首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对一起变电站10 kV电压互感器烧毁故障,从10 kV线路撞杆诱发线路隔离开关烧毁、避雷器击穿入手,分析了小电流接地选线装置报文、录波图,判断出电压互感器消谐器安装时短接、谐振是本次故障的主要原因。分析了电压互感器不发接地信号、刀闸烧毁、避雷器击穿原因,提出了改进措施。  相似文献   

2.
小电流接地系统发生单相接地故障时,由于线电压的大小和相位不变(仍对称),而且系统的绝缘又是按线电压设计的,因此允许短时间运行而不立即切除故障,带接地故障运行时间,一般10kV、35kV线路允许接地运行不超过2h,这主要是受电压互感器和消弧线圈带接地允许运行时间的限制。1接地故障的判断电压互感器一相高压保险熔断,报出接地信号。区分依据:接地故障时,故障相对地电压降低,非故障相对地电压升高,线电压不变,而电压互感器一相高压保险熔断时,对地电压一相降低,另两相电压不变,线电压指示则会降低。用变压器对空载母线合闸充电时,断路器三相…  相似文献   

3.
小电流接地系统中,多数变电站未装设接地选线装置,在发接地信号时需要人工进行判断。由于多种故障都会引发接地信号,所以运行人员一定要熟悉接地信号的判断与处理,不要误以为都是线路接地,按照接地故障处理,造成不必要的停电。以下就发接地信号的几种故障判断与处理,谈一下笔者的认识。  相似文献   

4.
该文介绍了10kV线路单相接地故障及线路接地故障选线的原理,并阐述了变电站综合自动化系统中10kV线路接地选线的两种主要实现方法。即综合自动化系统的分布武接地选线系统和智站化自动调谐式消弧系统专用接地选相系统。  相似文献   

5.
某日,某县城变电站10kV出线接地故障报警,MLN98型小电流接地选线装置选出L3,L5,L6三条10kV线路为故障线路。但经拉闸选线测试,只有L6有接地故障,L3,L5并无接地故障。拉开L6线路后,所有信号恢复正常,并且经巡线人员巡线检查,也未发现L3和L5线路有接地故障。那么,为什么L3和L5会发出这种报警信号呢?经运行人员认真比对设备原理和检查线路参数,  相似文献   

6.
1 10kV配电网中性点不同运行方式比较 1.1 中性点不接地的配电网 中性点不接地的配电网,如果三相电源电压是对称的,则电源中性点的电位为零.但是由于架空线排列不对称而换位又不完全等原因,使各相对地导纳不相等,则中性点将会产生位移电压.一般位移电压不超过电源电压的5%,对系统运行的影响不大.当中性点不接地的配电网发生单相接地故障时,非故障的两相对地电压将升高至原来的平方的3倍,由于线电压仍保持不变,故对用电设备继续工作影响不大.  相似文献   

7.
黄泗兴 《农村电气化》2010,(9):25-25,18
利用零序基波电流的大小来判断接地故障线路的原理,通过修改scADA系统,轻松实现小电流接地选线。  相似文献   

8.
1运行方式简介乙发电厂因35 kV送电线路施工受阻,无法通过35 kV电压等级接入丙变电站,临时通过一条10kV专线(鸿峰线)就近接入甲变电站10 kVⅡ段母线,甲变电站10 kVⅡ段母线上还有5回馈线。甲变电站地处沿海及漂染工业区,运行环境较为恶劣,线路的电缆段较多,为消除接地故障引发的谐振和弧光过电压,装设了消谐电压互感器及自动调谐消弧线圈,为增加接地选线的准确性,还装设了一套小电流接地选线装置。局部电网接线如图1所示。  相似文献   

9.
我局所辖 110 k V变电所通过“四遥”改造 ,实现无人值班。当 10 k V线路发生单相接地故障 ,所内 ML N- 98小电流接地选线装置判断接地线路 ,其遥信接口通过 RTU将选线信号送到调度端 ,调度员通知供电公司巡查线路 ,消除隐患。在运行中 ,当 10 k V线路单相接地时调度没有收到选线信号的情况时有发生。经检查 ,为遥信公共电源对小电流接地选线装置干扰所致。1 遥信接口原理MLN- 98小电流接地选线装置遥信接口原理如图 1所示 (为表述简单 ,只画出一路通道 )。图 1计算处理芯片 U1判断接地故障线路 ,通过片选U3 选择相应的出口通道 ,由…  相似文献   

10.
肖伟 《农村电气化》2002,(11):32-33
1 中性点不接地电网的接地保护电力电网小接地系统大部分为中性点不接地系统 ,而单相接地保护的变化已从传统接地保护发展到无人值守变电所配合综合自动化装置的接地保护、接地选线装置等 ,其保护目前主要有以下几种 :(1) 系统接地绝缘监视装置 :绝缘监视装置是利用零序电压的有无来实现对不接地系统的监视。将变电所母线电压互感器其中一个绕组接成星形 ,利用电压表监视各相对地电压 ,另一绕组接成开口三角形 ,接入过电压继电器 ,反应接地故障时出现的零序电压。当发生单相接地故障时 ,开口三角形出现零序电压 ,过电压继电器动作 ,发出接…  相似文献   

11.
根据故障指示器工作原理,通过归一化电场量测序列,仿真合成零序电压,并针对故障指示器环境进行了针对性的误差消除,使得在故障指示器环境拥有了准确的零序电流和零序电压指标,即可以使用更为准确的零序功率方向算法进行故障选线和故障定位操作。经过仿真实验和现场数据分析,其计算方法可靠有效,提高了故障判断准确率。  相似文献   

12.
中性点不接地系统的单相接地故障是电网异常运行频率较高的一种故障现象。宁夏中卫电网存在部分变电站由于设备老化等原因,增加了调度员接地选线的难度,部分调度员在处理过程中往往会根据经验来处理,因此加强调度员在这一方面的基础理论培训和打破常规思维显得尤为重要。  相似文献   

13.
随着10kV配电网络对地电容的增大以及系统短路水平的提高,在10kV配电系统上发生单相接地短路时系统的耐受时间比以前更短,而10kV系统单相接地故障的判定通常只有依靠10kV二次电压来反映,这就需要值班人员能够及时准确地判断故障,断开故障线路。该文对10kV系统单相接地故障进行了分析,并计算出了零序电压矢量图,得出了系统电压随接地电阻变化的规律;同时对系统通常出现的二次电压异常的各种原因进行了归纳、分析,给出了判断和处理的方法。  相似文献   

14.
在配电网中,单相接地故障发生概率最高,达80%以上,若不能及时处理该故障,由于非故障两相的对地电压升高为线电压,可能会击穿绝缘薄弱部位,转变为相间短路,导致事故进一步扩大。因此,小电流接地选线方法具有重要的理论意义及实用价值。  相似文献   

15.
查找直流系统接地故障之前,应先判明接地故障的极性.在直流盘上通过直流绝缘监察转换开关,测量正、负极对地电压.直流系统对地绝缘良好时,正、负极对地电压基本相等.若测量正对地电压为220V,负对地电压为零,则说明为负极接地(完全接地);反之,说明正极有接地故障.如果属不完全接地故障,则绝缘降低的一极对地电压较低(不为零),而另一极对地电压较高.  相似文献   

16.
正3月9日,国网山东梁山县供电公司员工在35 k V拳铺变电站,对小电流接地选线装置进行完善调试,进一步提升故障研判水平,提高电力系统的安全供电可靠性。小电流接地选线装置是变电站里的"诊断师",能迅速准确地识别故障线路,减少判断和确定具体接地线路的时间,有效维护配网侧的供电  相似文献   

17.
不接地系统产生谐振的原因及措施   总被引:2,自引:0,他引:2  
1 前言在实际的变电运行管理中 ,有时由于中性点不接地系统的线路发生单相接地或单相接地消失的瞬间 ,经常造成电压互感器一次侧熔断件熔断。或者是在进行正常的倒闸操作中 ,通过投入空载母线时 ,往往发现母线电压指示不正常或出现接地信号 ,但却没有发生明显的接地迹象 ,主要是由于电压互感器的铁磁谐振造成的。这种情况经常会使值班人员误判为电压互感器故障或是变电所内母线系统发生接地故障 ,影响了正常的运行管理。2 电压互感器产生谐振的原因分析(1) 在中性点不接地系统中 ,虽然电源侧的中性点不直接接地 ,但电压互感器的高压侧中…  相似文献   

18.
笔者在多年的电网运行工作中,曾遇到很多次10 kV系统接地的情况,绝大部分都可以通过简单的接地选线过程很快找到接地线路.期间,笔者曾遇到过同一母线上的两条线路同时同相接地的故障,之后通过正确使用选线法用较短的时间找到了接地线路.笔者现将该次故障的处理过程做一介绍,供大家参考. 2009年7月8日下午15:00,35 kV祥云变的10kV系统发生L1相接地(该站10 kV母线运行方式为单母分段并列运行),电压显示L1相0.8 kV,L2相10kV,L3相9.8 kV.  相似文献   

19.
在小接地电流电网中,交流绝缘监察装置“母线接地”光字牌亮时,根据三块相电压表电压的变化判断故障的方法如下:1 开口三角形绕组接错或三相电压表的中性线断线或不通时,三相电压表无变化,即指示为相电压。2 金属性接地故障时,故障相电压为零,非故障相升为线电压。3 非金属性接地故障时,故障相电压降低但不为零,非故障相电压升高但低于线电压。4 弧光性接地故障时,三相电压表电压上下波动。5 基波谐振时,一相电压降低但不为零,另外两相电压超过线电压。6 分频谐振时,三相电压依次轮流升高并超过线电压,三相电压在同范围…  相似文献   

20.
正变电站发生直流系统接地故障时,具体的接地故障点是难以查找的,很多人无从下手,给处理直流接地故障带来了一定的难度。虽然大部分变电站都安装了直流绝缘监察装置,这些装置都有一种直流选线功能,即能够根据直流绝缘电阻的大小,选择出是哪一路直流馈线接地,这样可以缩小故障范围。问题是,直流选线装置虽然选择出了直流接地的馈线,但  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号