg. Betaine reduced feed intake (P < 0.05); however, real-time ultrasound measurements were not affected. In Exp. 2, 400 pigs were used in a 2 x 2 x 2 factorial arrangement of treatments to evaluate the effect of sex (barrow or gilts), betaine (0 or 1 g/kg of diet), and crude protein (CP) (0.70% lysine = 12.7% CP or 0.85% lysine = 15.0% CP) when fed from 60 to 110 kg live weight. Pigs had been assigned to either a high- or low-protein feeding regimen at an average initial weight of 11.3 kg and were maintained on their respective protein levels throughout the experiment. For a 56-d period from 61.7 kg to 113.6 kg, pigs were fed diets with 300 ppm added choline. Within each protein level, pigs were randomly assigned to diets containing 0 or 1 g/kg betaine. Pigs were group-housed (four to five pigs per pen). Pig weight and feed intake were recorded every 28 d. Real-time ultrasound measurements were recorded initially and at d 28 on 64 pigs, and on all pigs prior to slaughter. Growth rate was fastest and feed intake greatest for barrows (P < 0.05) and for pigs receiving 12.7% crude protein. A crude protein x betaine interaction (P < 0.05) was observed from d 28 to 56 with pigs fed the 15% CP diet growing fastest when supplemented with 1 g/kg betaine, and pigs receiving the 12.7% CP diet growing fastest when the diets contained 0 g/kg betaine. Gilts more efficiently (P < 0.05) converted feed into body weight gain, as did pigs receiving the 12.7% CP diet (P < 0.05). Longissimus muscle area and fat measurements were unaffected by betaine or dietary protein on d 28. However, by d 56 betaine reduced average fat depth in barrows (P < 0.05; 3.21 vs 3.40 cm), but not in gilts. Betaine may be more effective at altering body composition in barrows than in gilts.  相似文献   

6.
甜菜碱对生长猪的生长性能和胴体组成的影响   总被引:1,自引:0,他引:1  
选用 96头杜长大生长猪 ,随机分成 4组 ,以研究日粮中添加不同水平甜菜碱 (10 0 0、15 0 0、2 0 0 0 mg/kg)对猪生长性能、胴体组成及肉质的作用效果。试验结果表明 ,与对照组相比 ,日粮中添加 10 0 0 mg/kg和 15 0 0 mg/kg甜菜碱组猪日增重分别提高 13.2 0 % (P<0 .0 1)、9.2 8% (P<0 .0 5 ) ,日均采食量分别增加 7.30 % (P<0 .0 5 )、7.33% (P<0 .0 1) ,料重比分别下降 7.93% (P<0 .0 1)、6 .5 5 % (P<0 .0 5 )。此外 ,10 0 0 mg/kg甜菜碱组猪的胴体瘦肉率和眼肌面积比对照组分别提高 7.15 % (P<0 .0 5 )、19.12 % (P<0 .0 5 ) ,胴体脂肪率与背膘厚分别减少 2 7.2 1% (P<0 .0 5 )、14 .86 % (P<0 .0 5 ) ;背最长肌中的肌红蛋白和肌内脂肪分别提高 34.2 1% (P<0 .0 1)、2 9.5 6 % (P<0 .0 1)  相似文献   

7.
Conjugated linoleic acid changes swine performance and carcass composition   总被引:22,自引:0,他引:22  
Conjugated linoleic acid (CLA) is a collective term for positional and geometric isomers of linoleic acid. Dietary CLA has been shown to improve feed efficiency, decrease body fat, and increase lean tissue in laboratory animals. We hypothesized that CLA would improve performance and carcass composition and would be deposited in pork tissues. Diets of 40 crossbred pigs were supplemented with CLA to determine its effects on performance and carcass composition. Eight replications of five littermate barrows with an initial average weight of 26.3 kg were allotted at random to individual pens. Within replication dietary treatments containing 0, 0.12, 0.25, 0.5, or 1.0% CLA were assigned at random. Pigs were weighed and feed disappearance was determined at 14-d intervals. Average daily gain increased linearly as the level of CLA increased in the diet (P < 0.05). Average daily feed intake was not affected by the concentration of CLA in the diet. Therefore, a linear increase in gain:feed ratio (P < 0.05) was observed. Carcasses from animals fed control diets had greater 10th rib backfat than carcasses from animals fed CLA (P < 0.05). Ultrasound measurement and carcass measurements showed less fat depth over the loin eye at the 10th rib of pigs fed doses of CLA (P < 0.05) than that observed for control pigs. Belly hardness (firmness) increased linearly as the concentration of CLA in the diet increased when bellies were measured for firmness either lean side up (P < 0.001) or lean side down (P < 0.05). Loin dissection data demonstrated that CLA produced a quadratic treatment effect both for less intermuscular fat (P < 0.001) and less subcutaneous fat (P < 0.05) and a linear increase for bone (P < 0.05), although finished loin weight only tended to increase (P = 0.08). The CLA concentration increased in a linear relationship in both subcutaneous fat (P < 0.001) and lean tissue (P < 0.001). Dietary CLA was incorporated into pig tissues and had positive effects on performance and body composition.  相似文献   

8.

Energy partitioning was studied in pigs differing in potential for carcass lean growth and fatty tissue content from 25 to 105 kg body weight, by the means of repeated measures of detailed body composition and individual feed intake. In total, 141 pigs were included from the three genetic groups Norwegian Landrace (lean and efficient), Duroc and Landrace 2 LP (a fat and slow-growing selection line) (LLP). Individual feed consumption was registered, and detailed body composition measured repeatedly by computed tomography. Energy consumption [MJ metabolizable energy (ME) day -1 ] did not differ between the genetic groups. In general, about 40-50% of consumed energy was partitioned to growth. The genetic groups partitioned equal proportions of daily energy consumption to growth (ME GROWTH ) and maintenance (MEm) early and late in the growth period. From 50 to 85 kg body weight Landrace partitioned more to growth and less to maintenance compared with Duroc ( P <0.05). When considering partitioning of ME above maintenance, the genetically fat LLP had the highest net energy retention relative to the heat increment of feeding and was therefore the most efficient, Duroc was in an intermediate position while the lean Landrace had the lowest proportion. The partitioning of ME GROWTH to fatty tissue and carcass lean growth differed between the genetic groups ( P <0.001) according to genetic potential for carcass lean and fatty tissue gain. Increasing proportions were partitioned to fatty tissue growth with increasing body weight. The genetic groups partitioned equal proportions of ME GROWTH to non- fat visceral components (NFVC) growth. MEm varied between 0.65 and 0.68 MJ kg -0.75 day -1 . MEm increased with increasing weight of carcass lean and viscera ( P <0.01), more so in the modern breeds than in the LLP.  相似文献   

9.
The objectives were to develop equations for predicting fat-free lean in swine carcasses and to estimate the prediction bias that was due to genetic group, sex, and dietary lysine level. Barrows and gilts (n = 1,024) from four projects conducted by the National Pork Board were evaluated by six procedures, and their carcass fat-free lean was determined. Pigs of 16 genetic groups were fed within weight groups one of four dietary regimens that differed by 0.45% in lysine content and slaughtered at weights between 89 and 163 kg. Variables in equations included carcass weight and measures of backfat depth and LM. Fat-free lean was predicted from measures of fat and muscle depth measured with the Fat-O-Meater (FOM), Automated Ultrasonic System (AUS), and Ultrafom (UFOM) instruments, carcass 10th-rib backfat and LM area (C10R), carcass last-rib backfat (CLR), and live animal scan of backfat depth and LM area with an Aloka 500 instrument (SCAN). Equations for C10R (residual standard deviation, RSD = 2.93 kg) and SCAN (RSD = 3.06 kg) were the most precise. The RSD for AUS, FOM, and UFOM equations were 3.46, 3.57, and 3.62 kg, respectively. The least precise equation was CLR, for which the RSD was 4.04 kg. All procedures produced biased predictions for some genetic groups (P < 0.01). Fat-free lean tended to be overestimated in fatter groups and underestimated in leaner ones. The CLR, FOM, and AUS procedures overestimated fat-free lean in barrows and underestimated it in gilts (P < 0.01), but other procedures were not biased by sex. Bias due to dietary lysine level was assessed for the C10R, CLR, FOM, and SCAN procedures, and fat-free lean in pigs fed the lowlysine dietary regimen was overestimated by CLR, FOM, and SCAN (P < 0.05). Positive regressions of residuals (measured fat-free lean minus predicted fat-free lean) on measured fat-free lean were found for each procedure, ranging from 0.204+/-0.013 kg/kg for C10R to 0.605+/-0.049 kg/kg for UFOM, indicating that all procedures overestimated fat-free lean in fat pigs and underestimated it in lean pigs. The pigs evaluated represent the range of variation in pigs delivered to packing plants, and thus the prediction equations should have broad application within the industry. Buying systems that base fat-free lean predictions on measures of carcass fat depth and muscle depth or area will overvalue fat pigs and undervalue lean pigs.  相似文献   

10.
The beta-adrenergic agonist, cimaterol, was fed to young growing pigs to determine whether the carcass compositional changes observed in finishing pigs fed a beta-adrenergic agonist would be manifest in young animals. Furthermore, because cimaterol increased the deposition of lean mass in finishing pigs, it could have a protein sparing effect in young pigs that are rapidly accreting muscle mass and have a high dietary protein requirement. Pigs were fed cimaterol (at 0, .25 and .50 mg X kg-1 diet) and either an adequate (18%) or restricted (14%) protein diet from about 10 to 60 kg body weight. Pigs that were fed the 14 compared with 18% protein diet grew slower and ate less but had the same gain-to-feed ratio. These pigs also had shorter carcasses, less lean muscle and more fat deposition (assessed by carcass measurements and carcass chemical composition) than pigs that received adequate protein. Plasma protein and albumin concentrations were greater and plasma cholesterol, triglyceride and fatty acid concentrations were lower in pigs fed high compared with low dietary protein. Dietary cimaterol had no effect on any of the growth or carcass variables or on adipose tissue metabolism. When fed the high protein diet, cimaterol-supplemented pigs had smaller livers and stomachs. Dietary cimaterol did not have any major detectable effects on these young pigs, nor was there any evidence for a protein sparing effect.  相似文献   

11.
Carcass and live measurements of 203 pigs representing seven genetic populations and four target live weights (100, 114, 128, and 152 kg) were used to evaluate alternative measures of carcass composition. Measures of carcass lean (fat tissue-free lean, FFLM; lipid-free soft tissue, LFSTIS; and dissected lean in the four lean cuts, DL), fat (total carcass fat tissue, TOFAT), and lipid mass (soft tissue lipid, STLIP) were evaluated. Overall, LFSTIS was 22.8% greater than FFLM (47.8 vs 38.9 kg) and TOFAT was 30% greater than STLIP (38.5 vs 29.6 kg). The allometric growth coefficients relative to carcass weight were different for the measures: b = 0.776, 0.828, 0.794, 1.37, and 1.49 for FFLM, LFSTIS, DL, TOFAT, and STLIP, respectively. At 90 kg carcass weight, the predicted growth of FFLM, LFSTIS, TOFAT, and STLIP was 0.314, 0.420, 0.553, and 0.446 kg/kg increase in carcass weight. The difference between FFLM and LFSTIS, representing nonlipid components of the carcass fat tissue, was greater for barrows than for gilts (9.2 vs 8.6 kg). Lipid-free soft tissue mass was predicted more accurately from carcass or live animal measurements than FFLM with smaller relative RSD (4.6 vs 6.5% of their mean values). The alternative measures of carcass composition were evaluated as predictors of empty body protein (MTPRO) and lipid (MTLIP) mass. Empty body protein was predicted with similar accuracy (R2 = 0.74 to 0.81) from either DL, FFLM, LFSTIS, or ribbed carcass measurements. Empty body lipid was predicted more accurately from TOFAT (R2 = 0.92) or STLIP (R2 = 0.93) than ribbed carcass measurements (R2 = 0.88). Although the alternative measures of lean mass (LFSTIS vs FFLM) and lipid mass (TOFAT vs STLIP) were highly related to each other (r = 0.93 to 0.98), they had different relative growth rates (allometric coefficients) and thus cannot be predicted as linear functions of the similar alternative variable without significant weight group biases. From the 100- to 152-kg target weight groups, gilts gained 12.9% greater FFLM and 12.1% greater MTPRO but only 4.4% greater LFSTIS than barrows. Fat-free lean mass is more precise as a measure of muscle growth and as a predictor of lysine requirements. Lipid-free soft tissue can be obtained more quickly and predicted more accurately from carcass or live animal measurements.  相似文献   

12.
Crossbred barrows (n = 144; 80 kg) from four farrowing groups were phenotypically selected into fat (FAT) and lean (LEAN) pens using ultrasound. The difference in 10th-rib fat depth between the LEAN and FAT groups was > or =0.5 cm. Within a farrowing group, pigs were assigned to pens (five pigs per pen and eight pens per phenotype) to equalize pen weight and fat depth. Pigs were fed a corn-soybean meal diet containing 19% CP, 1.0% added animal/vegetable fat, and 1.1% lysine (as-fed basis). Half the pens received 10 ppm (as-fed basis) of ractopamine (RAC) during the 28-d finishing phase. At 7-d intervals, live weight and feed disappearance were recorded to calculate ADG, ADFI, and G:F, and 10th-rib fat depth and LM area were ultrasonically measured to calculate fat-free lean and fat and muscle accretion rates. During the first 7 d on feed, LEAN pigs fed RAC gained less (P < 0.05) than FAT pigs fed RAC or LEAN and FAT pigs fed the control diet (RAC x phenotype; P = 0.02); however, RAC did not (P > 0.25) affect ADG after the second, third, and fourth weeks, or over the entire 28-d feeding period. Although wk-2 and -3 ADG were higher (P < or = 0.03) in LEAN than in FAT pigs, phenotype did not (P = 0.08) affect overall ADG. Dietary RAC decreased (P < or = 0.05) ADFI over the 28-d feeding trial, as well as in wk 2, 3, and 4, but intake was not (P > 0.20) affected by phenotype. Neither RAC nor phenotype affected (P > 0.10) G:F after 7 d on trial; however, RAC improved (P < or = 0.04) wk-3, wk-4, and overall G:F. Lean pigs were more efficient (P < or = 0.05) in wk 2 and 3 and over the duration of the trial than FAT pigs. Ultrasound LM accretion (ULA) was not (P > or = 0.10) affected by RAC; however, LEAN pigs had greater (P < or = 0.02) ULA in wk 2 and 4 than FAT pigs. Although fat depth was lower (P < 0.01) in RAC-fed pigs than pigs fed the control diet, ultrasound fat accretion rate indicated that RAC-pigs deposited less (P = 0.04) fat only during wk 4. In addition, calculated fat-free lean (using ultrasound body fat, ULA, and BW) was increased (P < 0.05) in RAC pigs after 3 and 4 wk of supplementation. In conclusion, RAC enhanced the performance of finishing swine through decreased ADFI and increased G:F, whereas carcass lean was enhanced through decreases in carcass fat and increases in carcass muscling.  相似文献   

13.
The present study was conducted to determine the effects of different dietary protein levels and recombinant porcine somatotropin (rpST) administration on deposition rates of protein, fat, water, ash, and collagen in pigs. Ten groups of six barrows (30 kg BW) were restrictively fed (80% of ad libitum) one of five diets containing 11, 15, 19, 23, or 27% CP. Diets were isoenergetic and all contained equivalent amounts of lysine. Thirty barrows were treated daily with rpST (100 micrograms/kg) by i.m. injection; remaining pigs were treated with diluent for 42 d. At all levels of dietary protein intake, carcass and empty body accretion rates of protein, water, and ash were greater in rpST-treated pigs than in respective controls. The magnitude of change elicited by rpST was lowest in pigs consuming 11% CP. Administration of rpST resulted in a 34% decrease in the accretion rate of fat; increasing protein intake resulted in a linear decrease in fat accretion in control and rpST-treated pigs. Accretion rates of protein, water, ash, and fat were increased in viscera of rpST-treated pigs compared with respective controls; rates of visceral protein and water accretion were increased as dietary protein was increased, whereas deposition of fat was decreased in control and rpST-treated pigs. Administration of rpST resulted in an overall 66% increase in the utilization efficiency of dietary protein for empty body protein deposition. Protein intake had minimal effect on the concentration of collagen in the carcass; however, rpST treatment increased concentrations of total and soluble collagen by 30 and 33%, respectively. Recombinant pST had little influence on collagen crosslinking or maturation. Deposition rate of carcass collagen was increased 63% in rpST-treated pigs compared with respective controls.  相似文献   

14.
In order to provide data with which to challenge a model of metabolism of lactating sows, we conducted a study to determine milk production and body and mammary composition in sows consuming a range of energy and amino acid intakes and nursing 11 to 12 pigs. Sows (2nd through 4th parity) consumed the same ration during gestation and consumed 6.1 kg/d (as-fed) for a 20 d lactation. Litter size was standardized at 12 pigs within 3 d of farrowing. Diets were formulated to provide three different amounts of protein intake and two different amounts of fat intake. Protein intakes of sows in high (HP), medium (MP), and low protein (LP) treatment groups were 863, 767, and 678 g/d with 59, 53, and 47 g/d lysine at two levels of fat intake, 117 (LF) and 410 g/d (HF). Number of pigs weaned per litter was 11.4 +/- 0.5 and milk production and litter weight gain was less (P < 0.01) in the last week of lactation for sows consuming the least protein. Medium and low protein intakes increased (P < 0.05) loss of body lean and protein. Change in carcass protein during lactation was -1.4, -3.0, -2.2, -1.2, -1.9 and -2.1 kg (SD 2.6) for sows fed HPLF, MPLF, LPLF, HPHF, MPHF, and LPHF. Body fat (carcass and visceral) change was 0.4, -3.7, -4.1, -0.3, 3.4, and -1.3 kg (SD 6.6) in HPLF, MPLF, LPLF, HPHF, MPHF, and LPHF groups. Total amount of mammary parenchyma increased more (P < 0.05) in sows fed a higher fat diet. These data are consistent with general knowledge of changes in body composition in lactation of sows. However, changes in body protein and fat were correlated across treatments and different from that reported for sows nursing smaller litters. These data help our quantitative understanding of nutrient flux in sows nursing large litters and allow a severe challenge of existing models of metabolism in sows.  相似文献   

15.
Use of carbohydrate and fat as energy source by obese and lean swine   总被引:5,自引:0,他引:5  
Genetically obese and lean pigs were fed isonitrogenous-isoenergetic (digestible energy) amounts of a high or low fat diet from 25 kg body weight. Obese pigs gained less and required more feed per unit gain than lean pigs. Lean pigs were more muscular with less fat than obese pigs. Obese pigs utilized more dietary amino acids for energy (greater plasma urea N) than did lean pigs. Weight gain was similar at all intermediate periods in obese pigs fed the two diets. However, gain tended (P less than or equal to .10) to be greater and the ratio of dietary energy intake to gain tended (P less than or equal to .10) to be less in obese pigs fed high compared with low fat diets. Similar results were observed in lean pigs fed the two diets. The high fat diet produced more carcass adipose tissue deposition in both strains after 20 wk of feeding (detectable by ultrasound at 14, but not at 7 wk). Adipose tissue lipogenic rate (glucose incorporation) was similarly depressed by fat feeding in both obese and lean pigs. Obese and lean pigs both utilized dietary carbohydrate and fat differentially but there was no indication of genetic divergence regarding this utilization. In both strains of pigs, energy from the fat-enriched diet was preferentially partitioned into carcass adipose tissue.  相似文献   

16.
Swine weighing 80 to 85 kg were fed a basal corn-soybean meal diet plus a mixture of dihydroxyacetone and pyruvate (3:1) (triose) or Polycose (control), a glucose polymer, as 3.85% of calories (4% of the diet). Twenty-four pigs were pair-fed the triose mixture or control diet for 28 d in litter-mate pairs of the same sex. Weight gain and feed consumption were recorded and carcasses were evaluated for fat and muscle accretion. The right rear leg and rear one-third of the right loin were skinned, deboned, ground and analyzed for protein, fat, moisture and ash content. Average backfat depth and backfat depth at the first, last and 10th rib were reduced by 12, 15, 14 and 12% (P less than .01), respectively, in triose-fed pigs. Loin eye area and untrimmed lean cuts were not altered by diet, but percentage trimmed lean cuts was higher (P less than .02) in triose-fed pigs (57.6 vs 55.3%). Leg and loin tissue samples from pigs fed the triose mixture had a lower (P less than .01) percentage of fat and a corresponding increased (P less than .01) percentage of protein. Organ weights and the blood biochemical profile were not altered by triose feeding. Liver function tests were not altered in animals consuming the trioses, except for an 18% decrease (P less than .05) in serum glutamic pyruvic transaminase. Ingestion of dihydroxyacetone and pyruvate will reduce body fat in limit-fed swine without reducing muscle protein deposition.  相似文献   

17.
Crossbred pigs (n = 216) were used to test the interactive effect, if any, of ractopamine (RAC) and dietary fat source on the performance of finishing pigs, pork carcass characteristics, and quality of LM chops during 5 d of simulated retail display (2.6 degrees C and 1,600 lx warm-white fluorescent lighting). Pigs were blocked by BW and allotted randomly to pens (6 pigs/pen), and, after receiving a common diet devoid of RAC for 2 wk, pens within blocks were assigned randomly to 1 of 4 diets in a 2 x 2 factorial arrangement, with 5% fat [beef tallow (BT) vs. soybean oil (SBO)] and RAC (0 vs. 10 mg/kg). Diets were formulated to contain 3.1 g of lysine/Mcal of ME and 3.48 Mcal/kg of ME. Across the entire 35-d trial, pigs fed RAC had greater (P < 0.01) ADG and G:F, but RAC did not affect (P = 0.09) ADFI; however, performance was not affected (P >or= 0.07) by dietary fat source. Carcass weight, LM depth, and lean muscle yield were increased (P < 0.01), whereas fat depth was decreased (P = 0.01), in carcasses from RAC-fed pigs; however, carcass composition measures were similar (P >or= 0.27) between fat sources. Feeding 10 mg/kg of RAC reduced (P 相似文献   

18.
Two feeder pig grading systems were tested. Forty-five barrows were selected using current USDA Feeder Pig Grade Standards (U.S. No. 1, No. 2 and No. 3). Additionally, 45 barrows were selected using three frame sizes (large, medium and small). Pigs were slaughtered at 100, 113.5 of 127 kg live weight. Trimmed four lean cuts were separated into soft tissue, skin and bone. The skinless belly and soft tissue from the four lean cuts were ground separately and analyzed chemically. Data from each grading system were analyzed separately in a 3 X 3 factorial plan. Pigs selected using current USDA grade standards differed (P less than .05) for last rib backfat, 10th rib fat depth, longissimus muscle area, percentage of trimmed four lean cuts and USDA carcass grade. In the frame size system, pigs with large frame size had less last rib backfat, less 10th rib fat depth, longer carcasses, higher percentage of four lean cuts and superior USDA carcass grades than pigs with small frame size did (P less than .05). The Bradley and Schumann test of sensitivity showed that selection by frame size was more sensitive than current USDA grade standards for discriminating feeder pig foreleg length, body depth and ham width. In addition, selection by frame size was more sensitive than current USDA grade standards for discriminating carcass length and carcass radius length. No increase in sensitivity (P greater than .10) was noted for carcass composition or growth traits over the current USDA Feeder Pig Grade Standards.  相似文献   

19.
甜菜碱对生长肥育猪体脂重分配的作用及机理研究   总被引:12,自引:0,他引:12  
通过48头20~65 kg生长猪和60头60~95 kg肥育猪(Duroc×Landrace×Yorkshire)饲养、屠宰试验和有关生化指标分析,探讨了甜菜碱对生长肥育猪皮下脂肪沉积、胴体脂肪率和肌内脂肪含量的影响及其作用机理。48头生长猪和60头肥育猪分别分成对照和试验2个处理组,每个处理含3个重复,生长猪和肥育猪的试验组分别饲喂含1000 mg/kg和1500 mg/kg甜菜碱的饲粮。结果表明添加甜菜碱,提高了生长猪的日增重13.20%(P<0.05),降低了料重比7.93%(P<0.05);分别降低生长猪和肥育猪的背膘厚14.82%(P<0.05)和14.93%(P<0.05)、脂肪率5.76%(P>0.05)和11.51%(P<0.05);分别提高背最长肌肌内粗脂肪含量36.00%(P<0.05)和17.66%(P<0.05)。血清生化指标分析表明甜菜碱分别提高生长猪和肥育猪脂肪酶活性10.49%(P<0.05)和7.50%(P=0.06),分别提高了血清游离脂肪酸含量20.16%(P<0.05)和13.43%(P<0.05),显示甜菜碱加强了猪体脂动员。进一步研究表明,饲喂甜菜碱的生长猪和肥育猪肝脏游离肉碱含量分别提高了20.68%(P<0.05)和23.53%(P<0.05),肥育猪背最长肌中酸不溶肉碱含量以及酸不溶肉碱和游离肉碱比例分别提高了48.59%(P<0.01)和38.24%(P<0.01),结果揭示甜菜碱似通过提供肉碱合成所必需的甲基以提高生长肥育猪肝脏游离肉碱的含量,促进长链脂肪酸进入肌肉线粒体进行β-氧化,在减少体脂(主要是皮下脂肪)同时,适度增加肌肉脂肪含量,从而发挥着重新分配体脂的作用。  相似文献   

20.
Effects of ractopamine on genetically obese and lean pigs   总被引:2,自引:0,他引:2  
Twenty-eight genetically obese and 24 lean barrows (65.0 and 68.7 kg average BW, respectively) were allotted within genotype to a 16% CP corn-soybean meal basal diet or this basal diet + 20 ppm ractopamine (a phenethanolamine beta-adrenergic agonist) and allowed ad libitum access to feed for 48 d. Compared to lean pigs, obese pigs had lower ADG, gain to feed ratio, longissimus muscle area, predicted amount of muscle, and weights of trimmed loin and ham, ham lean, heart, spleen, kidney and gastrointestinal tract (P less than .05). Obese pigs also had shorter carcass but higher dressing percentage, backfat thickness, fat depth, fat area, untrimmed loin weight and fasting plasma urea N concentration (P less than .05). Dietary supplementation with 20 ppm ractopamine reduced daily feed intake and improved gain to feed ratio in both lean and obese pigs (P less than .05). Pigs fed ractopamine had shorter carcasses, less fat depth and fat area, smaller weights of stomach and colon plus rectum, but higher dressing percentages, longissimus muscle areas, weights of trimmed Boston butts, picnics and loins, ham lean and predicted amounts of muscle than pigs not fed ractopamine (P less than .05). Supplemental ractopamine had no effect on fasting plasma concentrations of urea N, nonesterified fatty acids, triglyceride or glucose (P greater than .05). No genotype x ractopamine interactions for the criteria described above were detected (P greater than .05). These results suggest that ractopamine will improve the efficiency of feed utilization and carcass leanness in swine with different propensities for body fat deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号