首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为研究氮肥施用对玉米根际呼吸和土壤基础呼吸温度敏感性的影响,采用动态密闭气室红外CO2分析法,于2010年进行田间试验,该试验设4个处理:裸地不施氮肥(CK)、裸地施氮肥(CK-N)、种植玉米不施加氮肥(M)、种植玉米施加氮肥(M-N),观测玉米田土壤呼吸各组分的日变化规律,同时观测土壤温度、气温等环境因子。结果表明,不种植玉米处理(CK和CK-N)土壤呼吸速率(土壤基础呼吸)为0.57~1.23μmol·m-2·s-1,施加氮肥对土壤基础呼吸没有显著影响;种植玉米条件下,施氮处理(M-N)的季节平均土壤呼吸速率为3.14μmol·m-2·s-1,显著高于不施氮处理(M),增幅达31.9%。CK和CK-N处理的土壤基础呼吸温度敏感系数Q10分别为1.20、1.25,而不施氮和施氮条件下玉米根际呼吸的Q10值则分别为1.27、1.49。施加氮肥导致玉米根际呼吸温度敏感性明显增强(Q10值增大),而土壤基础呼吸的温度敏感性则无明显变化,两种效应的叠加使得种植玉米土壤的总呼吸速率温度敏感性明显增加。  相似文献   

2.
不同施肥处理对黑土土壤呼吸的影响   总被引:23,自引:0,他引:23  
基于中国科学院海伦生态实验站的长期定位试验,采用静态箱式法研究了玉米生长期间不同施肥处理对黑土土壤呼吸的影响。结果表明,在玉米生长期间,土壤呼吸速率表现出明显的季节性变化,分别在出苗后23、37、50、63、87、110 d出现峰值,其中最大峰值出现在出苗后第87天,其后土壤呼吸速率呈下降趋势,直到玉米收获,而根际呼吸速率的季节性变化规律与土壤呼吸相似,土体呼吸速率则主要受气温变化影响;玉米生长显著影响土壤呼吸,土壤呼吸速率的变化基本与玉米生长规律相一致,随生长而增加,随衰老而减小;施肥对土壤呼吸速率、根际呼吸速率有明显的影响,但对土体呼吸速率影响较小,从整个玉米生长期来看,NPKOM处理的土壤呼吸速率和根际呼吸速率最高,其中NPKOM处理土壤呼吸速率为C 27.5~474 mg m-2h-1,NPK处理和NP处理变化范围相近,分别为C 25.9~339 mg m-2h-1和C 29.5~358 mg m-2h-1,NK处理与CK处理变化范围分别为C 28.4~208 mg m-2h-1和C 22.1~184 mg m-2h-1;施肥对土壤呼吸量和根际呼吸量有显著的影响,表现为NPKOM>NPK>NP>CK>NK;在整个玉米生育期中,土壤呼吸累积量在拔节孕穗期和乳熟期出现两个峰值,表现为双峰曲线的变化规律,而土体呼吸累积量只在拔节孕穗期出现峰值,呈抛物线型,根际呼吸量在苗期最低,乳熟期最高,乳熟期后,根际呼吸量下降。  相似文献   

3.
玉米生长中的土壤呼吸及其受氮肥施用的影响   总被引:33,自引:2,他引:33       下载免费PDF全文
运用盆栽试验研究了玉米生长和施氮水平(N 150 mg kg-1和300 mg kg-1)对土壤呼吸的影响。结果表明种植玉米的土壤呼吸速率(C)的变化范围为19. 6 ~ 762. 1 mg m-2h-1,而裸土为4. 3 ~ 36mg m-2h-1。在玉米生长的条件下,苗期土壤呼吸最低,73%的土壤呼吸分配在拔节孕穗期和成熟期。玉米生长中各阶段根际呼吸对土壤呼吸的贡献在58%~98%,苗期最小。施氮对裸土呼吸速率无显著影响;在玉米生长的条件下,施用高氮的土壤呼吸比施用低氮高28%,且两种施氮水平下土壤呼吸的差异主要发生在生长中后期。玉米生长的条件下土壤呼吸与温度的相关性不显著,而裸土下土壤呼吸速率与气温、表土温度、5 cm土壤温度均呈极显著的相关性;裸土施用高氮下的土壤呼吸与温度的相关性大于低氮。总之,玉米生长和土壤施氮不仅影响土壤呼吸速率和呼吸量,也影响土壤呼吸在各生长阶段的分配,还影响到土壤呼吸与温度的关系。  相似文献   

4.
通过田间试验,采用静态箱-气相色谱法测定CO2排放通量,研究红外加热增加叶面温度对土壤、大豆-土壤系统CO2排放的影响。结果表明,红外加热叶面增温2℃促进了土壤CO2的排放,在鼓粒-成熟期对照与增温的排放通量分别为202.09±28.75、378.34±156.17mg·m-2·h-1,增温处理使CO2排放通量增加了87.21%,但未达到显著水平;增温使土壤CO2累积排放量显著增加了39.96%。对照和增温的大豆-土壤系统呼吸的气温敏感性系数Q10值分别为0.68和2.54,土壤呼吸的土壤温度Q10值分别为4.22和1.68。研究表明,增温能促进土壤CO2排放,增加大豆-土壤系统呼吸的Q10值,降低土壤呼吸的Q10值。研究结果可为气候变化条件下估算区域农田温室气体排放提供一定的科学依据。  相似文献   

5.
耕作措施对华北农田CO_2排放影响及水热关系分析   总被引:2,自引:3,他引:2  
为探讨不同耕作措施对农田土壤呼吸排放的影响及其与土壤温度、水分之间的关系,该研究利用长期定位试验研究翻耕、旋耕、免耕3种耕作措施下冬小麦、夏玉米生育期农田CO2的排放通量及其季节变化规律,并通过农田土壤温度、水分对CO2的排放通量进行回归统计分析.结果表明:不同耕作措施下农田CO2排放通量具有明显的季节排放规律,冬小麦、夏玉米生育期农田CO2排放通量:翻耕>旋耕>免耕,且处理间差异都达到显著或极显著水平.不同耕作措施对农田土壤温度及土壤含水率具有显著的影响,免耕条件下农田各层土壤温度最低,冬小麦季免耕农田土壤水分含量高于其他两处理.各处理条件下农田CO2排放通量与土壤温度具有显著的相关性,其中翻耕处理的CO2排放通量与10 cm土温相关性最高,旋耕和免耕则均与20 cm土温相关性最高.当土壤温度高于10℃时CO2排放通量与5 cm土壤含水率具有显著的相关性,此时土壤水分成为CO2排放的主要影响因素.  相似文献   

6.
基于DNDC模型的东北地区春玉米农田固碳减排措施研究   总被引:6,自引:1,他引:5  
春玉米是我国东北地区主要粮食作物,但由于连年耕作和氮肥的高投入,春玉米农田也可能成为重要的温室气体排放源。因此,通过优化田间管理措施在保证作物产量的同时实现固碳减排,对于春玉米种植系统的可持续发展具有重要意义。过程模型(Denitrification Decomposition, DNDC)是评估固碳减排措施的有效工具,本研究在对DNDC模型进行验证的基础上,应用模型研究不同施氮和秸秆还田措施对东北地区春玉米农田固碳和氧化亚氮(N2O)排放的长期综合影响。模型验证结果表明,DNDC模拟的不同处理下土壤呼吸季节总量、 N2O排放季节总量和春玉米产量与田间观测结果较一致;同时模型也能较好地模拟不同处理下土壤呼吸和N2O排放季节变化动态。这表明DNDC模型能较理想地模拟不同施氮和秸秆还田措施对春玉米农田土壤呼吸、 N2O排放和作物产量的影响。利用模型综合分析不同管理情景对产量和土壤固碳减排的长期影响,结果表明: 1)与当地农民习惯施肥相比,优化施氮措施不会明显影响作物产量,能减少N2O排放,且对土壤固碳影响很小,因而能降低温室气体净排放,但净排放降低幅度有限(8%~13%); 2)在优化施氮措施的同时秸秆还田能在保障供试农田春玉米产量的同时大幅度减少春玉米种植系统温室气体净排放,甚至可能将供试农田由温室气体排放源转变为温室气体吸收汇。本研究结果可为优化管理措施实现春玉米种植系统固碳减排提供科学依据。  相似文献   

7.
黄淮海平原地区夏玉米农田土壤呼吸的动态研究   总被引:30,自引:1,他引:30  
本文通过对黄淮海平原地区玉米生长季土壤呼吸的测定表明:该地区土壤呼吸日变化呈现单峰曲线;土壤呼吸季节变化大体呈现随温度变化的趋势,最大值出现在8月10日左右;土壤呼吸受5cm地温的影响最大,达到极显著水平。施有机肥对土壤呼吸影响较大,氮磷配施也增加了土壤呼吸量,免耕比耕翻有较少的土壤呼吸量。运用DNDC模型模拟土壤呼吸变化趋势和土壤呼吸变化通量均与田间实测的比较接近,可以用来模拟分析黄淮海平原地区农业土壤碳氮的循环。  相似文献   

8.
黄淮海平原地区夏玉米农田土壤呼吸的动态研究   总被引:19,自引:0,他引:19  
本文通过对黄淮海平原地区玉米生长季土壤呼吸的测定表明:该地区土壤呼吸日变化呈现单峰曲线;土壤呼吸季节变化大体呈现随温度变化的趋势,最大值出现在8月10日左右;土壤呼吸受5cm地温的影响最大,达到极显著水平。施有机肥对土壤呼吸影响较大,氮磷配施也增加了土壤呼吸量,免耕比耕翻有较少的土壤呼吸量。运用DNDC模型模拟土壤呼吸变化趋势和土壤呼吸变化通量均与田间实测的比较接近,可以用来模拟分析黄淮海平原地区农业土壤碳氮的循环。  相似文献   

9.
采用静态箱/气相色谱法对华北平原冬小麦/夏玉米轮作田土壤N2O通量进行周年观测,研究轮作田土壤N2O源的大小及其变化规律,分析土壤温度、水分、有效氮含量对土壤N2O通量的影响。结果表明,土壤N2O通量季节变化明显且变化主要是由施肥引起的。麦田土壤N2O通量变化范围为-36~835μg.m-2.h-1,玉米田为-1~263μg.m-2.h-1,麦季土壤N2O排放强度(80.5μg.m-2.h-1)低于玉米季(90.5μg.m-2.h-1)。轮作田土壤N2O年总排放量为6.9kg.hm-2,麦季(4.2kg.hm-2)高于玉米季(2.7kg.hm-2)。土壤N2O通量随地温升高呈指数增长(通过0.01显著水平检验),季节Q10值为2.2,单日的Q10值在3.8~4.5;作物主要生长季(4-10月)土壤N2O通量随土壤中NH4 -N含量的增加呈线性增长(通过0.05显著水平检验),而与土壤含水量和NO3--N含量均未表现出明显数量关系。在作物主要生长季,上述各因子对土壤N2O通量的综合影响极显著(通过0.01显著水平检验),其中土壤含水量和NH4 -N含量是主导因素。  相似文献   

10.
长期施肥下红壤旱地土壤CO2排放及碳平衡特征   总被引:2,自引:0,他引:2  
在国家肥力网红壤旱地长期定位试验地上,采用静态箱/气相色谱法测定土壤CO2排放速率,同时利用根去除法区分根系对土壤呼吸的贡献,通过计算净生态系统生产力(NEP),判断长期不同施肥下红壤旱地农田碳汇强度。结果表明,小麦、玉米生长季各处理的土壤和土体呼吸速率随着作物生长、温度升高均呈现明显的季节变化规律;玉米生长季土壤和土体累积呼吸量大于小麦生长季,小麦、玉米生长季均以NPKM处理土壤和土体呼吸累积呼吸量最大,且显著高于其它处理(P0.05),NP和NPK处理次之,CK和NK处理最小(P0.05);小麦、玉米生长季各处理根际呼吸占土壤呼吸的比例分别为7.6 %~17.4 %、4.7%~16.6 %,均以NPKM处理根际呼吸贡献率最大;小麦季NPKM处理、玉米季CK和NPKM处理的NEP值为负,是大气CO2的汇,且NPKM处理的净初级生产力与土壤呼吸的比值(NPP/Rs)最大,其它处理NEP值均为正,是大气CO2的源。有机无机肥配施(NPKM)相比其它处理具有较强的碳汇功能,是红壤旱地比较合理的施肥措施。  相似文献   

11.
12.
Summary Freezing was investigated as a means of preserving samples in soil respiration studies. Concentrations of CO2 in the headspaces of incubation bottles before and after freezing, and respiration rates derived from fresh or frozen samples were not significantly different over periods of up to 30 days. Freezing permits many samples to be assayed for respiratory activity at one time, increases the accuracy of the incubation period and defers the need to analyse headspace concentrations of CO2 until it is convenient.  相似文献   

13.
According to Thornley, J.H.M. (Nature, 227, 304-305, 1970) and McCree, K.J. (Crop Sci., 14, 509-514, 1974), respiratory substances are used only for maintenance respiration when plants are exposed to the dark conditions for a long period of time (more than 2 d). The maintenance respiration is also affected by the nitrogen status in plant, because protein turnover is one of the major energy consumption sources under maintenance process. Therefore, to determine whether respiratory substances are used only for maintenance, 14C- [U] -sucrose or a mixture of 14C- [U] -amino acids was introduced to rice and soybean plants from the tip of leaf. Plants were grown under natural light conditions and under dark conditions for 4 d with 2 nitrogen levels (0.2 and 0.02 g N L-1 soil). After the introduction of the 14C-compounds, the 14CO2 respiratory rate was monitored during 24 h, then the 14C distribution to organic acids, free amino acids, proteins, sugars, and polysaccharides was analyzed. Following results were obtained.

1. When 14C-[U]-sucrose or a mixture of 14C-[U]-amino acids was introduced to the leaf of rice and soybean plants, the 14C release rate by respiration was not affected by the nitrogen and light treatments except when 14C-sucrose was introduced to soybean in the low N plot. The 14C release rate from the 14C-compounds introduced into leaf in the low N plot of soybean was higher in the dark treatment than in the natural light treatment.

2. 14C-distribution ratio after introduction of 14C-sucrose and a mixture of 14C-amino acids to the leaf was not significantly affected by the nitrogen treatment. When 14C-sucrose was introduced to rice leaf, the 14C-distribution ratio to sugars and proteins was higher and that to polysaccharides was lower in the natural light treatment than in the dark treatment. The 14C-distribution ratio was less aifected by the light or nitrogen treatment in case of soybean leaf.

3. Although it was assumed that maintenance metabolism was dominant in the lower leaf (counted from the bottom), the 14C-distribution ratio was similar to that of upper leaf.

4. Nitrogen content of leaf was not different between rice and soybean in the high N treatment, unlike the 14C-distribution ratio. In rice, the nitrogen content of leaf was about twice as high in the high N treatment compared with the low N treatment, while the 14C-distribution ratio in leaf was stable regardless of nitrogen treatment.

Based on the above results, it is suggested that since the 14C-distribution ratio into each chemical component did not change regardless of light treatment, nitrogen treatment, or leaf age, It was impossible to separate respiration into two components, such as growth and maintenance respiration. The results also indicated that current photosynthates and storage substances were not used only for growth and maintenance, respectively.  相似文献   

14.
腾格里沙漠植被重建对土壤呼吸的影响   总被引:2,自引:0,他引:2  
植被重建是防止和控制沙漠化的有效措施之一。为探讨腾格里沙漠植被重建对土壤呼吸的影响,利用Li-6400-09土壤呼吸室于2007年观测了1989年建立的植被重建区和流沙区土壤呼吸差异,并采用根系隔离法区分了植被重建区的土壤基础呼吸和根际呼吸。结果表明,植被重建18a显著影响了该区土壤CO2的释放过程,总土壤呼吸速率由流沙区的CO20.107±0.008μmolm-2s-1显著增加到植被区CO20.483±0.033μmolm-2s-1,而且出现了较为明显的季节波动。植被重建不但导致根际呼吸速率增加,而且影响了土壤基础呼吸速率。此外,植被重建区灌木的缀块状分布格局和养分的空间异质性导致了土壤呼吸的空间差异。  相似文献   

15.
Temporal changes in soil CO2‐efflux rate was measured by a canopy‐gap method in a Populus euphratica forest located at the both sides of Tarim River banks (W China). Soil CO2‐efflux rates in situ were correlated with key soil biotic (e.g., fungal, bacterial, and actinomycetes populations) and abiotic (e.g., soil moisture, temperature, pH, organic C) variables. Two kinds of measurement plots were selected: one under the crown of a living Populus euphratica tree and the other under a dead standing Populus euphratica tree. Diurnal variations in soil respiration in these plots were measured both before and after the occurrence of the first frost. Soil respiration of the dead standing Populus euphratica (Rd) was assumed to be a measure of heterotrophic respiration rate (Rh), and root respiration rate (Rr) was estimated as the difference between soil respiration under living (Rl) minus soil respiration under dead standing Populus euphratica. Daily variation of Rr contribution to the total soil respiration in Populus euphratica forests were analyzed before and after the frost. The contribution of root respiration to total soil respiration before and after frost varied from 22% to 45% (mean 30%) and from 38% to 50% (mean 45%), respectively. In addition, Rh was significantly correlated with soil temperature both before and after frost. In contrast, Rr was not significantly correlated with soil temperature. Change in Q10 of Rr was different from that of Rh from before the frost to after the frost. Variation of Q10 of Rr from before the frost to after the frost was larger than that of Q10 of Rh. Thus, the results indicate that different soil respiration models are needed for Rr and Rh because different factors control the two components of soil respiration.  相似文献   

16.
Partitioning the root‐derived CO2 efflux from soil (frequently termed rhizosphere respiration) into actual root respiration (RR, respiration by autotrophs) and rhizomicrobial respiration (RMR, respiration by heterotrophs) is crucial in determining the carbon (C) and energy balance of plants and soils. It is also essential in quantifying C sources for rhizosphere microorganisms and in estimation of the C contributing to turnover of soil organic matter (SOM), as well as in linking net ecosystem production (NEP) and net ecosystem exchange (NEE). Artificial‐environment studies such as hydroponics or sterile soils yield unrealistic C‐partitioning values and are unsuitable for predicting C flows under natural conditions. To date, several methods have been suggested to separate RR and RMR in nonsterile soils: 1) component integration, 2) substrate‐induced respiration, 3) respiration by excised roots, 4) comparison of root‐derived 14CO2 with rhizomicrobial 14CO2 after continuous labeling, 5) isotope dilution, 6) model‐rhizodeposition technique, 7) modeling of 14CO2 efflux dynamics, 8) exudate elution, and 9) δ13C of CO2 and microbial biomass. This review describes the basic principles and assumptions of these methods and compares the results obtained in the original papers and in studies designed to compare the methods. The component‐integration method leads to strong disturbance and non‐proportional increase of CO2 efflux from different sources. Four of the methods (5 to 8) are based on the pulse labeling of shoots in a 14CO2 atmosphere and subsequent monitoring of 14CO2 efflux from the soil. The model‐rhizodeposition technique and exudate‐elution procedure strongly overestimate RR and underestimate RMR. Despite alternative assumptions, isotope dilution and modeling of 14CO2‐efflux dynamics yield similar results. In crops and grasses (wheat, ryegrass, barley, buckwheat, maize, meadow fescue, prairie grasses), RR amounts on average to 48±5% and RMR to 52±5% of root‐derived CO2. The method based on the 13C isotopic signature of CO2 and microbial biomass is the most promising approach, especially when the plants are continuously labeled in 13CO2 or 14CO2 atmosphere. The “difference” methods, i.e., trenching, tree girdling, root‐exclusion techniques, etc., are not suitable for separating the respiration by autotrophic and heterotrophic organisms because the difference methods neglect the importance of microbial respiration of rhizodeposits.  相似文献   

17.
Summary The influence of soil moisture on denitrification and aerobic respiration was studied in a mull rendzina soil. N2O formation did not occur below –30 kPa matric water potential (m), above 0.28 air-filled porosity (a) and below 0.55 fractional water saturation (v/PV volumetric water content/total pore volume). Half maximum rates of N2O production and O2 consumption were obtained between m = –1.2 and –12 kPa,a = 0.05 and 0.23, and v/PV = 0.63 and 0.92. No oxygen consumption was measured at v/PC 1.17. O2 uptake and denitrification occurred simultaneously arounda = 0.10 (at m = –10 kPa and v/PV = 0.81) at mean rates of 3.5 µl O2 and 0.3 µl N2 h–1g–1 soil. Undisturbed, field-moist soil saturated with nitrate solution showed constant consumption and production rates, respectively, of 0.6 µl O and 0.22 µl N2O h–1g–1 soil, whereas the rates of air-dried remoistened soil were at least 10 times these values. The highest rates obtained in remoistened soil amended with glucose and nitrate were 130 µl O2 and 27 µl N2O h–1g–1 soil.  相似文献   

18.
Soil respiration is a vital process in all terrestrial ecosystems, through which the soil releases carbon dioxide (CO2) into the atmosphere at an estimated annual rate of 68-101 Pg carbon, making it the second highest terrestrial contributor to carbon fluxes. Since soil respiration consists of autotrophic and heterotrophic constituents, methods for accurately determining the contribution of each constituent to the total soil respiration are critical for understanding their differential responses to environmental factors and aiding the reduction of CO2 emissions. Owing to its low cost and simplicity, the root exclusion (RE) technique, combined with manual chamber measurements, is frequently used in field studies of soil respiration partitioning. Nevertheless, RE treatments alter the soil environment, leading to potential bias in respiration measurements. This review aims to elucidate the current understanding of RE, i.e., trenching (Tr) and deep collar (DC) insertion techniques, by examining soil respiration partitioning studies performed in several ecosystems. Additionally, we discuss methodological considerations when using RE and the combinations of RE with stable isotopic and modeling approaches. Finally, future research directions for improving the Tr and DC insertion methods in RE are suggested.  相似文献   

19.
Total and root-severed soil respiration rates for five plots set up 50 m apart in a Betula ermanii Cham.-dark coniferous forest ecotone on a north-facing slope of the Changbai Mountains, China, were measured to evaluate the seasonal variations of soil respiration, to assess the effect of soil temperature and water content on soil respiration, and to estimate the relative contributions of root respiration to the total soil respiration. PVC cylinders in each of 5 forest types of a B. ermanii-dark coniferous forest ecotone were used to measure soil respirations both inside and outside of the cylinders. The contribution of roots to the total soil respiration rates ranged from 12.5% to 54.6%. The mean contribution of roots for the different plots varied with the season, increasing from 32.5% on June 26 to 36.6% on August 3 and to 41.8% on October 14.In addition, there existed a significant (P 〈 0.01) logarithmic relationship between total soil respiration rate and soil temperature at 5 cm soil depth. Also, a similar trend was observed for the soil respiration and soil water content at the surface (0-5 cm) during the same period of time.  相似文献   

20.
连作对杨树人工林土壤呼吸及各组分的影响   总被引:1,自引:0,他引:1  
土壤呼吸是整个陆地生态系统碳循环的关键过程之一.以山东大汶河沿岸沙地不同连作代数杨树人工林(1代林、2代林和3代林)为研究对象,利用ACE自动土壤呼吸监测系统(UK),对3种林分一个生长季(4-10月)的土壤呼吸速率及温湿度进行测定,同时采用壕沟法对3种林分的土壤呼吸进行组分分离,并对土壤呼吸及各组分与土壤温湿度的关系进行模型模拟.结果表明:3种林分的土壤呼吸速率(RS)、自养呼吸速率(RA)和异养呼吸速率(RH)的月变化均为明显的单峰格局;生长季内,3种林分RA贡献率月差异明显,平均贡献率为40.04%;RS及其组分与5 cm处土壤温度存在显著指数关系,与土壤体积含水量没有相关性,土壤温度与土壤体积含水量的复合模型对土壤呼吸速率变化解释能力为80% ~ 94%;3种林分生长季平均土壤呼吸速率分别为3.12、3.08和2.66μmol/(m2·s),3代林RS和RH均显著低于1代林和2代林.连作导致杨树人工林地土壤呼吸速率减弱,土壤理化性质和微生物量的差异是导致林分间土壤呼吸速率差异的主要原因.揭示连作对杨树人工林土壤呼吸及各组分的影响,以及作用机制,为全面探究杨树人工林连作效应及土壤碳循环,提供数据支撑.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号