首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil nutrient deficiencies can affect rice yield and grain mineral content wherever they occur, but an understanding of their effect on upland rice production in humid forest zone of West Africa is still limited. Therefore, a nutrient omission trial was conducted on foot slope soil in 2003, 2004 and 2005 in Côte d’Ivoire using rice variety WAB 56–104. The effect on rice grain yield (GY) and nutrient content of complete fertilizer (Fc with nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg) and zinc (Zn)) was compared with Fc from which a specific nutrient was excluded (Fc – N, Fc – P, Fc – K, Fc – Ca, Fc – Mg and Fc – Zn). Before the trial, soil K (0.10 cmol kg?1) and Mg (0.20 cmol kg?1) contents were suitable, but available P-Bray I (4.2 mg kg?1) was found to be deficient. In course of the study, K, Mg and P deficiencies were observed. An antagonistic effect was observed between rice GY and grain concentrations in P, Mg and Ca for treatments Fc – Mg, Fc – P and Fc – K, respectively. Therefore, the use of P, K and Mg fertilizers is recommended for successive cropping seasons in order to rich stable and high rice yield while decreasing of grain concentrations in P, Mg and Ca can be observed.  相似文献   

2.
Oil palm (Elaeis guineensis Jacq.) is a heavy feeder of nutrients and requires balanced and adequate supply of nutrients for optimum growth and yield. Information regarding soil nutrient status and leaf nutrient concentration is very much required for proper fertilizer application. Therefore, a survey was conducted for assessment of soil nutrient status and leaf nutrient concentration in 64 oil palm plantations in the state of Goa lying in the west coastal region of India. Soil pH, electrical conductivity (EC), organic carbon (OC), available potassium (K) (ammonium acetate-extractable K) (NH4OAc-K), available phosphorus (P) (Bray’s-P), exchangeable calcium (Ca) (Exch. Ca) and magnesium (Mg) (Exch. Mg), available sulphur (S) (calcium chloride-extractable S) (CaCl2-S), and hot water soluble boron (B) (HWB) in surface (0–20 cm depth) soil layers ranged from 4.25 to 6.77, 0.05 to 1.06 dS m–1, 5.07 to 48.4 g kg–1, 58.1 to 1167 mg kg–1, 1.80 to 415 mg kg–1, 200 to 2997 mg kg–1, 36.0 to 744 mg kg–1, 3.00 to 87.7 mg kg–1 and 0.09 to 2.10 mg kg–1, respectively. Diagnosis and Recommendation Integrated System (DRIS) norms were established for different nutrient expressions and were used to compute DRIS indices. As per DRIS indices, the order of requirement of nutrients in the region was found to be P > Mg > K > nitrogen (N) > B. Optimum leaf nutrient ranges as per DRIS norms varied from 1.64 to 2.79%, 0.36 to 0.52%, 0.37 to 0.75%, 0.89 to 1.97%, 0.35 to 0.63%, 0.89 to 1.50%, 3.10 to 13.9 mg kg?1, 7.50 to 32.2 mg kg?1, 35.0 to 91.1 mg kg?1, 206 to 948 mg kg?1, and 895 to 2075 mg kg?1 for N, P, K, Ca, Mg, S, B, copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) respectively. On the basis of DRIS-derived sufficiency ranges, 14, 5, 11, 6, 6, 6, 8, 2, 3, 6, and 16% of leaf samples had less than optimum concentrations of N, P, K, Ca, Mg, S, B, Cu, Zn, Mn, and Fe respectively. The optimum ranges developed can be used as a guide for routine diagnostic and advisory purpose for balanced utilization of fertilizers.  相似文献   

3.
The diagnosis and recommendation integrated system (DRIS) approach was used to interpret nutrient analyses of leaf tissues from pomegranate cv. Bhagwa orchards grown in southwestern Maharashtra, India. The DRIS norms were established for three growth stages,viz. 50% flowering, fruit development and first harvesting of pomegranate. Various nutrient ratios were obtained from high-yielding population and were used to compute DRIS indices for diagnosing nutrient imbalances and their order of limitation to yield. Nutrient sufficiency ranges at 50% flowering derived from DRIS norms were 1.32–2.15% nitrogen (N), 0.18–0.24% phosphorus (P), 1.29–1.99% potassium (K), 0.64–1.20% calcium (Ca), 0.23–0.45% magnesium (Mg), 0.16–0.26% sulfur (S), 103.04–149.12 mg kg?1 iron (Fe), 39.60–72.85 mg kg?1 manganese (Mn), 15.99–26.10 mg kg?1 zinc (Zn), 6.16–9.32 mg kg?1 copper (Cu), 23.38–39.88 mg kg?1 boron (B) and 0.29–0.47 mg kg?1 molybdenum (Mo). Similarly, the sufficiency range at fruit development and first harvesting was developed for computing DRIS indices. The requirement of Fe, Mg, S, Zn and N by the pomegranate plant was higher at 50% flowering and fruit development stages. According to these DRIS-derived indices, 87.85, 73.83, 70.09, 69.16 and 65.42% orchards were deficient in Fe, S, Mg, Zn, and N, respectively, at 50% flowering, while 70.03, 66.36, 63.55, 61.68, and 68.22% orchards were found to be deficient in respective nutrients during the fruit development stage.  相似文献   

4.
Compositional Nutrient Diagnosis technique involves a yield target for discriminating between high- and low-yield subpopulations when developing norms. Traditionally, this yield value is estimated by finding the inflection point of the cumulative variance ratio function versus yield relationship through a third-order equation. However, yield targets frequently lie outside of the experimental yield range. A comparison among traditional (unrestricted) and restricted cubic model, and restricted and unrestricted Boltzmann equations was performed using a database (n = 360) of fresh matter yield and nutrient concentrations in one–year old cladodes of Opuntia ficus-indica L. The unrestricted Boltzmann equation resulted to have the best goodness-of-fit. The yield target was 27.01 kg plant?1 associated to the unrestricted Boltzmann equation for phosphorus cumulative variance ratio function versus yield relationship. Proposed nutrient optimum concentrations are: 11.4 g kg?1 for nitrogen (N), 3.4 g kg?1 for phosphorus (P), 42.3 g kg?1 for potassium (K), 42.5 g kg?1 for calcium (Ca), and 16.2 g kg?1 for magnesium (Mg).  相似文献   

5.
ABSTRACT

A greenhouse experiment was performed to evaluate macronutrients and boron deficiencies on vitexin bioproduction by sweet passion fruit leaves. Sand irrigated with nutrient solution was used as substrate in a complete randomized design, with eight treatments: 1) complete, 2) nitrogen-deficient(-N), 3) phosphorus-deficient(-P), 4) potassium-deficient(-K), 5) calcium-deficient(-Ca), 6) magnesium-deficient(-Mg), 7) sulfur-deficient(-S), and 8) boron-deficient(-B). After thirty days, the fourth fully expanded leaves were harvested. Under deficiency treatments, leaf dry matter concentrations of N, P, K, Ca, Mg, S, and B were 52, 53, 62, 76, 69, 31, and 80% lower than in complete treatment, respectively. Nitrogen, P, and K deficiency increased vitexin leaf concentration by 46, 16, and 18%, although Ca and B deficiencies decreased vitexin concentration by 22 and 33%, respectively, when compared to complete treatment. Magnesium and S deficiencies had no significant effect on vitexin concentration. In complete treatment, the concentration of nutrients and vitexin, in leaf dry matter were: 43.4 g kg? 1 of N, 2.47 g kg? 1 of P, 27.4 g kg? 1 of K, 15.6 g kg? 1 of Ca, 3.8 g kg? 1 of Mg, 5.28 g kg? 1 of S, 64 mg kg? 1 of B, and 5.57 mg kg? 1 of vitexin.  相似文献   

6.
A set of fertilizer experiments were conducted during three growing seasons with the aim of establishing sufficiency ranges and crop nutrient removals for Melissa officinalis L. Critical nutrient concentrations were determined by the Cate–Nelson method or by removing 10% of extreme high and low values, respectively if a positive response to a given nutrient was recorded or not. Sufficiency ranges for macro, micronutrients, and SPAD-readings were set as: 27.0–40.0 g N kg?1; 0.8–2.7 g P kg?1 (May–August); 1.5–3.8 g P kg?1 (September–November); 10.0–25.0 g K kg?1 (May–August); 18.0–32.0 g K kg?1 (September–November); 5.0–25.0 g Ca kg?1; 3.5–8.5 g Mg kg?1; 18–125 mg B kg?1; 5–25 mg Cu kg?1; 75–500 mg Fe kg?1; 20–300 mg Zn kg?1; 30–250 g Mn kg?1; 30–45 SPAD-units. These results will allow laboratories to use plant analysis as an important tool in improving the fertilizer recommendations for this species.  相似文献   

7.
This study verified the concentration over time of nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur (N, P, K, Ca, Mg, and S) in the leaves, stems, fruits, and roots of tomato plants. An indeterminate growth variety with ball-type fruits suited for greenhouse cultivation was used. The results showed that the distribution of minerals in the different organs of the plant varies over time. The minerals N, P, and K showed a tendency to decrease their concentration, while the concentration of Ca and S increased and that of Mg remained constant over time. The leaves had the highest concentrations of N, P, K, Ca, and Mg. The concentrations of K, for both leaf and stem, ranged between 20 and 30 g kg?1. N and K were the most extracted minerals, while P was the least extracted mineral. The information presented in this paper allows a better fertilization plan for growing tomatoes inside greenhouses.  相似文献   

8.
A potential new way of producing coal fly ash-based granular synthetic aggregates (CSA) using waste coal fly ash (CFA), paper waste, lime, and gypsum and their utilization as a soil ameliorant to improve crop production in low productive acidic red soil in Okinawa, Japan were studied. The red soil was amended with CSA at three different mixing ratios (i.e., CSA/soil—1:1, 1:5, and 1:10) for the cultivation of Brassica rapa var. Pervidis commonly known as Komatsuna, and the physico-chemical parameters of CSA–soil mixtures and plant growth were analyzed. Incorporation of CSA to the red soil improved the physical and chemical properties of the soil such as water holding capacity, hydraulic conductivity, bulk density, pH, exchangeable cation concentration, cation exchange capacity, particle size distribution, soil pH, electrical conductivity, and carbon content. CSA amendment at ratios of 1:1, 1:5, and 1:10 decreased bulk density by 29.39%, 14.28% and 11.11%, respectively, compared to the original red soil. The acidic pH of the red soil (5.12) was increased to 7.13 and 6.37 by CSA/soil ratios of 1:5 and 1:10, respectively. CSA amendment in soil at 1:5 ratio increased water holding capacity, saturated hydraulic conductivity, electrical conductivity, cation exchange capacity, carbon, potassium (K), magnesium (Mg), and calcium (Ca) content by 0.06 kg kg?1, ten times, 15.95 mS m?1, 1.76 cmolc kg?1, 6.07 g kg?1, 0.42 g kg?1, 0.24 g kg?1, and 3.38 g kg?1, respectively, in comparison to the original red soil. Heavy metal contents of the CSA–soil mixtures were below the maximum pollutant concentrations suggested by the US Environmental Protection Agency. Moreover, Na, K, Mg, Ca, copper (Cu), and zinc (Zn) contents in the CSA–soil mixtures increased in comparison with the original red soil. CSA amendment in soil at the ratio of 1:5 and 1:10 resulted in an increase in plant height and plant fresh weight by three and 12 times, respectively, and there was increase in N, K, Mg, Ca, Cu, and Zn contents of the shoots. The results suggest that utilization of eccentric CSA as soil amendment agent can be regarded as an effective waste management practice.  相似文献   

9.
The physic nut tree (Jatropha curcas) is an oilseed species with potential for biodiesel production. We evaluated the effect of soil acidity indices on nutrient uptake for optimal growth in physic nut plants grown on acidic soils under greenhouse conditions. Two soils were used in the experiment. Maximum growth was obtained with the application of 1.05 g lime kg-1 for both soils. Maximum growth of the physic nut plants occurred under the following conditions: pH of water = 6.1, calcium (Ca2+) = 17.0 mmolc kg?1, magnesium (Mg2+) = 5.7 mmolc kg?1, acidity saturation = 10.3%, base saturation = 52.3%, Ca saturation = 36.0%, Mg saturation = 12.0% and potassium (K) saturation = 3.8%. Furthermore, the nitrogen (N) requirement of physic nut trees was shown to be high, and to a lesser degree, Ca and Mg requirements were also high, suggesting that liming is very important in crop cultivation of this species.  相似文献   

10.
Upland rice is an important crop in the cropping systems of South America, including Brazil. Two greenhouse experiments were conducted to determine influence of lime and gypsum on yield and yield components of upland rice and changes in the chemical properties of an Oxisol. The lime rates used were 0, 0.71, 1.42, 2.14, 2.85, and 4.28 g kg?1 soil. The gypsum rates were 0, 0.28, 0.57, 1.14, 1.71, and 2.28 g kg?1. Lime as well as gypsum significantly increased plant height, straw and grain yield, and panicle density in a quadratic fashion. Adequate lime and gypsum rates for maximum grain yield were 1.11 g kg?1 and 1.13 g kg?1, respectively. Plant height, straw yield, and panicle density were positively related to grain yield. Lime as well as gypsum application significantly changed extractable calcium (Ca), magnesium (Mg), hydrogen (H)+aluminum (Al), base saturation, and effective cation exchange capacity. In addition, liming also significantly increased pH, extractable phosphorus (P) and potassium (K), calcium saturation, magnesium saturation, and potassium saturation. Optimum acidity indices for the grain yield of upland rice were pH 6.0, Ca 1.7 cmolc kg?1, base saturation 60%, and calcium saturation 47%. In addition, upland rice can tolerate 42% of acidity saturation.  相似文献   

11.
Abstract

Applying animal manure to crops is a good disposal practice that also recycles nutrients. A 2‐year study was conducted involving lima bean (Phaseolus lunatus L.) and two N sources, ammonium nitrate (AN, 340 g N kg?1), and broiler chicken manure (BM, 10 g N kg?1). The sources were tested at five N rates (0, 67, 135, 202, and 269 kg N ha?1) in a split‐plot design with N source as the main plot and N rate as the subplot. Treatments were replicated three times in 2000 and four times in 2001. Leaf tissue (early flowering stage) was analyzed for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn). Although most nutrients were within or above the sufficiency range, K and Cu limited crop production for all treatments. There was no difference between N sources for fresh pod yields. The highest fresh pod yield occurred at 213 kg N ha?1, but the critical point was obtained with 100 kg N ha?1, a rate agreeing with current University of Florida recommendations.  相似文献   

12.
Abstract

The use and disposal of biosolids, or wastewater treatment sludge, as a fertilizer and soil amendment is becoming increasingly widespread. We evaluated the multiyear use of biosolids in apricot (Prunus armeniaca L.) production, grown on productive agricultural soils. Class A biosolids were initially applied annually at rates of 0, 1.9, 5.8, and 11.7 Mg · ha?1 (dry basis) to a 2‐year‐old apricot orchard on the USDA‐ARS research site on the eastern side of the San Joaquin Valley, CA. These application rates provided estimated rates of 0 (control), 57, 170, and 340 kg total N · ha?1 yr?1, respectively. Compared to the control treatment, the applications of biosolids significantly increased soil salinity (electrical conductivity from 1:1 soil–water extract) and total concentrations of nutrients [e.g., calcium (Ca), magnesium (Mg), sulfur (S), phosphorus (P), zinc (Zn), and copper (Cu)] after 7 years but did not increase the concentrations of selected metals [cadmium (Cd), chromium (Cr), cobalt (Co), nickel (Ni), and lead (Pb)] between 0‐ and 60‐cm soil depths. Mean concentrations of total nitrogen (N) and carbon (C) in soils (0‐ to 15‐cm depth) ranged from a low of 1.3 g kg?1 to a high of 5.2 g · kg?1 and from 14.1 g · kg?1 to 45.7 g · kg?1 for the control and high biosolids treated soils, respectively.

Biosolids applications did not lead to fruit yield reductions, although fruit maturation was generally delayed and more fruits appeared at picking times at the high rate of application. Yellow fruits collected from all biosolids applications were significantly firmer than were fruit collected from control trees, and they had higher concentrations of Ca, potassium (K), S, iron (Fe), and Zn in the fruit. Among the fruit quality parameters tested, the juice pH, total acidity, and fruit skin color were not significantly affected by biosolids applications. Malic acid concentrations decreased most of the time, while citric acid concentrations increased with increasing rates of biosolids applications. Overall, our results suggest that nonindustrial biosolids applied at an annual rate at or less than 11.7 Mg N · ha?1 (340 kg N · ha?1) can be safely used for apricot production on sandy loam soils.  相似文献   

13.
Nitrogen (N) is one of the most yield limiting nutrients in lowland rice production. Improving N use efficiency is essential to reduce cost of crop production and environmental pollution. A greenhouse experiment was conducted with the objective to compare conventional and polymer coated urea for lowland rice production. Grain yield, straw yield, panicle density, maximum root length, and root dry weight were significantly increased in a quadratic fashion with the increase of N rate from 0 to 400 mg kg?1 soil. Nitrogen source X N rate interactions for most of these traits were not significant, indicating that lowland rice responded similarly to change in N rates of two N sources. Based on regression equations, maximum grain yield was obtained with the application of 258 mg N kg?1 soil and maximum straw yield was obtained with the addition of 309 mg N kg?1 soil. Nitrogen use efficiency (grain yield per unit of N applied) was maximum for polymer coated urea compared to conventional urea. Root length and root dry weight improved at an adequate N rate, indicating importance of N fertilization in the absorption of water and nutrients and consequently yield. Polymer coated urea had higher soil exchangeable calcium (Ca) and magnesium (Mg), Ca saturation, Mg saturation, base saturation, and effective cation exchange capacity compared to conventional urea. There was a highly significant decrease in soil exchangeable potassium (K) with increasing N rates at harvest of rice plants.  相似文献   

14.
Two greenhouse experiments were conducted simultaneously to evaluate polymer-coated and common urea in upland rice production. The nitrogen (N) levels used for both the N sources were from 0 to 400 mg kg?1 of soil. Maximum grain yield was obtained with the addition of 167 mg N kg?1 polymer-coated urea and 238 mg N kg?1 common urea. Maximum value of other plant traits was obtained with N applied from 233 to 313 mg kg?1 depending on plant traits and N source. Nitrogen-use efficiency (NUE) decreased with increasing N rate in the two N sources. Based on results of growth, yield, and yield components, and NUE it can be concluded that the N sources were equally effective in upland rice production. Base saturation, pH, and exchangeable calcium (Ca) increased with increasing N rates while iron (Fe), manganese (Mn), and copper (Cu) contents decreased with the increasing N rates.  相似文献   

15.
Nitrate (NO3) accumulation by spinach was studied under increasing nitrogen (N) levels (60, 120 and 240 kg N ha?1) along with sulfur (45 kg S ha?1) and phosphorus (P; 90 kg P2O5 ha?1) application. Plants were harvested at 50 and 65 days after sowing. Plant samples were analyzed for NO3-N and total N, P, S, potassium (K), calcium (Ca), and magnesium (Mg). Radio assay of 35S was done to estimate percent sulfur derived from fertilizer and percent fertilizer sulfur utilization. Spinach maintained a very high level of NO3-N in its tissue throughout the growing period. NO3-N was increased with increasing nitrogen level and was reduced with phosphorus and sulfur application and also with advancement in growth. Total N, P, S, K, Ca and Mg uptake were increased with increasing nitrogen levels as well as with application of sulfur and phosphorus. Sulfur application caused increase in percent sulfur derived from fertilizer and percent utilization of fertilizer sulfur.  相似文献   

16.
Abstract

The Diagnosis and Recommendation Integrated System (DRIS) was used to identify nutrient status of mango fruit trees in Punjab, India. Standard norms established from the nutrient survey of mango fruit trees were 1.144, 0.126, 0.327, 2.587, 0.263, 0.141% for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S), and 15, 3.5, 145, 155, and 30 mg kg?1, respectively, for zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), and boron (B) in dry matter. On the basis of DRIS indices, 16, 15, 12, 17, and 16% of total samples collected during nutrients survey of mango trees were low in N, P, K, Ca, and Mg, respectively. For micronutrients, 19, 18, 12, 20, and 6% samples were inadequate in Zn, Cu, Fe, Mn, and B, respectively. DRIS‐derived sufficiency ranges from nutrient indexing survey were 0.92–1.37, 0.08–0.16, 0.21–0.44, 1.71–3.47, 0.15–0.37, and 0.09–0.19% for N, P, K, Ca, Mg, and S and 11–19, 1–6, 63–227, 87–223, and 16–44 mg kg?1 for Zn, Cu, Fe, Mn, and B, respectively.  相似文献   

17.
The establishment of a complementary grass cover on vineyard soils can promote sustainability of the affected environment. In this work, we used an acid vineyard soil with total Cu concentration 188 mg kg?1 to study the influence of pine bark amendment on Lolium perenne growth and Cu uptake. The results indicate that the pine bark amendment did not cause a significant increase in the mass of the shoots of Lolium perenne, but favored the root biomass: 0.034 g for control and 0.061 g for soil samples amended with 48 g kg?1 of pine bark. Moreover, the pine bark amendment decreased Cu concentration in both, shoots (50 mg kg?1 for control soil and 29 mg kg?1 for soil amended with 48 g kg?1 pine bark) and roots (250 mg kg?1 for control soil and 64 mg kg?1 for soil amended with 48 g kg?1 pine bark). The main factor responsible for these results was a significant decrease of the most mobile fractions of Cu in the soil. Those fractions were extracted using ammonium acetate, ammonium chloride, sodium salt of ethylene-diamine-tetraacetic acid (EDTA-Na), and diethylene-triamine-pentaacetic acid (DTPA).  相似文献   

18.
With the objective of improving rice productivity and generating additional knowledge on rice production in Africa, field experiments were conducted for two consecutive seasons of 2005 and 2006 in Southern Benin. Terre de barre soils at the WARDA experimental station and Niaouli, and the plinthic Ferralsols of Cana were investigated. A complete fertilizer (Fc) composed of N, P, K, Ca, Mg and Zn was used to assess NERICA.4 (upland rice) root development and grain yield (GY). Similar observations were made in treatments with a specific nutrient excluded from Fc (Fc–N, Fc–P, Fc–K, Fc–Ca, Fc–Mg and Fc–Zn). A grain yield of up to 1.4 t ha?1 (Fc–N) and higher root densities for Fc and Fc–Mg at 20–60 cm were attained. Maximum reductions in yield and rooting depth were observed for Fc–P (27%, 27%), Fc–K (30%, 14%) and Fc–Zn (32%, 2%). Drought occurrence, a high C/N ratio and soil acidity influence the effects of nutrients on rice. Removal of N from basal fertilizer was recommended to reduce the effect of mid-season drought. It is suggested that the critical level of K in the soils of West Africa be adjusted to 0.40 cmol kg?1 for upland rice.  相似文献   

19.
The potential of Nostoc 9v for improving the nitrogen (N)2–fixing capacity and nutrient status of semi‐arid soils from Tanzania, Zimbabwe, and South Africa was studied in a laboratory experiment. Nostoc 9v was inoculated on nonsterilized and sterilized soils. Inoculum rates were 2.5 mg dry biomass g?1 soil and 5 mg dry biomass g?1 soil. The soils were incubated for 3 months at 27 °C under 22 W m2 illumination with a photoperiod of 16 h light and 8 h dark. The moisture was maintained at 60% of field capacity. In all soils, Nostoc 9v proliferated and colonized the soil surfaces very quickly and was tolerant to acidity and low nutrient availability. Cyanobacteria promoted soil N2 fixation and had a pronounced effect on total soil organic carbon (SOC), which increased by 30–100%. Total N also increased, but the enrichment was, in most soils, comparatively lower than for carbon (C). Nitrate and ammonium concentrations, in contrast, decreased in all the soils studied. Increases in the concentration of available macronutrients were produced in most soils and treatments, ranging from 3 to 20 mg phosphorus (P) kg?1 soil, from 5 to 58 mg potassium (K) kg?1 soil, from 4 to 285 mg calcium (Ca) kg?1, and from 12 to 90 mg magnesium (Mg) kg?1 soil. Positive effects on the levels of available manganese (Mn) and zinc (Zn) were also observed.  相似文献   

20.
Currently, straw transformation in saline soil is largely unknown. The effect of soil salinity on wheat straw transformation and the roles of nitrogen (N) and phosphorus (P) were evaluated in a greenhouse experiment. By sodium chloride (NaCl) addition, straw was applied at the rate of 30 g kg?1 in various saline soils (2.0–4.0 g kg?1). N or combined N and P added in straw amended saline soil (3.0 g kg?1). Three replications of each treatment were sampled to determine straw residues at 30, 60, and 90 d. Results showed straw application significantly increased microbial biomass, especially fungal biomass. Soil salinity increased by 1.0 g kg?1, which decreased straw decomposed rate by 6.3 ~ 11.1%. N application significantly increased straw decomposed rate (p < 0.05), and high salinity obviously inhibited the humidification process of straw. We suggested that straw carbon transformation regulation and little straw residue accumulation in saline soil should arouse more attentions in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号