首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have evaluated the effectiveness of arbuscular mycorrhizal fungi (AMF) inoculation (+M and ?M) at 0, 60, and 120 kg ?ha?1 of P fertilizer on crop growth (IEg), plant P nutrition and yield (IEy), and on mycorrhization occurrence in a processing tomato crop. Two experiments were carried out in calcareous soil under field conditions. Phosphorus fertilization had no effect on crop growth and yield. At harvests, +M plants showed higher aerial dry weight, fruit fresh weight, and P concentration. Inoculated plants produced larger inflorescences, higher flower number, and total and marketable fruit number compared with ?M plants. At P0 and P60, plants associated with exogenous AMF were able to enhance P recovery, nevertheless factors other than the P uptake improvement concurred to make the inoculation effective. In both years, P fertilization enhanced IEg and IEy, and the application of 60 kg ?ha?1 of P in inoculated soil was enough to reach high production level (134 Mg ?ha?1). In the first trial, due to earlier root mycorrhization in inoculated and P fertilized soil, higher IEg and IEy were obtained compared with the second experiment. In the latter, during the initial phase, plant growth was more affected by P fertilization than by soil arbuscular mycorrhizal (AM) inoculation. Root mycorrhization by native AM fungi indicates that the intensive management of the investigated agro-system did not depress fungi infectivity; however, it caused the selection of less effective AMF. The application of selected AMF as a biofertilizer may represent an innovative ecosustainable practice for improving the crop profitability for growers while reducing the need for P fertilization.  相似文献   

2.
Optimization of phosphorus (P) fertilization is important for balancing soil fertility especially in vertisol to support economic crop production. The objective of the study was to determine the impact of P fertilization (1998 to 2014) on crop yield and nutrient uptake, and soil fertility under continuous annually tilled corn (Zea mays L.)-wheat (Triticum aestivum L.) system in semi-arid Mediterranean conditions. The study was conducted on Arik clay (isohyperthermic, fine clay Typic Haploxerert) using randomized complete block design with four replications for each treatment at the research farm of the Dept. of Soil Science and Plant Nutrition, Çukurova University, Adana, Turkey. P fertilizer at 0, 50, 100, 200 kg P2O5 ha?1 as triple superphosphate (TSP), respectively was applied a week before planting corn. Results showed that increasing P fertilization rates significantly decreased the number of mycorrhizal spores associated with corn roots. Similarly, a 10% decrease in corn root mycorrhizal colonization was observed with 200 kg P2O5 ha?1 fertilization. In the control treatment, corn yield was 4.3 Mg ha?1 as compared to 5.6, 5.7 and 6.1 Mg ha?1 in 50, 100 and 200 kg of P2O5/ha, respectively. The relationship between P fertilization and relative yield showed that more than 95% of the corn yield was produced when P applied at 100 kg P2O5 ha?1. While P fertilization significantly increased the leaf N, P, and K contents but decreased the leaf Zn, Fe and Mn contents, as compared with the control. However, P fertilization did not consistently affect the grain N and P contents. Both physiological efficiency- and agronomic efficiency of P fertilization have shown a significant non-linear increase than that of the control. Total organic C (TOC) and total N (TN) concentrations were more than 34 and 26% higher in 100 and 200 kg P2O5 ha?1rates as compared with the control. Likewise, available P (AP), manganese (Mn) and zinc (Zn) concentrations increased with an increase in P fertilization rates. The AP, Mn and Zn contents significantly stratified by P fertilization. Our results suggested that 100 kg P2O5 ha?1 is optimum to sustain Vertisol fertility for supporting economic corn production in the Mediterranean climates of Turkey.  相似文献   

3.
This study examines the influence of different amounts of potassium chloride (KCl) fertilization on plant growth, nutrient accumulation and content, nutrient ratios, and root colonization by indigenous arbuscular mycorrhizal (AM) fungi in maize (Zea mays L.). KCl was applied at the rate of 0, 0.25, 0.50, 1.00, 1.50, and 1.75 mg/kg of soil. Effect of KCl on indigenous AM formation and function was evaluated in terms of the extent of root length colonization, plant growth, and nutrient uptake. Increasing concentration of KCl fertilization proportionately limited the total root length colonized by AM fungi as well as the root length with different AM fungal structures. Maize plants raised on soils amended with different concentrations of KCl were significantly taller than those raised on unamended soils. KCl application also significantly increased the total root length and root dry weight. Nevertheless, KCl fertilization did not significantly alter the root/shoot ratios. Higher concentrations of nitrogen (N), phosphorus (P), and potassium (K) were evident in shoot and root tissues of maize (except shoot N) raised on KCl-amended soils. Phosphorus concentrations in shoots and roots significantly influenced mycorrhization and root length colonized by different AM fungal structures, and such an effect was evident for root N. KCl fertilization increased the efficiency of N and P accumulation. No significant change was evident in the K:N ratios of shoots or roots, whereas the K:P ratios were significantly altered in shoots or roots in response to KCl application.  相似文献   

4.
Maize (Zea mays L.) is an important crop in central Thailand where fallow is widely practiced and farmers are interested in crop rotation and beneficial soil biota. A pot experiment using a Typic Paleustult (topsoil + subsoil) from the National Corn and Sorghum Research Centre, Nakhonratchasima Province, Thailand was undertaken over three successive crops to evaluate effects of agronomic practices on populations of arbuscular mycorrhizal (AM) fungi and to determine whether reintroduction of a local Glomus was beneficial to maintain maize yield. The three crops and their treatments were: (1) preceding crop: maize grown in all pots; (2) subexperiment 1: agronomic practices [maize, fallow ± soil disturbance, fallow with solarization, non–AM host (cabbage)]; and (3) subexperiment 2: maize ± Glomus sp. 3 at three rates of P fertilization (0, 33, 92 kg P ha–1). The AM‐fungal community was established under the preceding crop. In subexperiment 1, the three fallow treatments decreased (30%–40%) the total AM spore number in the topsoil whereas there was no change under maize or cabbage. Glomus, the dominant genus, showed sensitivity to fallow. In subexperiment 2, inoculation with Glomus sp. 3 enhanced total AM spore number and root colonization when applied following the three fallow treatments. Furthermore, inoculation promoted grain yield; at nil P following fallow ± soil disturbance, at 33 kg P ha–1 following fallow without soil disturbance, and following solarization. Two treatments, maize following maize and maize following cabbage, did not respond to inoculation with Glomus sp. 3. Overall, the results suggest that reintroduction of Glomus sp. 3, a local AM fungus in this soil, may overcome negative effects of fallow and promote effectiveness of P fertilizer. Further work is needed to evaluate the benefits of other indigenous AM species that persist under modern fertilization practices.  相似文献   

5.
The study was carried out between 2008 and 2010 on 8-year-old pomegranate (Punica granatum L.) trees cultivar ‘Kandhari Kabuli.’ The potential efficiency of bio-organics used along with chemical fertilizers on cropping behavior, quality attributes, nutrient availability, physico-chemical, and biological properties of soil were investigated. Bioorganic nutrient sources, namely, vermicompost (VC), biofertilizers (BF), farm yard manure (FYM), and green manure (GM), along with chemical fertilizers was evaluated in 13 different treatment combinations. Conjoint treatment application of VC at 20 kg tree?1, BF at 80 g tree?1, FYM at 20 kg tree?1, GM as sun hemp (Crotalaria juncea L.) along with 75% of the recommended dose of nitrogen–phosphorus–potassium (N–P–K) chemical fertilizers significantly resulted in maximum fruit set (52.03%) and fruit yield (34.02 kg tree?1). All of the fruit quality characteristics were also improved significantly when compared to nitrogen–phosphorus–potassium (N–P–K) chemical fertilizers. This superior combination also enhanced physical-chemical and biological properties of the rhizosphere soil. Microbial biomass of in terms of Pseudomonas, total culturable soil fungi, Azotobacter chroococcum, actinobacteria, and arbuscular mycorrhizal (AM) fungi improved 385.57, 60.26, 134.19, 168.02, and 39.87%, respectively, over control. This combination also resulted in considerable greater concentration of leaf macro-and micronutrients: N (2.63%), P (0.25%), K (1.57%), iron (Fe; 197.87 mg kg?1), copper (Cu; 14.65 mg kg?1), zinc (Zn; 59.36 mg kg?1), and manganese (Mn; 200.45 mg kg?1).  相似文献   

6.
Abstract

The cultivation of horticultural crops, such as green peppers, tomatoes, eggplants and bell peppers is very common in semi-arid Mediterranean climate conditions. Two field experiments were performed to determine the effect of mycorrhizal species, plant species and phosphorus levels on mycorrhizal effectiveness and phosphorus (P) and zinc (Zn) nutrient uptake. In the first experiment, under field conditions, four plants species were inoculated with five arbuscular mycorrhizae (AM) species. In the second field experiment, under the same soil conditions, the same plant species were treated with three levels of phosphorus (P), i.e., control; 50?kg and 100?kg P2O5 ha?1. The most effective mycorrhiza species Claroideoglomus etunicatum selected in the first experiment was used in the second field first experiment. In the first experiment, fruit yield enhancement, yield increase, inoculation effectiveness and nutrient concentration in the plant leaves were analyzed. Under field conditions, plant species growth is strongly dependent on the species of AM fungi. Tomato and green pepper plants were inoculated with Cl. etunicatum, eggplants were inoculated with Funneliformis mosseae and bell peppers were inoculated with Rhizophagus clarus, which are high fruit-yielding plant species. In general, Fu. mosseae and Cl. etunicatum increased the yield of the tomatoes, green peppers and eggplants. It seems mycorrhiza species specific to plant species. In the second experiment, mycorrhizal inoculation with P fertilizer application, in particular a moderate amount of P (50?kg ha?1 P2O5) fertilizer increased the green pepper, bell pepper and tomato fruit yield compared with non-inoculated plants and non-P fertilizer application treatments. Increasing the application of P level reduced the mycorrhizal inoculation effectiveness (MIE). The results indicate that for all four solanaceae family plants 50?kg ha?1 P2O5 is a P level threshold for mycorrhizal development, which enhanced plant growth and addition of fertilizer over 50?kg ha?1 P2O5 reduced MIE. P and Zn uptake were significantly increased with mycorrhizal inoculation. These findings are supported by our hypothesis that mycorrhiza inoculation can reduce mycorrhizal dependent horticultural plants P fertilizer requirement.  相似文献   

7.
ABSTRACT

This work was conducted to study phosphorus (P) efficiency of two maize genotypes (Zea mays, L.) in calcareous soil grown in potted soil with two levels of P in soil by adding 40 and 270 mg P/kg soil. Half of the pots were inoculated with arbuscular mycorrhizal fungi (AMF) (Rhizoglomus irregulare). The maize genotypes were harvested two times at 35 and 50 days after transplanting. The plant dry matter, root length and Plant P uptake of maize genotype Hagen 1 without mycorrhizal fungi (AMF) increased significantly compared with Hagen 9 at a low P level. In contrast, there was no significant difference between two maize genotypes inoculated with AMF under the same P level. The predicted value increased rapidly with increasing P levels from about 70% up to 97% in both maize genotypes with and without mycorrhizal fungi. At a low P level, the mycorrhizae hyphae contributed by about 31.6% and 30.2% of the predicted total P uptake in maize genotype Hagen 1 and Hagen 9, respectively. The results of this study suggested that the P-inefficient genotype Hagen 9 improved with inoculation with mycorrhizal fungi under a low P level at the same conditions of this experiment. Also, root growth system and mycorrhizal hyphae length would be a suitable plant parameter for studying P efficient maize genotypes, especially under limited P supply. The current study clearly pointed out that the mechanistic simulation model (NST 3.0) provides useful tools for studying the role of AMF in P uptake of plant.  相似文献   

8.
Maize yield is often limited by zinc (Zn) deficiency. The objectives of this study were to (i) evaluate maize yield response to Zn applied at four different rates, (ii) evaluate the yield response and agronomic efficiency of maize to the application of a complex fertilizer, MicroEssentials SZ (12N–40P–0K–10S–1Zn), compared to different rates of monoammonium phosphate (MAP) + ammonium sulfate (AS) + zinc sulfate (ZnSO4), and (iii) evaluate the association between tissue Zn concentration and soil-test Zn with the maize response to Zn fertilizer. Eleven experiments were carried out during the 2010, 2011, and 2012 growing seasons throughout eight states in the USA. Treatments consisted of four Zn rates of a physical blend of MAP + AS + ZnSO4 (0, 2.24, 4.48, 6.72, and 11.2 kg/ha Zn) and MicroEssentials SZ at a Zn rate of 2.24 kg/ha Zn. Nitrogen, phosphorus (P), and sulfur (S) rates were balanced across treatments (40 kg/ha P, 22 kg/ha S) and fertilizers were broadcast and incorporated immediately prior to planting. Treatment and location main effects were significant (P < 0.001) on corn yields, whereas the interaction treatment × location was not (P = 0.33). Maize responded positively to Zn fertilization; average yields across locations increased from 10,540 kg ha?1 without Zn to 11,530 kg ha?1 with 11.21 kg Zn ha?1 applied as a physical blend. The yield response and Zn agronomic efficiency of maize with the application of the complex fertilizer at a rate of 2.24 kg Zn ha?1 averaged 1004 kg ha?1 and 448 kg maize kg Zn?1, respectively, significantly higher (P < 0.1) than the yield response and Zn agronomic efficiency with the application of a physical blend with the same Zn rate, which averaged 293 kg ha?1 and 131 kg maize kg Zn?1, respectively. The Zn concentration in plant tissue of unfertilized plots varied greatly and was not related to the maize response to Zn fertilizer (r = 0.01; P = 0.98). With respect to soil Zn, a negative but nonsignificant relationship was found between maize response to Zn fertilizer and soil-test Zn (r = ?0.51; P = 0.16).  相似文献   

9.
A greenhouse experiment was carried out during the spring–summer 2009 to test the hypotheses that: (1) arbuscular‐mycorrhizal (AM) inoculation with a biofertilizer containing Glomus intraradices gives an advantage to overcome alkalinity problems, (2) mineral fertilization is more detrimental to AM development than organic fertilization on an equivalent nutrient basis. Arbuscular mycorrhizal (AM) and non‐AM of zucchini (Cucurbita pepo L.) plants were grown in sand culture with two pH levels in the nutrient solution (6.0 or 8.1) and two fertilization regimes (organic or mineral). The high‐pH nutrient solution had the same basic composition as the low‐pH solution, plus an additional 10 mM NaHCO3 and 0.5 g L–1 CaCO3. Increasing the concentration of NaHCO3 from 0 to 10 mM in the nutrient solution significantly decreased yield, plant growth, SPAD index, net assimilation of CO2 (ACO2), N, P, Ca, Mg, Fe, Mn, and Zn concentration in leaf tissue. The +AM plants under alkaline conditions had higher total, marketable yield and total biomass compared to –AM plants. The higher yield and biomass production in +AM plants seems to be related to the capacity of maintaining higher SPAD index, net ACO2, and to a better nutritional status (high P, K, Fe, Mn, and Zn and low Na accumulation) in response to bicarbonate stress with respect to –AM plants. The percentage root colonization was significantly higher in organic‐fertilized (35.7%) than in mineral‐fertilized plants (11.7%). Even though the AM root colonization was higher in organic‐fertilized plants, the highest yield and biomass production were observed in mineral‐fertilized plants due to the better nutritional status (higher N, P, Ca, and Mg), higher leaf area, SPAD index, and ACO2.  相似文献   

10.
No-tillage systems contribute to physical, chemical and biological changes in the soil. The effects of different tillage practices and phosphorus (P) fertilization on soil microbial biomass, activity, and community structure were studied during the maize growing season in a maize–soybean rotation established for 18 years in eastern Canada. Soil samples were collected at two depths (0–10 and 10–20 cm) under mouldboard plow (MP) and no-till (NT) management and fertilized with 0, 17.5, and 35 kg P ha?1. Results show that the duration of the growing season had a greater effect on soil microbiota properties than soil tillage or P fertilization at both soil depths. Seasonal fluctuations in soil microbial biomass carbon (SMB-C) and nitrogen (SMB-N), in dehydrogenase and alkaline phosphomonoesterase activities, and in total phospholipids fatty acid (PLFA) level, were greater under NT than MP management. The PLFA biomarkers separated treatments primarily by sampling date and secondly by tillage management, but were not significantly affected by P fertilization. The abundance of arbuscular mycorrhizal fungi (AMF; C16:1ω5) and fungi (C18:2ω6,9) was lower under NT than MP at the 10–20-cm soil depth in July. Phosphorus fertilization increased soil microbial biomass phosphorus (SMB-P) and Mehlich-3 extractable P, but had a limited impact on the other soil properties. In conclusion, soil environmental factors and tillage had a greater effect on microorganisms (biomass and activity) and community structure than P fertilization.  相似文献   

11.
A field experiment was carried out to evaluate the effectiveness of mycorrhizal inoculation with three arbuscular mycorrhizal (AM) fungi (Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge), and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe) and the addition of composted sewage sludge (SS) with respect to the establishment of Retama sphaerocarpa L. seedlings, in a semiarid Mediterranean area. Associated changes in soil chemical (nutrient content and labile carbon fractions), biochemical (enzyme activities), and physical (aggregate stability) parameters were observed. Six months after planting, both the addition of composted SS and the mycorrhizal‐inoculation treatments had increased total N content, available‐P content, and aggregate stability of the soil. Values of water‐soluble C and water‐soluble carbohydrates were increased only in the mycorrhizal‐inoculation treatments. Rhizosphere soil from the mycorrhizal‐inoculation treatments had significantly higher enzyme activities (dehydrogenase, protease‐BAA, acid phosphatase, and β‐glucosidase) than the control soil. In the short‐term, mycorrhizal inoculation with AM fungi was the most effective treatment for enhancement of shoot biomass, particularly with G. mosseae (about 146% higher with respect to control plants). The addition of the composted SS alone was sufficient to restore soil structural stability but was not effective with respect to improving the performance of R. sphaerocarpa plants.  相似文献   

12.
Rose-scented geranium (Pelargonium sp.) is a highly valued aromatic crop. Its growth is limited by soil salinity and sodicity stress. Arbuscular mycorrhizal (AM) fungus, phosphate-solubilizing bacteria (PSB), and P fertilizers may enhance the growth and secondary metabolism in geranium plants. In this context, a pot experiment was conducted to study the effects of PSB, AM fungi (Glomus intraradices), and P fertilizer on the yield, chemical composition of essential oil, and mineral element acquisition of geranium. The dry matter yield of shoot and essential oil yield, and mineral element (P, K, Ca, Mg, Na, Fe, Cu, and Zn) uptake in shoot tissues of geranium were significantly increased by the inoculation with AM fungi, co-inoculation with AM fungi and PSB, and P fertilization as compared to control. While the co-inoculation of geranium with AM fungi and PSB significantly enhanced the content of the monoterpenes such as citronellol, geraniol, geranial, and a sesquiterpene (10-epi-γ eudesmol), the P fertilization only enhanced the content of a sesquiterpene, 10-epi-γ eudesmol in the volatile oil. We conclude that the co-inoculation of PSB and AM fungi could be the best natural alternative to phosphate fertilizers to enhance the yield and quality of essential oil from geranium plants grown in sodic soils.  相似文献   

13.
A greenhouse pot experiment was conducted to investigate the effect of application of coal gangue (CG) at different rates (0, 5, 10, 20, and 50%) and inoculation with two arbuscular mycorrhizal (AM) fungi Glomus intraradices and Glomus mosseae, as mediating plant adaptation to soil amended with CG, on the nutrient content of forage maize. The results showed CG amendment at all levels and both AM fungi significantly improved the nutrient content of the plant as compared to control. In general, the highest shoot dry weight and nutrient phosphorus, iron, and zinc (P, Fe, and Zn) were obtained with 10% CG and G. intraradice treatments, which were 49.68, 30.49, 16.72, and 75.71% higher than those of the control plants, respectively. Therefore, 10% dose of CG may be considered as a suitable dose for amendment in the corn cultivation bed in terms of providing nutrient contents for this plant as well as AM fungi root colonization.  相似文献   

14.
黑土农田施加AM菌剂对大豆根际菌群结构的影响   总被引:4,自引:0,他引:4  
为揭示在黑土农田条件下施加丛枝菌根(AM)菌剂对作物根际微生物群落的影响,试验以大豆为研究对象,田间播种时分别施加根内球囊霉(Glomus intraradices,GI)和摩西球囊霉(Glomus mosseae,GM)两种AM菌剂,以单施化肥处理(F)和不施加AM菌剂及化肥处理(CK)作为对照,采用传统与现代分子生物学手段,研究大豆根际土壤中菌群结构及根系内AM真菌多样性。结果表明:GI、GM处理的大豆菌根侵染率最高达到78.3%和86.6%;GI、GM、F处理的大豆根际土壤中可培养细菌、真菌和放线菌三大菌群的数量与CK处理相比显著提高(p0.05)。分离大豆结荚期根际土壤中AM真菌孢子,共获得Acaulospora属真菌3种,Glomus属真菌7种,孢子密度均较低,G.intraradices和G.mosseae均为各自处理的优势种群。对大豆结荚期根系和根际土壤PCR-DGGE图谱条带的丰度及优势条带测序分析,结果表明根际土壤中的AM真菌菌群数明显高于根系中AM真菌的菌群数量,GI处理的大豆根际土壤中AM真菌丰度值最大,GM处理大豆根系里的AM真菌丰度值最大,F处理的根际土壤中总AM真菌的数量最少;施加AM菌剂处理的大豆根系及根际土壤中的优势菌群分别为外源施加的两种AM真菌。  相似文献   

15.

Purpose

Arbuscular mycorrhizal (AM) fungi are crucial for ecosystem functioning and can contribute to the formation and maintenance of soil aggregates through the exudation of glomalin by extraradical hyphae. Monitoring fertilization effects on AM fungi may help us to develop sound management strategies. The objectives of this study were to investigate the impacts of long-term fertilization on AM fungal parameters and to find out the key factor that affects the diversity and function of AM fungi.

Materials and methods

A long-term fertilization experiment established in a sandy loam soil at northern China has received continuous fertilization treatments for 21 years, including control; mineral fertilizers of NK, PK, NP, and NPK; organic manure (OM); and half organic manure N plus half mineral fertilizer N (1/2 OMN). Top soil samples (0–15 cm) from three individual plots per treatment were collected for the analysis of chemical properties and fungal parameters. The population size of soil AM fungi was determined by real-time PCR, and the community composition was analyzed using PCR-denature gradient gel electrophoresis (DGGE), cloning, and sequencing techniques. The external mycelium of AM fungi was assessed using the grid-line intersect method, and the glomalin-related soil protein (GRSP) was extracted with citrate solution using bovine serum albumin as a standard.

Results and discussion

Long-term fertilization significantly increased (P?<?0.05) soil organic C content, AM fungal population, species richness (R), Shannon–Wiener index (H), and GRSP content, except for the P-deficiency (NK) fertilization treatment. OM had a significantly greater (P?<?0.05) impact on AM fungal population and GRSP content compared to mineral fertilizers but significantly decreased the length of external mycelium compared to the control (P?<?0.05). Fertilization also changed the community composition of AM fungi, and the P-deficiency treatment again had the slightest influence. In addition, most species recovered from the DGGE profiles belonged to three genera, Glomus, Diversispora, and Archaeospora. Redundancy analysis showed that the population size and species richness of AM fungi and the GRSP content all significantly correlated to soil organic C content (P?<?0.05).

Conclusions

Long-term P-containing fertilization, especially the application of OM, greatly increased the population size, species richness, and species diversity of AM fungi, as well as the contents of GRSP and soil organic C, but tended to decrease the length of external mycelium, while the P-deficiency fertilization had no such effect, suggesting that P was the key factor to maintain soil fertility as well as soil AM fungal diversity in this sandy loam soil.  相似文献   

16.
The interactions between soil P availability and mycorrhizal fungi could potentially impact the activity of soil microorganisms and enzymes involved in nutrient turnover and cycling, and subsequent plant growth. However, much remains to be known of the possible interactions among phosphorus availability and mycorrhizal fungi in the rhizosphere of berseem clover (Trifolium alexandrinum L.) grown in calcareous soils deficient in available P. The primary purpose of this study was to look at the interaction between P availability and an arbuscular mycorrhizal (AM) fungus (Glomus intraradices) on the growth of berseem clover and on soil microbial activity associated with plant growth. Berseem clover was grown in P unfertilized soil (−P) and P fertilized soil (+P), inoculated (+M) and non-inoculated (−M) with the mycorrhizal fungus for 70 days under greenhouse conditions. We found an increased biomass production of shoot and root for AM fungus-inoculated berseem relative to uninoculated berseem grown at low P levels. AM fungus inoculation led to an improvement of P and N uptake. Soil respiration (SR) responded positively to P addition, but negatively to AM fungus inoculation, suggesting that P limitation may be responsible for stimulating effects on microbial activity by P fertilization. Results showed decreases in microbial respiration and biomass C in mycorrhizal treatments, implying that reduced availability of C may account for the suppressive effects of AM fungus inoculation on microbial activity. However, both AM fungus inoculation and P fertilization affected neither substrate-induced respiration (SIR) nor microbial metabolic quotients (qCO2). So, both P and C availability may concurrently limit the microbial activity in these calcareous P-fixing soils. On the contrary, the activities of alkaline phosphatase (ALP) and acid phosphatase (ACP) enzymes responded negatively to P addition, but positively to AM fungus inoculation, indicating that AM fungus may only contribute to plant P nutrition without a significant contribution from the total microbial activity in the rhizosphere. Therefore, the contrasting effects of P and AM fungus on the soil microbial activity and biomass C and enzymes may have a positive or negative feedback to C dynamics and decomposition, and subsequently to nutrient cycling in these calcareous soils. In conclusion, soil microbial activity depended on the addition of P and/or the presence of AM fungus, which could affect either P or C availability.  相似文献   

17.
Arbuscular mycorrhizal (AM) fungi are recognized for their positive effects on plant growth, playing an important role in plant P nutrition. We used C16:1cis11 and C18:1cis11 fatty acid methyl ester (FAME) biomarkers to monitor the dynamics of AM fungi during the reproductive stages of maize (Zea mays L.) grown at high yield in Nebraska, USA. Two fields with four different levels of P availability were sampled throughout the reproductive stages. Chambers, made of PVC enclosed mesh fabric to allow passage of roots and hyphae (+R) or hyphae alone (-R) and amended with either KH2PO4(+P) or distilled water (-P), were installed in the field at tasselling and removed after three, six and nine weeks. Our objectives were (i) to provide evidence for C allocation to AM fungi during the reproductive stages of high productivity maize and (ii) to link AM fungal growth dynamics with changes in soil P availability. We observed that initial AM FAME concentration was lower at sites with a high availability of P. During the reproductive growth of maize, AM biomarkers increased inside the chambers and were consistent with the biomarker increase observed in adjacent field soil. This confirms that there is C allocation from the plant to the symbiont during the reproductive stages of maize. We also observed a reduction in available P in +R and -R chambers. This observation implies that hyphae were as efficient as roots and hyphae in reducing the P concentration in chambers. These results demonstrate that AM fungi are active during the reproductive growth stages of maize and may benefit high productivity maize crops by facilitating P uptake.  相似文献   

18.
Yield decline in yam may not only be due to soil nutrient depletion but also to the activity of soil microflora. Arbuscular mycorrhizal (AM) symbiosis helps in plant nutrition but may be affected by the application of fertilizer. The effects of nitrogen (N), phosphorus (P), and potassium (K) fertilizer rates on the AM colonization, leaf nutrient concentrations, and tuber yields of eleven genotypes of Dioscorea rotundata were investigated at Ibadan, Nigeria. The soil was ferric luvisol. Eleven genotypes were selected from the previously conducted screening of 75 genotypes of D. rotundata for fertilizer response. Four application rates: 0, 200, 400, and 600 kg ha?1 of NPK 15-15-15 were applied in a split plot design with four replications. Fertilizer rate was the main plot and variety was the sub plot. Percentage AM colonization was significantly reduced at 600 kg ha?1 but not at lower rates when compared to zero rate and it was negatively correlated with leaf N, P, and zinc (Zn) concentrations. Leaf N concentrations were significantly increased at 200 kg ha?1 in five genotypes and at 600 kg ha?1 in two genotypes compared to zero application. Leaf P and K concentrations were decreased with the application of fertilizer in most of the genotypes. The NPK fertilizer of 15-15-15 at the rate of 200–400 kg ha?1 gave yield response in eight genotypes of D. rotundata, with minimal or no effect on their AM colonization when compared to zero application. Long term study on the effect of fertilizer application on AM symbiosis in yam is recommended.  相似文献   

19.
Different degrees of dependency on the activity of arbuscular mycorrhizal fungi (AMF) exist between native maize landraces and hybrids. In Los Tuxtlas, Mexico, the Popoluca people maintain a traditional polycultural land management with more than 15 native landraces of maize; however, it is not known whether the recent substitution of local maize for improved hybrids and fertilization has affected the integrity of the mycorrhizal symbiosis in these naturally phosphorus-poor systems. A greenhouse experiment was conducted to evaluate the response of four Popoluca maize landraces and the hybrid Texcoco to the presence of native AMF in conditions of low and medium P input (5 and 65 mg kg?1, respectively). After 120 days in both P treatments, the native landraces Black and Yellow presented higher colonization and had acquired more P in their shoot biomass than the hybrid. The moderate fertilization did not appear to have affected the integrity of the mycorrhizal symbiosis, since all of the maize types presented a positive mycorrhizal dependency (2–14 %). Under low P conditions, the Texcoco hybrid maize presented one of the highest mycorrhizal dependencies; however, unlike the local landraces, this was not reflected in a higher tissue P concentration. The results obtained indicate that the native maize Black was the best at capturing symbiotic and direct P, which makes this landrace an important genetic and cultural heritage for the Popoluca and for the world.  相似文献   

20.
The aim of this study was to evaluate the effects of lime, fertilizers, mycorrhizal fungi, and selected rhizobia strains on the growth of four woody legume species, Albizia lebbeck (L.) Benth., Enterolobium contortisiliquum (Vell.) Morong., Leucaena leucocephala (Lam.) de Wit, and Sesbania virgata (Cav.) Pers. in a low-fertility soil. The experiment was conducted under greenhouse condition in plastic pots (4 kg). Eight treatments and eight replicates per treatment were performed in a completely randomized design. The treatments were: (1) complete treatment (C) (NPK fertilization?+?micronutrients?+?liming?+?MR that is inoculation with mycorrhizal fungi and rhizobia); (2) C minus N (C???N that is as C without the addition of N); (3) C???N???M (as C???N without inoculation with arbuscular mycorrhizal fungi (AMF)); (4) C???N??R (as C???N without inoculation of rhizobia); (5) C???N???liming (as C???N without liming); (6) C???N???micro (as C???N without addition of micronutrients); (7) C???N???P (as C???N without addition of P); (8) control without fertilization, liming, and without inoculation with AMF and rhizobia. After 4 months of growth, we determined the yield of individual plants, nodulation, mycorrhizal colonization, and nutrient contents. Phosphorus was the most limiting nutrient for plant growth, followed by nitrogen. L. leucocephala and S. virgata had the most robust response to the addition of micronutrients and liming, showing an increase in nutrient content, plant height, and root and shoot dry matter. When compared to the single inoculation, the dual inoculation increased growth of all plants, except that of A. lebbeck, which did not respond to either rhizobia or mycorrhizal fungi inoculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号