首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The replication of porcine reproductive and respiratory syndrome virus (PRRSV) in lungs and lymphoid tissues of PRRSV-infected pigs is already strongly reduced before the appearance of neutralizing antibodies, indicating that other immune mechanisms are involved in eliminating PRRSV at those sites. This study aimed to determine whether PRRSV Lelystad virus (LV)-specific cytotoxic T-lymphocytes (CTL) can efficiently eliminate PRRSV-infected alveolar macrophages. Therefore, CTL assays were performed with PRRSV-infected alveolar macrophages as target cells and autologous peripheral blood mononuclear cells (PBMC) from PRRSV-infected pigs as a source of PRRSV-specific CTL. PBMC of 3 PRRSV-infected pigs were used either directly in CTL assays, or following restimulation in vitro. CTL assays with pseudorabies virus (PRV) Begonia-infected alveolar macrophages and autologous PBMC, from 2 PRV Begonia-inoculated pigs, were performed for validation of the assays. In freshly isolated PBMC, derived from PRRSV-infected pigs, CTL activity towards PRRSV-infected macrophages was not detected until the end of the experiment (56 days post infection – dpi). Restimulating the PBMC with PRRSV in vitro resulted in proliferation of CD3+CD8high cells starting from 14 dpi. Although CD3+CD8high cells are generally considered to be CTL, CTL activity was not detected in PRRSV-restimulated PBMC of the 3 pigs until 49 dpi. A weak PRRSV-specific CTL activity was observed only at 56 dpi in PRRSV-restimulated PBMC of one pig. In contrast, a clear CTL activity was observed in PRV Begonia-restimulated PBMC, derived from PRV Begonia-infected pigs, starting from 21 dpi. This study indicates that PBMC of PRRSV-infected pigs contain proliferating CD3+CD8high cells upon restimulation in vitro, but these PBMC fail to exert CTL activity towards PRRSV-infected alveolar macrophages.  相似文献   

2.
Porcine reproductive and respiratory syndrome virus (PRRSV) recently emerged as an important cause of reproductive disorders and pneumonia in domestic pigs throughout the world. Acute cytocidal replication of PRRSV in alveolar lung macrophages causes the acute pneumonia; however, it remains largely unresolved whether there may also be a predisposition to longer-term local immunodeficiency in the PRRSV-convalescent lung. We applied various flow cytometric techniques to study the interplay between PRRSV replication and macrophage viability/function in pure cultures of porcine alveolar lung macrophages. Monitored by flow cytometric detection of intracellular PRRSV nucleocapsid protein, acute (24 h post infection) PRRSV replication did not impede the ability of alveolar macrophages to ingest fluorescently labelled Escherichia coli. At 48 h post infection, PRRSV-induced cytotoxicity (quantitated by flow analysis of cell size and membrane integrity) led to 40% reduction in the total number of phagocytozing cells. However, viable/uninfected macrophages in PRRSV-infected cultures exhibited normal phagocytic ability at 48 h, indicating that no soluble phagocytosis-suppressive mediators were induced by PRRSV infection in this system. In short, in our minimal system containing only a single cell type, phagocytosis-suppressive effects of PRRSV infection were detected, that acted at the culture level by reducing the total number of alveolar lung macrophages.  相似文献   

3.
4.
Apoptosis was studied in the lungs of pigs during an infection with a European strain of porcine reproductive and respiratory syndrome virus (PRRSV) and it was examined if cytokines were involved in the induction of apoptosis. Twenty-two 4- to 5-week-old gnotobiotic pigs were inoculated intranasally with 10(6.0) TCID50 of the Lelystad virus and euthanised between 1 and 52 days post inoculation (PI). The lungs and broncho-alveolar lavage (BAL) cells were assessed both for virus replication and apoptosis; BAL fluids were examined for interleukin (IL)-1, tumour necrosis factor-alpha and IL-10. Double-labellings were conducted to determine the relation between virus replication and apoptosis and to identify the apoptotic cells. Apoptosis occurred in both infected and non-infected cells. The percentages of infected cells, which were apoptotic, ranged between 9 and 39% in the lungs and between 13 and 30% in the BAL cells. The majority of apoptotic cells were non-infected. Non-infected apoptotic cells in the lungs were predominantly monocytes/macrophages, whereas those in the broncho-alveolar spaces were predominantly lymphocytes. The peak of apoptosis in the lungs at 14 days PI was preceded by a peak of IL-1 and IL-10 production at 9 days PI, suggesting a possible role of these cytokines in the induction of apoptosis in non-infected interstitial monocytes/macrophages. However, the latter hypothesis was not confirmed in vitro, since blood monocytes or alveolar macrophages did not undergo apoptosis after treatment with recombinant porcine IL-1 or IL-10.  相似文献   

5.
The objective of this study was to determine the pathogenesis of experimental infection with a type 1 porcine reproductive and respiratory syndrome virus (PRRSV) by defining the sites of viral replication and apoptosis in male gonads from infected boars for a period of 21 days after intranasal inoculation. Microscopically, hypospermatogenesis and abundant germ cell depletion and death were observed in the testes. Such germ cell death occurs by apoptosis, as determined by a characteristic histological patterns and evidence of massive DNA fragment detected in situ terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) reaction. PRRSV was detected in the testicular tissue of infected boars only. Viral nucleic acid was localized in spermatogonia, spermatocytes and spermatids but not in the vesicular and bulbourethral gland. In serial sections, PRRSV-positive cells did not co-localized with apoptotic cells. TUNEL-positive apoptotic cells were more numerous than PRRSV-positive cells in testicular sections. The present study demonstrated that type 1 PRRSV infects the spermatogonia and their progeny, and induces apoptosis in these germ cells.  相似文献   

6.
采用Annexin V-FITC/PI双染色法,用流式细胞仪检测了猪繁殖与呼吸综合征病毒(PRRSV)实验感染SPF猪不同时期外周血单核细胞和肺泡巨噬细胞感染Annexin V-FITC^+/PI^-细胞群(早期凋亡细胞群)。结果显示,PRRSV感染猪外周血单核细胞和肺泡巨噬细胞Annexin V-FITC^+/PI^-细胞群的表达率均明显高于正常对照猪,感染后24h表达率达最高值。  相似文献   

7.
Detection of radiation-induced apoptosis using the comet assay   总被引:2,自引:0,他引:2  
The electrophoresis pattern of apoptotic cells detected by the comet assay has a characteristic small head and spread tail. This image has been referred to as an apoptotic comet, but it has not been previously proven to be apoptotic cells by any direct method. In order to identify this image obtained by the comet assay as corresponding to an apoptotic cell, the frequency of appearance of apoptosis was examined using CHO-K1 and L5178Y cells which were exposed to gamma irradiation. As a method for detecting apoptosis, the terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay was used. When the frequency of appearance of apoptotic cells following gamma irradiation was observed over a period of time, there was a significant increase in appearance of apoptosis when using the TUNEL assay. However, there was only a slight increase when using the comet assay. In order to verify the low frequency of appearance of apoptosis when using the comet assay, we attempted to use the TUNEL assay to stain the apoptotic comets detected in the comet assay. The apoptotic comets were TUNEL positive and the normal comets were TUNEL negative. This indicates that the apoptotic comets were formed from DNA fragments with 3'-hydroxy ends that are generated as cells undergo apoptosis. Therefore, it was understood that the characteristic pattern of apoptotic comets detected by the comet assay corresponds to cells undergoing apoptosis.  相似文献   

8.
Porcine respiratory and reproductive syndrome virus (PRRSV) disease, one of the most economically significant viral diseases in the swine industry, is characterized by miscarriages, premature farrowing, stillborn pigs, and respiratory disease associated with death and chronic poor performance of nursing and weaned pigs. Interleukin-12 (IL-12) is a key component in driving the development of cell-mediated immunity as well as stimulating interferon-gamma (IFN-gamma) production from T cells and natural killer cells. Although some studies have investigated the use of IL-12 as a vaccine adjuvant in swine, little is known about its effectiveness as a treatment against viral diseases in swine. The present study investigated whether recombinant porcine IL-12 (rpIL-12) enhances the immune response and thereby diminishes the effects of PRRSV infection in young pigs. Interestingly, in vitro experiments demonstrated that rpIL-12 is capable of inducing swine pulmonary alveolar macrophages (PAMs), the target cells of PRRSV, to produce IFN-gamma in a dose and time dependent manner. In addition, in vitro studies also revealed that rpIL-12 treatment was capable of significantly reducing PRRSV viral titers in PAMs. In vivo administration of rpIL-12 significantly decreased PRRSV titers in the lungs and blood of infected animals. Furthermore, treatment with rpIL-12 prevented significant growth retardation in PRRSV-infected animals. Finally, in response to viral antigen recall challenge, PAMs isolated from rpIL-12-treated/PRRSV-infected animals produced greater amounts of IFN-gamma and lesser amounts of interleukin-10 than PAMs isolated from non-rpIL-12-treated/PRRSV-infected animals. Taken together our data indicate that treatment with rpIL-12 may provide an effective approach to control or ameliorate PRRSV-induced disease in swine.  相似文献   

9.
10.
A double in situ hybridization method for the simultaneous detection of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus (PCV) genomes in the same tissue section was applied to lung tissues from 9 pigs in which PRRSV and PCV coinfection had been previously demonstrated. Paraffin-embedded tissue sections were simultaneously hybridized with a digoxigenin-labeled antisense RNA probe for PRRSV and a fluorescein-labeled antisense RNA probe for PCV, and hybridization was detected with anti-digoxigenin alkaline phosphatase/fast red and anti-fluorescein peroxidase/diaminobenzidine, respectively. PRRSV and PCV genomes were identified in the same pulmonary cell types as reported previously in all 9 pigs. In all pigs, PCV-positive cells outnumbered PRRSV-positive cells. A small proportion of alveolar macrophages contained both PRRSV and PCV genomes.  相似文献   

11.
12.
The frequency and the distribution of apoptotic cells were investigated in formalin-fixed paraffin-embedded lymphoid tissues from healthy conventional pigs at four different ages (6 days, 2 months, 3.5 months and 5 months). Samples of tonsil, mesenteric lymph node, spleen, thymus and Peyer's patches were histologically processed and apoptosis evaluated with the TUNEL reaction and cleaved caspase-3 immunohistochemistry. In each technique, quantification of positive labelling was done for each particular lymphoid tissue area. The labelling pattern and distribution were similar for TUNEL and cleaved caspase-3. TUNEL stained mainly apoptotic bodies inside macrophages, but signal was also seen in free apoptotic bodies and in the nuclei of lymphocyte-like cells. The anti-cleaved caspase-3 antibody labelled mainly nuclei of lymphocyte-like cells. All tissues presented a similar distribution pattern of apoptosis, except for the 6-day-old group. In this group, a scattered distribution of positive cells was detected in tonsil, lymph node and spleen. In the tonsil and mesenteric lymph nodes from the older pigs, follicular areas presented higher amounts of positive cells than interfollicular areas. Moreover, the splenic white pulp showed more positive reaction than the red pulp, especially when they included germinal centres. In all groups, the follicular areas of ileal Peyer's patches presented more labelled cells than the dome and the lamina propria. In the thymus, the higher apoptotic rates were found in the cortex. In general, TUNEL yielded higher rates of positive cells than cleaved caspase-3 immunolabelling. A good correlation between the two techniques was found for thymus, tonsil and mesenteric lymph node, but not for Peyer's patches and spleen. This study describes a detailed histochemical characterization of apoptosis in pig lymphoid tissues using TUNEL and a cleaved caspase-3 immunolabelling at different ages. Moreover, our results indicate that TUNEL and cleaved caspase-3 techniques can be equivalent only when tissues have a high or low levels of apoptosis, since a considerable discrepancy was found in intermediate situations. Data from this study should be useful for future comparative studies under disease conditions.  相似文献   

13.
Porcine reproductive and respiratory syndrome virus (PRRSV) induces a persistent viral infection associated with an inefficient humoral immune response. A study of lymphoid B cells and specific humoral immune response was performed in blood and several lymphoid organs collected from PRRSV experimentally-infected pigs. Groups of specific pathogen-free (SPF) pigs were infected with the LHVA-93-3 isolate of PRRSV, and blood, tonsils, spleen and mediastinal lymph nodes (MLN) were collected at various times postinfection (p.i.) (3-60 days). Lymphoid cells were isolated, immunolabeled for cytofluorometric determination of B cell percentages, used for counting specific anti-PRRSV antibody secreting B cells by an ELISPOT assay, or cultured for metabolic activity. The presence of anti-PRRSV antibodies in the serum of infected pigs was determined using a commercial ELISA assay. Virus detection was performed in all tissues, including lungs, by virus isolation and RT-PCR. The results show that percentages of B cells increased in tonsils as soon as 3 days until 17 days p.i. in PRRSV-infected pigs while they increased in spleen at 3 days p.i. only, due to an increase of larger Ig(high)-producing B cells. Metabolic activity of lymphoid cells from blood and spleen increased at 3 days p.i. only while lymphoid cells from tonsils and MLN transiently decreased at that time and increased thereafter up to 60 days p.i. Anti-PRRSV antibody-secreting B cells occurred in tonsils after 10 days p.i. and strongly increased up to 60 days p.i. However, specific anti-PRRSV-secreting B cells were detected in blood and spleen after 17 days p.i and in MLN only after 45 days p.i. Specific antibodies were detectable in serum at 10 days p.i., reached the maximum level at 45 days and remained high up to 60 days p.i. Infectious virus was detected in lungs and MLN as soon as 3 days p.i., and remained detectable up to 45 days p.i. in tonsils of one pig while viral RNA was detected in most organs up to 60 days p.i. In vitro experiments revealed that inactivated virus induced a stimulation of lymphoid cells isolated from PRRSV-infected pigs while it was cytotoxic for lymphoid cells from control pigs. Taken together, these results indicate that viral infection induced simultaneously a polyclonal activation of B cells, mainly in tonsils, and an exaggerated and prolonged specific humoral immune response due to persistent viral infection in lymphoid organs.  相似文献   

14.
Two cytopathic agents were isolated on porcine alveolar macrophages following inoculation with homogenates of lung tissues from pigs showing respiratory problems. These isolates were identified as porcine reproductive and respiratory syndrome (PRRS) virus isolates by indirect immunofluorescence using a PRRS virus (PRRSV) specific monoclonal antibody (MAb) and were designated as LHVA-92-1 and LHVA-92-2. Immunogold electron microscopy using a porcine PRRS positive serum pool and protein A-gold resulted in an intense labelling of aggregates of viral particles. Dark specific cytoplasmic staining of porcine alveolar macrophages infected with both virus isolates could be observed by immunogold silver staining (IGSS) using the specific MAb. This method proved effective in detecting PRRSV antigens in several ethanol-fixed tissues of piglets intranasally inoculated with the supernatants of macrophages infected with each isolate. Immunogold silver staining was also successfully used for the detection of PRRSV antigens on sections of formalin-fixed paraffin-embedded lung tissues and on frozen sections of lungs. The present results indicate that colloidal gold may be useful for the identification and immunohistochemical detection of PRRSV in tissues.  相似文献   

15.
16.
Viral infections usually result in alterations in the host cell proteome, which determine the fate of infected cells and the progress of pathogenesis. To uncover cellular protein responses in porcine reproductive and respiratory syndrome virus (PRRSV), infected pulmonary alveolar macrophages (PAMs) and Marc-145 cells were subjected to proteomic analysis involving two-dimensional electrophoresis (2-DE) followed by MALDI-TOF-MS/MS identification. Altered expression of 44 protein spots in infected cells was identified in 2D gels, of which the 29 characterised by MALDI-TOF-MS/MS included 17 up-regulated and 12 down-regulated proteins. Some of these proteins were further confirmed at the mRNA level using real-time RT-PCR. Moreover, Western blot analysis confirmed the up-regulation of HSP27, vimentin and the down-regulation of galectin-1. Our study is the first attempt to analyze the cellular protein profile of PRRSV-infected Marc-145 cells using proteomics to provide valuable information about the effects of PRRSV-induced alterations on Marc-145 cell function. Further study of the affected proteins may facilitate our understanding of the mechanisms of PRRSV infection and pathogenesis.  相似文献   

17.
This paper reviews in vivo studies on the interaction between porcine reproductive and respiratory syndrome virus (PRRSV) and LPS performed in the authors' laboratory. The main aim was to develop a reproducible model to study the pathogenesis of PRRSV-induced multifactorial respiratory disease. The central hypothesis was that respiratory disease results from an overproduction of proinflammatory cytokines in the lungs. In a first series of studies, PRRSV was shown to be a poor inducer of TNF-alpha and IFN-alpha in the lungs, whereas IL-1 and the anti-inflammatory cytokine IL-10 were produced consistently during infection. We then set up a dual inoculation model in which pigs were inoculated intratracheally with PRRSV and 3-14 days later with LPS. PRRSV-infected pigs developed acute respiratory signs for 12-24h upon intratracheal LPS inoculation, in contrast to pigs inoculated with PRRSV or LPS only. Moreover, peak TNF-alpha, IL-1 and IL-6 titers were 10-100 times higher in PRRSV-LPS inoculated pigs than in the singly inoculated pigs and the cytokine overproduction was associated with disease. To further prove the role of proinflammatory cytokines, we studied the effect of pentoxifylline, a known inhibitor of TNF-alpha and IL-1, on PRRSV-LPS induced cytokine production and disease. The clinical effects of two non-steroidal anti-inflammatory drugs (NSAIDs), meloxicam and flunixin meglumine, were also examined. Pentoxifylline, but not the NSAIDs, significantly reduced fever and respiratory signs from 2 to 6h after LPS. The levels of TNF-alpha and IL-1 in the lungs of pentoxifylline-treated pigs were moderately reduced, but were still 26 and 3.5-fold higher than in pigs inoculated with PRRSV or LPS only. This indicates that pathways other than inhibition of cytokine production contributed to the clinical improvement. Finally, we studied a mechanism by which PRRSV may sensitize the lungs for LPS. We hypothesized that PRRSV would increase the amount of LPS receptor complex in the lungs leading to LPS sensitisation. Both CD14 and LPS-binding protein, two components of this complex, increased significantly during infection and the amount of CD14 in particular was correlated with LPS sensitisation. The increase of CD14 was mainly due to infiltration of strongly CD14-positive monocytes in the lungs. The PRRSV-LPS combination proved to be a simple and reproducible experimental model for multifactorial respiratory disease in pigs. To what extent the interaction between PRRSV and LPS contributes to the development of complex respiratory disease is still a matter of debate.  相似文献   

18.
The pathogenesis of porcine reproductive and respiratory syndrome virus (PRRSV) infection in ovary was studied in sexually mature, cycling, nonsynchronized gilts infected with the PRRSV 16244B, a virulent field strain. Previous studies have shown that PRRSV can be isolated from ovaries and is transplacentally passed from gilts to the fetuses. The cause of infertility following PRRSV infection is not known. In this study, we identified the tropism of PRRSV in ovarian tissue from experimentally infected gilts in samples collected between 7 and 21 days postinfection (DPI). Tissues were collected and examined by virus isolation, in situ hybridization (ISH), immunohistochemistry (IHC), and double labeling to identify PRRSV-infected cell types. PRRSV was isolated in ovarian follicles at 7 days DPI. The IHC and ISH indicated that PRRSV-positive cells in ovaries were predominantly macrophages, which were numerous in atretic follicles. No evidence of infection and/or perpetuation of PRRSV in ova was observed, indicating that the female gonad is an unlikely site of persistence. No alteration of the normal ovarian architecture that would support a possible role of PRRSV infection in porcine female infertility was observed.  相似文献   

19.
To verify the role of porcine reproductive and respiratory syndrome virus (PRRSV) infection on pulmonary defense mechanisms, alterations in the viability, morphology, and various functions of porcine alveolar macrophages (AMs) were evaluated in vitro for 2-72 h after exposure to a Taiwan isolate, tw91, at a multiplicity of infection (MOI) of 0.1. A low but constant rate of infection, around 5%, was seen in AMs from the PRRSV-infected group throughout the study. When compared with a mock-infected group, AMs from the PRRSV-infected group had a significantly lower viability at 18-72 h post-infection (HPI) as determined by trypan blue dye exclusion. Also during this time period, the cells showed morphological changes, including rounding, bleb formation, and rupture. The phagocytic and microbicidal capacity of AMs against Candida albicans was significantly inhibited after 6 HPI. Although the total amount of superoxide anion (O2-) and hydrogen peroxide (H2O2) produced by the AMs was reduced after 18 and 12 HPI, respectively, the amount of production was enhanced in both reactive oxygen species on a per viable cell basis after 12 HPI. In contrast, the level of bioactive tumor necrosis factor alpha (TNF-alpha) secretion, either total or on a per viable cell basis, was markedly reduced soon after PRRSV infection, up to 36 HPI, followed by a rebound thereafter. Prostaglandin E2 (PGE2) production was enhanced, both in total and on a per viable cell basis, in the first 6 h of infection, especially at 2 HPI. However, it became lower than that of the control after 36 HPI. The results indicated that PRRSV infection could cause, directly and/or indirectly, not only death of AMs but also adverse alterations in their morphology and function, although some of the effects seemed to be reversible. Because AMs are crucial to the host against airborne pathogens, PRRSV infection may potentially predispose pigs to secondary pulmonary infections.  相似文献   

20.
Two common viral pathogens of swine, namely, porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV), were investigated in regard to their effects on monolayer cultures of swine alveolar macrophages (AMs). The purpose was to identify selected cellular changes and responses potentially associated with the clinical reactions of pigs infected with either or both of these viruses. Measurements included the (1) absolute and relative numbers of infected, viable, and apoptotic cells; (2) distribution of viral antigens; (3) levels of interferon-alpha (IFN-alpha) and tumor necrosis factor-alpha (TNF-alpha) produced and their association with the extent of virus-induced cytopathology. Four groups of AMs were studied, including mock-infected, PCV2 alone-infected (PCV2-A), PRRSV alone-infected (PRRSV-A), and PCV2 and PRRSV dually infected (PCV2/PRRSV) groups. The AMs of PCV2-A group had high antigen-containing rate without cell death. There was a marked increase in cell death and apoptosis in PRRSV-A group. However, a lower PRRSV-induced infectious rate, cell death, and apoptosis were seen in PCV2/PRRSV group. High levels of IFN-alpha production were detected in PCV2-infected groups, but not in mock-infected and PRRSV-A groups. The PRRSV-induced cytopathic effect (CPE) on MARC-145 cells or swine AMs was markedly reduced by pre-incubation of the cells with UV-treated or non-UV-treated supernatants of PCV2-infected AMs. In addition, the reduction in CPE was abolished when the supernatants of PCV2-infected AMs were pre-treated with a mouse anti-recombinant porcine IFN-alpha antibody. The results suggest that swine AMs were an important reservoir of PCV2; PCV2 infection reduced PRRSV infection and PRRSV-associated CPE in PCV2/PRRSV AMs; the reduction of PRRSV infection in AMs was mediated by IFN-alpha generated by PCV2 infection. The reduced PRRSV-associated CPE in AMs and increased pro-inflammatory cytokine production may lead to a more severe pneumonic lesion in those dually infected pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号