首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hydroponics experiment was conducted to study the effect of humic acid (HA) on gerbera (Gerbera jamesonii L.) cv. Malibu in different diluted nutrient solutions. The HA (500 mgL?1) was added to a nutrient solution (NS) of gerbera with two dilution levels of NS, ½ NS and ¼ NS, and full-strength nutrient solution (NSc). The HA application compensated for nitrogen, magnesium, and iron deficiency in the ½ NS. Nutrient utilization efficiency (NUTE) of nitrogen in shoot decreased and that of Fe increased in the ½ NS compared with the ¼ NS when HA was applied. The number of harvested flowers per plant was the greatest in the NSc and the ½ NS with incorporating HA. Flower vase life improved by increasing NS level (9.33 days). It seems HA could be successfully considered as a compound to decrease nutrients input in gerbera hydroponics production.  相似文献   

2.
Abstract

Can humic acid (HA) and glutamic acid (GA), when added to tomato (Lycopersicon esculentum Mill. cv. ‘Hongyangli’) nutrient solution in a hydroponic system, improve growth? Tomato seedlings were grown in six nutrient solutions: (1) control (C), (2) C + 25 mg L?1 HA (HA1); (3) C + 50 mg L?1 HA (HA2); (4) C + 100 mg L?1 GA; (5) HA1 + GA; (6) HA2 + GA. Various biochemical and physiological parameters were measured. HA increased photosynthesis rate and mesophyll conductance. HA did not significantly affect transpiration, stomatal conductance, titratable acidity, or antioxidant activity. In addition, GA improved protein and sugar content, mesophyll conductance and yield. The combination of HA and GA was more effective, especially with 50 mg L?1 HA. The activity of superoxide dismutase (SOD) and peroxidases (POD) did not change in the presence of HA or GA. Malondialdehyde (MDA) content increased by 30% in HA2 together with GA. HA has a positive effect on tomato hydroponic growth when applied with GA. This expands the use of HA and GA for horticultural commodities in hydroponic systems.  相似文献   

3.
Flower quality loss, especially short postharvest life, is a major problem in gerbera production. An experiment was conducted to determine how different combinations of humic substances (HS) affect gerbera. Humic acid (HA) and fulvic acid (FA) applied to nutrient solutions in six combinations including control (nutrient solution only), 80 mg L?1 HA + 20 mg L?1 FA, 60 mg L?1 HA + 40 mg L?1 FA, 40 mg L?1 HA + 60 mg L?1 FA, 100 mg L?1 FA, and 50 mg L?1 FA. The HS application enhanced root architecture, nutrient content, number of harvested flowers, and vase life. Fifty (50) mg L?1 FA extended vase life by 8 days and increased flower number (72.9%). Results suggest that HA and FA (especially 50 mg L?1 FA) can improve quality and quantity of gerbera through improving root architecture, leading to enhanced nutrient uptake and possibly affecting hormone-like activities. It seems that using low concentrations of FA may be part of a solution in improving gerbera flower quality.  相似文献   

4.
Humic acid (HA) might benefit plant growth by improving nutrient uptake and hormonal effects. The effect of HA on growth, macro—and micronutrient contents, and postharvest life of gerbera (Gerbera jamesonii L.) cv. ‘Malibu’ were examined. Different levels of humic acid (0, 100, 500, and 1000 mg/L) were applied to nutrient solution.

Root growth increased at 1000 mg/L HA incorporated into the solution. Macro- and micronutrient contents of leaves and scapes including nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were significantly enhanced by HA. However, high levels of HA decreased some nutrient contents.

Five-hundred mg/L HA increased the number of harvested flowers per plant (52%). Higher HA levels extended the vase life of harvested flowers by 2—3.66 days and could prevent and delay bent neck incidence. These postharvest responses were most probably due to Ca accumulation in scapes and hormone-like activity of HA.  相似文献   

5.
Mycorrhiza can improve plant growth and increase nutrient uptake. This study was conducted as factorial experiment based on complete random design (CRD) to study effects of mycorrhiza inoculation under limited iron (Fe) condition on antioxidant activity, phenol content and photosynthesis trait of cucumber (Cucumis sativus cv. N3). Treatments were Johnson modified nutrient solution (MNS) with 25% Fe (MNS1) = 0.57 mg/L Fe, 50% (MNS2) = 1.14 mg/L Fe and 100% (MNS3) = 2.3 mg/L Fe and mycorrhiza inoculation (M+) and non-mycorrhiza inoculation (M?) with 3 replications under hydroponic conditions. The results showed that plant growth and shoot phenol content decreased in the MNS1 treatment; whereas phenol content of the root exudates and antioxidant activity significantly increased in this treatment. All photosynthesis attribute increased in the MNS3 treatment. Mycorrhiza inoculation increased plant growth, phenol content, antioxidant activity and photosynthesis trait of cucumber. Also, mycorrhiza inoculation enhanced SPAD value in the MNS2 treatment and photosynthesis rate, transpiration and mesophyll conductance in all the modified nutrient solutions. Moreover, mycorrhiza symbiosis was stimulated by the internal carbon dioxide (CO2) content of the stomata in the MNS2 and MNS3 treatments. Furthermore, Mycorrhiza inoculation improved phenol content of the shoots and roots in all the nutrient solutions, whereas antioxidant activity was affected by mycorrhiza inoculation only in the MNS2 treatment.  相似文献   

6.
为探究盐分胁迫下,控释尿素配施腐植酸对棉花幼苗生长特性和植株体内抗氧化系统的影响,以滨海盐化潮土(全盐含量4.5 g/kg)为供试土壤,设置普通尿素、控释尿素、普通尿素+腐植酸、控释尿素+腐植酸4个施肥处理,以不施氮肥处理为对照进行棉花盆栽试验,测定棉花植株生物产量、叶片叶绿素含量、叶片及根系抗氧化酶(SOD、POD、...  相似文献   

7.
腐植酸对番茄苗期氮素代谢的影响   总被引:2,自引:0,他引:2  
腐植酸对肥料具有改性增效的作用,以番茄为供试材料,研究腐植酸增效剂不同添加量对番茄苗期生长及氮素代谢酶活性的影响,为腐植酸的开发应用提供参考依据。采用砂培试验方法,设置了向霍格兰营养液分别加入腐植酸增效剂0(HA0),1(HA1),2(HA2),5(HA3),10(HA4) mL/L处理。培养30天后,测定番茄的生长指标、植株养分含量、硝酸还原酶活性、谷氨酰胺合成酶和谷氨酸脱氢酶活性。添加适量腐植酸增效剂能促进番茄苗期生长,HA3处理番茄根系干重比HA0提高了31.68%,HA1处理番茄地上部干重最大。添加腐植酸可以提高番茄苗期叶片叶绿素含量,HA3处理番茄苗期叶片叶绿素总量和类胡萝卜素含量最高,分别比HA0提高了17.11%,24.04%。添加适量腐植酸增效剂能增加番茄苗期根系和地上部对氮素的吸收,HA3处理的番茄根系、地上部及总氮素积累量比HA0分别提高了30.61%,20.24%,21.54%。添加腐植酸增效剂可以调控番茄根系和叶片氮素代谢过程,提高了氮素代谢酶活性,与HA0相比,HA4处理根系硝酸还原酶活性最大,HA3处理根系谷氨酰胺合成酶活性最高,HA2处理根系谷氨酸脱氢酶的活性最大;HA3处理番茄苗期叶片中硝酸还原酶、谷氨酰胺合成酶和谷氨酸脱氢酶活性最大,与HA0处理相比分别提高了38.27%,64.54%,106.63%。添加腐植酸增效剂可以促进番茄苗期的生长和对氮素的吸收,提高氮素代谢酶活性,处理中以在营养液中添加5 mL/L腐植酸增效剂效果最佳,腐植酸增效剂添加量低于5 mL/L时,对番茄苗期的生长及氮素代谢具有明显的促进作用。  相似文献   

8.
【目的】腐殖酸对磷肥增效的调控效应与其结构性密切相关。本文比较了不同磺化反应方法制备的腐殖酸磷肥对冬小麦磷素利用的影响,为制备调控磷肥专用的腐殖酸增效载体提供依据。【方法】采用磷酸与氢氧化钾反应法制备普通磷肥 (P)、普通腐殖酸磷肥 (HAP),并采用加双氧水、硝酸等方法制备了四种磺化腐殖酸磷肥 (HA1P、HA2P、HA3P和HA4P)。用田间土柱栽培试验方法,在等磷量基础上,设置普通磷肥 (P)、普通腐殖酸磷肥 (HAP)、磺甲基化腐殖酸磷肥 (HA1P)、双氧水+磺甲基化腐殖酸磷肥 (HA2P)、硝酸+磺甲基化腐殖酸磷肥 (HA3P)、双氧水+硝酸+磺甲基化腐殖酸磷肥 (HA4P) 6个处理,同时设置不施磷肥对照 (CK) 处理和施用等量腐殖酸处理 (C-HA、C-HA1、C-HA2、C-HA3、C-HA4)。调查了小麦产量和产量构成及经济效益,分析了0—80 cm土壤有效磷含量。【结果】1) 与CK相比,普通腐殖酸 (C-HA) 和磺化处理腐殖酸 (C-HA1、C-HA2、C-HA3、C-HA4) 对小麦籽粒产量无显著影响。与P处理比较,HAP、HA1P、HA2P、HA3P、HA4P处理的小麦籽粒产量分别提高了6.3%、17.8%、10.1%、17.5%、11.1%,4个腐殖酸磺化磷肥 (HA1P、HA2P、HA3P、HA4P) 处理均高于普通腐殖酸磷肥 (HAP) 处理。2)与HAP比较,磺化腐殖酸磷肥处理HA1P、HA2P、HA3P、HA4P分别提高小麦地上部磷吸收量12.3%、12.3%、9.2%、10.8%,其中HA1P和HA2P处理最高。3)与HAP比较,磺化腐殖酸磷肥处理HA1P、HA3P分别提高小麦磷肥农学效率23.6%和7.1%。4)与HAP比较,磺化腐殖酸磷肥处理HA1P、HA2P、HA4P可分别提高0—20 cm土层土壤速效磷含量17.5%、16.2%、17.2%。【结论】磺化腐殖酸磷肥比普通腐殖酸磷肥可以更有效地提高土壤中磷肥的有效性,提高冬小麦对磷素的吸收利用,进而提高冬小麦籽粒产量。四种磺化工艺中,以磺甲基化处理的腐殖酸磷肥 (HA1P) 效果最优。  相似文献   

9.
腐植酸-尿素是近年来的一种新型有机无机复合肥料,其增产效应显著,但是在小麦-玉米轮作中该肥料的利用率和环境调控因素尚不清楚。本研究通过田间定位与室内培养试验,以不施肥处理(Control)和单施尿素处理(Urea)为对照,研究腐植酸-尿素直接掺混处理(U+HA1)、腐植酸-尿素活化处理(U+HA2)和腐植酸-尿素活化催化处理(U+HA3)对小麦和玉米生长、土壤理化性质、氮肥利用率和土壤氮转化及土壤脲酶含量的影响。研究结果表明:活化腐植酸-尿素处理的小麦、玉米籽粒产量分别较Urea处理增产15%~28%和8%~10%。活化腐植酸-尿素施用显著地降低土壤容重、p H和土壤颗粒粒径的中位粒径,提高了土壤的比表面积、电导率、有机碳含量和矿质态氮含量。小麦季活化腐植酸-尿素处理下氮肥回收利用率较Urea处理显著增加,增加幅度为37%~91%,玉米季的增加幅度为78%~93%。活化腐植酸-尿素处理下小麦和玉米的氮肥农艺利用率和偏生产力均较Urea处理高。此外,回归分析表明活化腐植酸-尿素的氮肥当季回收利用率随土壤硝化比率、有机氮的矿化量及脲酶含量的增加而降低,而随土壤颗粒比表面积的增大而提高。本研究结果明确了腐植酸-尿素活化处理对小麦、玉米的增产效果较好,可改善土壤理化性质,其中腐植酸-尿素活化催化处理(U+HA3)的效果最好。研究结果为活化腐植酸-尿素肥料的深入研发与推广提供基础资料。  相似文献   

10.
腐植酸与尿素结合工艺对尿素在潮土中转化的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
通过研究腐植酸与尿素结合工艺对尿素在土壤中转化的影响,为腐植酸尿素生产工艺的选择提供科学依据.在石灰性潮土上进行土壤培养试验,设置8个处理:不施尿素(CK)、普通熔融尿素(U)、0.5%添加量的腐植酸(HA0.5)、5%添加量的腐植酸(HA5)、腐植酸添加量为0.5%的掺混腐植酸尿素(HA+U0.5)、腐植酸添加量为0...  相似文献   

11.
ABSTRACT

Avocado crop is very sensitive to root asphyxiation. Among the agricultural management techniques, soil applications of humic and sulfuric acids became increasingly popular. In a trial with potted 'Hass' avocado trees grown on a silty-clay soil, different soil treatments were applied to determine their effects on tree physiology and soil characteristics: Control, deionized water; SA, H2SO4 application; HA, humic acid application; SA+HA, combination of both treatments. Treatments were applied during a 9-month period. SA reduced soil pH, rised electrical conductivity and reduced saturated soil hydraulic conductivity (Ks) in the upper layers of the potted soil. On the other hand, HA increased electrical conductivity and Ks compared with Control. None of the treatments improved CO2 assimilation, stomatal conductance, stem water potential, chlorophyll fluorescence, growth or nutrient content. Our findings suggest that a rapid and positive response to the application of acids is unlikely to be observed under conditions of restricted oxygen in the root zone.  相似文献   

12.
The effect of humic acids (HAs) and their iron complexes (Fe–HAs) on the input of the main mineral elements into wheat seedlings, as well as on the efficiency of photosynthesis and the lipid profile of plants, under iron deficiency has been studied. The input of iron from Fe–HA complexes and its predominant accumulation in roots are demonstrated. It is found that HAs increase the efficiency of photosynthesis due to enhanced electron transport in photosystem II. It is shown that the application of HAs and Fe–HAs is accompanied by an enhanced input of Zn into plants, which could increase the antioxidant status of plants under iron deficiency conditions. In addition, a pronounced increase in the content of lipids in plants is revealed, which is indicative of the effect of HAs on plant metabolism. The obtained results suggest that the positive effect of Fe–HAs and HAs on plants under iron deficiency conditions is due to a combination of factors, among which the effect of HAs on the antioxidant status of plants and the plant lipid metabolism predominates.  相似文献   

13.
Phytoremediation is an attractive, economic alternative to soil removal and burial methods to remediate contaminated soil. However, it is also a slow process. The effect of humic acid in enhancing B and Pb phytoextraction from contaminated soils was studied (pot experiment) using transplanted vetiver grass (Vetiveria zizanioides (L.) Nash). Boron was applied at 0, 45, 90 and 180 kg B ha?1 soil (as H3BO3) in 16 replicates. Of the 64 pots, four pots each were treated with 0, 100, 200 and 400 kg ha?1 humic acid (HA) solution. In a separate experiment, Pb was applied (as Pb(NO3)2) at 0, 45, 90 and 180 kg Pb ha?1 prior to addition of HA solutions at levels identical to the B experiment. Experiments were conducted using a randomized complete block design with four replicates. Vetiver grass was harvested 90 days after planting. Lead addition beyond 45 kg Pb ha?1 decreased Pb uptake mostly due to a yield decline. Humic acid application increased Pb availability in soil and enhanced Pb uptake while maintaining or enhancing yield. An application of 200 kg HA ha?1 was optimal for maintaining yield at elevated Pb levels. Boron application did not impact yield but greatly increased B content of roots and shoot. Boron uptake was greatest upon addition of 400 kg HA ha?1. We conclude that HA addition to vetiver grass can be an effective way to enhance phytoremediation of B and Pb but optimum rates differ depending on soil B and Pb contamination levels.  相似文献   

14.
Abstract

Stimulatory effects of humic substances (HS) on plant growth have been observed and widely documented. Studies have often shown positive effects on seed germination, root initiation and total plant biomass. The consistency of these observations has been uncertain, predominantly due to the lack of understanding of the plant growth promotion mechanism. Often these effects have been attributed to a direct effect of plant growth hormones; whereas in other instances the term “hormone-like activity” has been used to describe the plant growth stimulation (Chen and Aviad, Humic Substances in Soil and Crop Sciences: Selected Readings, American Society of Agronomy, Soil Science Society of America, 1990; Nardi et al., Humic Substances in Terrestrial Ecosystems, Elsevier Science B.V., 1996). Yet, investigators have been unable to prove that plant growth regulators are present in HS preparations, or the evidence provided remains unconvincing. An alternative hypothesis suggesting that growth enhancement of plants grown in nutrient solution (NS) containing HS is the result of improved micronutrient availability, Fe in particular, has been postulated and tested in the present study. Nutrient solutions containing N, P, K, Ca, Mg, S, B, Mo, Cu, Mn, Zn, and Fe at concentrations considered to be optimal for plant growth were tested for solubility of the Fe, Zn, and Mn, 7 days after preparation. In addition to control solutions at pH values of 5, 6, 7, and 7.5, 0 to 200 mg L?1 of leonardite humic acid (HA) were added to the solutions and they were tested for Fe and Zn solubility. The HA greatly enhanced the maintenance in solution of Fe, in all the tested solutions, and Zn at pH 7.5. Mn mostly remained in solution in its inorganic forms. Plant growth experiments were carried out on both dicotyledonous plants (melons and soybean) and monocotytedonous Poaceae plants (ryegrass), due to the major difference in their Fe uptake mechanism. Plants grown in the absence of Fe exhibited severe Fe deficiency that could only partially be corrected with the addition of mineral Fe salts. The addition of HA or fulvic acid (FA) without addition of Fe, and Zn resulted in partial growth enhancement and correction of Fe deficiency, or none of the two, in the various experiments. This suggests that the growth enhancement effect observed in solutions containing Fe, Zn, and HS was related to the micronutrients rather than to phytohormones. However, the addition of Fe, Zn and either EDTA, HA or FA resulted in healthy, chlorophyll rich plants and enhanced growth, thereby providing evidence that improved Fe, and possibly Zn nutrition is a major mechanism of plant growth stimulation by HS. The use of the term hormone-like activity could be the result of the similarity of the physiological effects obtained in plants enjoying sufficient supply of Fe and Zn.  相似文献   

15.
The binding of metal to humic substances is problematical. The approaches for studying metal binding to organic matter are briefly reviewed. Ion-selective electrodes (Cu2+ and Pb2+) were used to measure metal complexation by a whole peat and an extracted humic acid (HA) fraction. Scatchard plots and calculation of incremental formation constants were used to obtain values for the binding constants for the metals onto both peat and HA. Both the peat and the humic acid had a larger maximum binding capacity for Pb2+ than for Cu2+ (e.g. at pH = 5 HA gave 0·188 mmol Cu2+ g?1 and 0·564 mmol Pb2+ g?1: peat gave 0·111 mmol Cu2+ g?1 and 0·391 mmol Pb2+ g?1). Overall, the humic acid had a larger metal binding capacity, suggesting that extraction caused conformational or chemical changes. The binding constants (K1) for Cu2+ increased with increasing pH in both peat and humic acid, and were larger in the peat at any given pH (e.g. at pH = 5 HA gave log K1= 2·63, and peat gave log K1= 4·47 for Cu2+). The values for Pb2+ showed little change with pH or between peat and humic acid (e.g. at pH = 5 HA gave log K1= 3·03 and peat gave log K1= 3·00 for Pb2+). In the peat, Cu2+ may be more able to bind in a 2:1 stoichiometric arrangement, resulting in greater stability but smaller binding capacity, whereas Pb2+ binds predominantly in a 1:1 arrangement, with more metal being bound less strongly. Whole peat is considered to be more appropriate than an extracted humic acid fraction for the study of heavy metal binding in organic soils, as this is the material with which metals introduced into an organic soil would interact under natural conditions.  相似文献   

16.
甘蔗酒精废液对土壤理化性状及氧化还原酶的影响   总被引:3,自引:0,他引:3  
在蔗地上设计不施肥(CK1)、施化肥(CK2)和4个直接喷施甘蔗酒精废液处理,研究不同用量废液施用对土壤理化性状及两种氧化还原酶活性的影响.结果表明:蔗地施用废液提高了土壤全氮、Cl-、有机质、腐殖质含量,使甘蔗苗期土壤过氧化氢酶和多酚氧化酶活性异常升高,随后迅速下降,成熟期下降到接近或小于CK2的土壤酶活性水平.甘蔗苗期土壤过氧化氢酶活性与全氮、有机质、腐殖质呈极显著正相关,与富里酸、胡敏酸、Cl-呈显著正相关(r0.05=0.811,r0.01=0.917,n=6);土壤多酚氧化酶活性与有机质、腐殖质、Cl-呈显著正相关.与不种植甘蔗的75 tCK废液处理相比,种植甘蔗的75 t废液处理甘蔗生长后期土壤全氮、有机质、Cl-含量和多酚氧化酶活性较低.说明与施用化肥或不施肥处理相比,蔗地施用废液有提高土壤肥力和有机质、腐殖质含量的作用,但也使施用初期过氧化氢酶和多酚氧化酶活性异常升高,施废液的土壤种植甘蔗对废液养分吸收和环境净化有一定作用.  相似文献   

17.
福州市几种菜园土肥力特性的初步研究   总被引:2,自引:0,他引:2  
郭成达 《土壤通报》2001,32(3):106-109
对福州市起源于红壤和冲积物母质上的几种菜园土的土壤及其微团聚体性质测定结果表明 :经长期培育的高度熟化菜园土 ,其土壤养分贮量和有效养分含量均大幅度提高 ;腐殖质HA/FA、胡敏酸芳构化度和腐殖质氧化稳定性均明显增大 ;不同结合态腐殖质以松、紧结合态为主 ,二者绝对含量均明显增加 .这些决定了菜园土具有很强的供肥能力和良好的土壤结构  相似文献   

18.
Abstract

Mobilization of iron (Fe) chelated by humic acids (HA) of low (HA10,000) and high molecular weight (HA100,000) fractions and its uptake by plants were investigated in growth experiments with sunflower seedlings. The iron chelates (labeled with 59Fe) contained in dialysis bags (mw. cutoff=3500) were placed in minus iron Hoagland solutions as the Fe source and at the same time fulvic acid (FA), EDTA, and low and high molecular weight HA fractions were added in the solutions as mobilizators. Characterization of FA, HA10,000, and HA100,000 were performed by infrared spectroscopy and chemical analysis, e.g., total acidity, COOH, and phenolic‐OH content. Roots and leaves were harvested, dried, and ground for Fe activity determination. Iron contents and pH in the nutrient solutions were measured before and after treatments. The supply of Fe to the plants was apparently sufficient, because no Fe deficiency has been detected in the test plants but during the whole absorption period, the pH of the nutrient solution was about 4.5. The Fe contents in leaves indicated that part of the Fe was rapidly transported from roots to leaves. Judging from the Fe contents in leaves, it was assumed that the small size HA10,000 and EDTA were the most efficient in affecting transport of Fe from root to leaf tissue. FA, HA10,000, and especially HA100,000 were unable to penetrate the dialysis bags and, hence, were effective in Fe mobilization only after the Fe, dissociated from the Fe‐HA chelate, has passed the dialysis membrane into the nutrient solutions. In contrast, the small size EDTA was expected to have penetrated the dialysis bags, permitting mobilization of chelated Fe by ligand exchange inside the bags, and transporting the Fe to the roots. The results suggested that the humic substances used in this study were able to form with the Fe3+ ion complexes that maintained the iron available to the sunflower plants. In the chemical form of Fe.L, where L was FA o HA, the iron within the bags or in solution or in the roots free space, was available for exchange reactions with the natural sunflower plant chelators for its transport to the leaves.  相似文献   

19.
腐植酸复混肥对葡萄养分吸收利用的影响   总被引:3,自引:0,他引:3  
为明确不同腐植酸复混肥施用量,对葡萄生长及土壤养分的影响,采取以二年生葡萄幼树进行盆栽试验。结果表明,与等养分无机化肥相比,腐植酸复合肥明显提高了葡萄植株对N、P、K肥的利用率,使土壤中的N素释放减缓,P的移动性和K的含量有较明显提高,并使土壤中有机质含量有增加的趋势。  相似文献   

20.
以2年生葡萄为供试作物进行盆栽试验,研究不同用量腐植酸复合肥对葡萄叶片养分积累及其生理指标的影响。结果表明,不同肥料用量对葡萄体内各种生理活动均有明显影响,且与等养分的无机肥相比,腐植酸复合肥表现出明显优势。施肥量低于1.75g/株时,超氧化物歧化酶活性随施肥量的增加显著提高,但当施肥量超过1.75g/株后,超氧化物岐化酶活性开始显著降低;当施肥量为3.50g/株时,过氧化物酶活性达最高,之后再增加肥料用量,腐植酸复合肥处理过氧化物酶活性急剧下降,而无机肥处理过氧化物酶活性变化平缓,对葡萄叶片蒸腾速率的影响与对过氧化物酶活性的影响趋势基本一致;施肥有利于植株叶片养分的积累及吸收利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号