首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of salinity on germination,seedling growth,and yield of melons   总被引:3,自引:0,他引:3  
Summary Four melon (Cucumis melo L.) cultivars were tested for salt tolerance at germination, seedling growth stages, and plant maturation. Noy Amid was the most tolerant during germination, achieving 56% germination in 15,000 mg/l NaCl solution. However, this cultivar and Eshkolit Ha 'Amaqim were relatively sensitive during the first 4 days' growth of the radicle and the hypocotyl, and the first 3 weeks' development of the seedling. Their yields were reduced under saline as compared with non-saline field conditions. In contrast, Honey Dew and Rochet had little or no germination in 15,000 mg/l NaCl but showed salt tolerance during seedling growth stages. Yield of Honey Dew was unaffected by saline field conditions, and that of Rochet was not significantly reduced from the non-saline control. Thus, selection for salt tolerance in melons appears feasible during early vegetative growth stages but not during germination.Contribution No. 1032-E, 1984 series, from the Agricultural Research Organization, Bet Dagan, Israel  相似文献   

2.
Summary Correlations between spring rainfall and grain yield were determined for four winter wheat cultivars (Triticum aestivum L. em. Thell. Triumph, Wichita, Concho, and Triumph 64), grown between 1950 and 1977 under dryland conditions at Stillwater, in the East Central region of Oklahoma, and at Goodwell, located in the drier, western part of the state.At Stillwater, all but one of the cultivars exhibited maximum positive correlations between rainfall and yield in the fourth week of March, when stem-extension occurs. Smaller positive correlations were observed in mid-April when flowering. Results at Goodwell were similar except that the correlations between rainfall and yield were lower and occurred earlier than at Stillwater and showed a less marked secondary peak at flowering. These results agree with those of experiments in which irrigation has been applied at different growth stages of wheat, and have shown that both stem-extension and flowering are critical stages of water requirement. As the results of this climatic study show that the peak correlations between rainfall and yield occur at these same two stages, it is suggested that long-term climatic data could be used to determine optimum timing for irrigation of wheat.Such an approach should save water and energy by limiting irrigation to those times when analysis of local records demonstrates the maximum positive correlation between rainfall and yield.  相似文献   

3.
Summary Water potential, osmotic potential, turgor potential, and stomatal resistance were measured on leaves of a drought-sensitive (Ponca) and a drought-resistant (KanKing) cultivar of winter wheat (Triticum aestivum L.) treated with foliar applications of NaCl to determine the effect of salt on the water status of two cultivars varying in drought resistance. Plants were grown under controlled conditions in soil, which was watered or allowed to dry. Water potential of the soil was determined. Given an ample water supply, water potential and osmotic potential of leaves of both cultivars with NaCl were lower, and stomatal resistance was higher, than without NaCl. The combination of salt and drought killed both cultivars, but the turgor potential of the drought-sensitive cultivar with the two stresses reached zero before that of the drought-resistant cultivar. Under limited water supply, both cultivars with foliar applications of salt extracted more water from soil than they did with no salt, and the drought-resistant cultivar took up more water than did the drought-sensitive cultivar. The drought-resistant cultivar with foliar NaCl maintained a higher turgor potential and extracted more water from the drying soil than did the drought-sensitive cultivar with foliar NaCl, suggesting that the drought-resistant cultivar was also more salt tolerant.  相似文献   

4.
Summary Water application pattern, WAP, is one of the most important factors that determine the instantaneous and the cumulative application rates of moving irrigation machines. The mathematical background of a procedure to predict and design the WAP of moving irrigation machines is introduced. It includes a mathematical analysis of the effect of pressure head, height and spacing between emitters on the WAP, and a nomograph that presents this analysis graphically and illustrates the design procedure of the application pattern of irrigation machines.Abbreviations P()a water application rate at a normalized radial distance from the emitter [m/s] - ka number of linear segments needed to represent the pattern - s/Ra normalized radial distance from the emitter - Ra wetted radius [m] - sa radial distance from the emitter [m] - n j n i/ha normalized water application rate at point - j, ha maximum water application rate [m/s] n j water application rate at point j [m/s] - j =m j/Ra normalized radial distance of point j from emitter - m ja radial distance of point - ja from emitter [m], CWAP - (x)a Cumulative Water Application Pattern: amount of water per unit area applied at a distance - xa from the travel path of the emitter [m3/m2] - xa distance from the travel path of the emitter [m] - T xa time of application at a distance - xa from the travel path of the emitter [s] - va velocity of propagation of the machine [m/s] - k 1a the outmost linear segment that its radial distance from the emitter - m k1a is smaller than the distance of the travel path from the emitter - x, T ja time at which the - j tha linear segment (ring) stops influencing the point located at a distance - xa from the emitter - 1, 2, 3a dimensionless numbers derived by dimensional analysis - ua water jet velocity [m/s] - ga gravity acceleration [m/s2] - da nozzle diameter [m], v kinematic viscosity [m2/s] - Ha emitters height [m] - , a regression analysis coefficients - Paa Pattern fit coefficient for water application - F(r)a normalized desired water application pattern [1/m] - f(r)a normalized actual water application pattern [1/m] - La common distance on which - F(r) and f(r)a are defined [m], SP spacing interval between emitters [m] - DSa dimensionless spacing interval between emitters - DSa variation of dimensionless spacing interval - Paa variation of Pa coefficient - Pa pressure head [kPa]  相似文献   

5.
This article examines trends in the understandingof and policies toward farmer participation in irrigationmanagement over the past 20 years, with special attention toexperiences with induced participation and management transferprograms in the Philippines, Sri Lanka, Pakistan, Senegal,Columbia Basin USA, and Mexico. Key lessons relate to the valueof social organizers as catalysts; the role of the irrigationagency as partner; and the enabling conditions for participation.As levels of income and infrastructure rise, we can expect moreformal organizations that enable farmers to deal with bankaccounts, service contracts, water rights, water markets, andadvanced technology in irrigation systems. The impact ofparticipation on irrigation performance needs to be evaluated notjust in terms of reductions in government costs, but by whetherimprovement in physical structures and farmers control overwater are great enough to offset the farmers costs ofparticipating.  相似文献   

6.
Summary Experiments were conducted in lysimeters (1985) and field plots (1986) to evaluate changes in soil moisture and salinity status following irrigations with different blends of a saline water, SW (ECiw = 6.4 dS/m) and non-saline water, NSW (0.3 dS/m) and their effects on the growth and yield of Mungbean (Vigna radiata L. Wilczek). Normalised to the yield of the treatment receiving NSW (100%), relative seed yields (RY) declined to 73, 11 and 3%, respectively, for the treatments receiving SWNSW blends of 12 (2.5 dS/m), 21 (4.7 dS/m) and SW as such. RY increased to 64 and 74% when NSW was substituted for presowing irrigation and 21 SWNSW blend and SW, respectively were used for postsowing irrigations. Due to moderating effect of rainfall (9.8 cm) during the growing season of 1986, valus of RY obtained with 12 and 21 SWNSW blends were 81 and 42% and increased to 96 and 82% when these waters were applied after presowing irrigation with NSW. Irrigation at presowing with non-saline water leached the salts of shallow depths leading to better germination and initial growth. In addition, plants were able to extract greater amounts of water even from deeper soil layers. The RY of Mungbean was related to the weighted time averaged salinity of the 0–120 cm soil depth (ECe) by RY = 100-20.7 (ECe-1.8). The study indicated that applying NSW for presowing irrigation to Mungbean is more beneficial than using it after blending with saline water.  相似文献   

7.
The steady-state drainage equation ofHooghoudt (1940) has adrawback that tables for the determination of the so-calledequivalentlayer, de are needed. These calculations arecumbersome as de is dependenton the unknown spacing. Moreover, additional head islost due to theconvergence of stream lines towards the finite numberof perforations withinthe pipe wall. Therefore, corrections are required byreplacing the actualdrain radius by its effective radius. The designers inEgypt assume that thedepth of impermeable layer is infinity which resultsin an over estimationof drain spacing that will affect the ability of thedrainage system.Van der Molen and Wesseling (1991) have developed aseries solution toreplace the Hooghoudts approximation method for theequivalent depth by anexact solution. A comparison between this solution andthose of Lovell andYoungs (1984) and Hooghoudt (1940) showed that theexact solution proved tobe very accurate and efficient solution. The mainobjective of this study isto verify an accurate depth of the impermeable barrierand an effectiveradius of drain pipes which should be used in thedesign process using theexact solution.A field investigation was conducted in a study area of33,138 ha in theNorthern Delta of Egypt within Daqahliya Governorate.The results indicatethat a 5 m depth instead of infinity for theimpermeable layer in Nile Deltaand an effective radius of 90 mm should be used in thedesign process. Theuse of the exact solution for equivalent depth is acrucial issue especiallywith the high rate of on-going drainage projects inEgypt.  相似文献   

8.
The complexity of physical phenomena in furrow irrigation,where numerous parameters vary with time and space, makeempirical models more operative than mechanistic models forimproving irrigation efficiency. In addition, when theseempirical models are well adapted for real-time calibration onadvance trajectory, they can be considered an efficient toolto predict irrigation performance.In the first section of this paper, the selection of operativefurrow irrigation modelling for real-time applications isdiscussed. Models derived from Horton and linear infiltrationequations through the water balance equation (WBE) arepreferred to those derived from the 2-term Philips equationand to the solution of WBE involving both the power advancefunction and Kostiakovs extended equation.The second section shows that simplified analytical modellingoptions can be added to the basic advance-infiltration modelfor improving irrigation efficiency. The modelling optiondeveloped in this paper concerns the prediction of cutoff timeand irrigation performance for closed-end furrows (CEF).The simplified analytical model for CEF based on the massconservation principle is successfully compared to field testsand numerical simulations.  相似文献   

9.
A field experiment to evaluate accurate cost and time efficient methodologies for determining soil hydraulic properties was done at the NIAB Research Station at Faisalabad, Pakistan. The experiment was performed on a freely draining loamy soil. This soil type is representative of 75% of the topsoil in a tile drainage area known as the Fourth Drainage Project. Redistribution of water was monitored at five locations, for seven depths, following a steady state infiltration for prolonged time. The data were analyzed with Darcian flow analysis, three simplified methods, and two parameter optimization programs to calculate unsaturated hydraulic conductivity. The Darcian flow analysis was used as a reference against which the simplified methods were compared. Two simplified methods produced satisfactory results with less effort. The drawback is that the simplified methods alone do not provide enough information for use in simulation models. The advantage of the two optimization programs — SFIT and RETC — is that they are based on a continuous function which describes complete h() and K() curves. This is a requirement for computer simulation of salt and water movement in the unsaturated soil. The results of the optimizations were evaluated by their correspondence to field measurements and to laboratory measurements and by their ability to simulate soil water flow. Both programs fit the observed field data well, but only the SFIT optimized parameters were suitable for soil water flow simulations.Abbreviations IWASRI International Waterlogging and Salinity Research Institute - NRAP Netherlands Research Assistance Project - NIAB Nuclear Institute for Agriculture and Biology - SSP Soil Survey of Pakistan Revised paper from Field determination of soil hydraulic properties presented in ICID, CIID IDW5, Lahore, Pakistan (1–55 — 1–64).  相似文献   

10.
The findings of a study of factors influencing the uptake of pressurised irrigation technologies by smallholders in developing countries are presented. The paper reviews the physical and technical characteristics that determine their suitability for use by smallholders. It also identifies a range of pre-conditions relating to water availability, institutional support and economic opportunity that must be satisfied before smallholders will adopt even low-technology pressurised irrigation systems.The review demonstrates that where physical, economic and institutional conditions are right some forms of pressurised modern irrigation technology permit smallholder irrigation of high value crops where surface irrigation would be inappropriate. However, the paper warns against the danger of wide-scale promotion of such technologies without considering the issues of institutional and technical support. Where pressurised systems are promoted to increase water use efficiency it is essential that they be well designed, installed and operated for savings to be realised.  相似文献   

11.
Summary The interaction of different K status of barley plants (Hordeum vulgare, L.) and water stress on yield and water relations was studied. The plants which were cultivated outdoor in pots and supplied with 0.8, 5.0, 8.5 or 12.0 g K per pot, as KCl, were subjected to increased soil water stress during the early grain filling stage.The water content of the flag leaf tissue was significantly increased from 3.1 to 4.1 g H2O/g D.M. (dry matter) by K application resulting in maintenance of similar leaf osmotic potentials (–1.5 MPa) at all K levels prior to onset of water stress (Table 2). At the lowest K level Ca contributed essentially to maintenance of the cell osmotic potential (Fig. 2).In fully watered plants grain yield at the lowest K level was reduced 20% (Fig. 5 a) due to a decrease in the number of tillers with ears per plant (Fig. 5 b) and to early commencement of maturity processes (Table 3).Water stress caused grain yield reductions between 15 and 50%. However, by increase of K application yield was maintained to the greatest degree in high K plants (Fig. 5 a) due to improved water status in these plants during the drying cycle (Fig. 4). The production of above ground dry matter (top D.M.) during the grain filling period and the grain yield were highly correlated with the leaf water content at the end of the drying cycles (Fig. 6). The greater yield in high K plants was associated with prolongation of the grain filling period by up to 7 days (Table 3) and with an increase in grain weight by up to 20% (Fig. 5 b) as compared with low K plants. Preanthesis reserves contributed up to 52% of grain yield at low K levels (Fig. 5 c) reducing differences in grain yield between the K levels.Abbreviations RWC predawn relative water content - predawn leaf osmotic potential - WUE water use efficiency - R preanthesis reserves - ear D.M. increase in ear D.M. during the grain filling period - top D.M. increase in top D.M. during the grain filling period - SD standard deviation - LSD least significant difference  相似文献   

12.
The design of most canal systems requires that they be operated under rigid schedules, rather thanon-demand. Rigid schedule operation results in water wastage through spillage, or users taking their turn even when the water cannot be efficiently used. This paper develops a two step method for optimally designing a canal system so it can be operated effectively under user on-demand requests for water. The first step determines the cross-sectional dimensions of the canal to provide storage capabilities while minimizing costs, by solving an appropriate nonlinear optimization problem. In the second step a hydraulic simulation model finds a near-optimal storage capacity based on construction and right-of-way costs, penalties due to operational water losses, water over supplied to users and supply shortages. The performance is evaluated by a quality index that is defined as the ratio of volume of satisfied demands to total volume of water requested. Results of regression equations from hundreds of computer sensitivity analyses relating variables are summarized in tables.  相似文献   

13.
The development of a role playing exercise for training of irrigation professionals in the management of small holder irrigation schemes is described. The exercise places participants in the position of either agency staff or farmers. As farmers participants are dependent on irrigation water supplies from the agency managed run-of-the-river irrigation system. As agency staff participants are responsible for water allocation between competing demands on the main system. The exercise develops interaction between the participants as they trade in water and negotiate for irrigation supplies.The exercise develops an understanding of the issues involved in managing an irrigation system, though not only on technical matters such as water allocation policy, yield response to water and performance assessment. The exercise also creates an awareness of the whole system, in particular the importance of communication between agency staff and farmers, and between farmers themselves.The Irrigation Management Game is the copyright of the author, Professor Ian Carruthers of Wye College, University of London and consulting engineers Mott MacDonald, Cambridge, UK.  相似文献   

14.
Summary Recent studies have shown that the grain yields of corn (Zea mays L.) and wheat (Triticum aestivum L.) are related to the degree of water stress they undergo. The purpose of the study reported here was to establish relationships between crop temperature and the grain yields, phenological development, evapotranspiration rates (ET) and leaf water potential ( l ) of two hybrids of grain sorghum (Sorghum bicolor L. Moench) subjected to varying levels of plant water stress. The study was conducted at the University of Nebraska Sandhills Agricultural Laboratory in 1978 on a Typic Ustipsamment (Valentine fine sand) soil. The sorghum hybrids used were RS 626 and NB 505. Four irrigation treatments were applied in order to subject the crops to varying levels of water stress during each of three major growth stages. Soil moisture was monitored with a neutron probe. ET was estimated with the water balance technique. Crop temperature was measured with an IR thermometer and leaf water potential was measured with a Scholander pressure bomb. Grain yields were reduced by water stress occuring at anytime during the growing season. Yield reductions were largest when stress occurred during only the grainfill period and were least when stress occurred during the entire growing season. The percentage reduction in sorghum grain yield can be described by an index involving the seasonal accumulation of the daily mid-day temperature differences between well-watered and stressed crops ( TSD). As TSD values increased, ET decreased. However, the correlation of ET with TSD was relatively low (R2 = 0.60) probably due to the limited amount of data available for analysis and inaccuracies in the soil water balance method used to estimate ET. The mid-day temperature of well-watered rows ranged between 18.0 and 32.8 °C with a mid-day temperature range of about 0.5 °C between the well-watered rows in various plots for several days following an irrigation. However, in certain instances, the mid-day temperature range increased to 1–2 °C for a few days before irrigation. This suggests that certain of the rows experienced water stress and should have been irrigated earlier. Yield data support that conclusion. Range in crop temperature within a field appeared to be a sensitive indicator of crop water stress in sorghum. No significant difference in the phenological development of sorghum resulted from water stress except in one NB 505 plot in which plants were stressed throughout the entire season. In that plot, the stressed plants lagged in development behind non-stressed plants by approximately ten days. The differences in mid-day leaf water potentials ( l ) and crop temperatures (T) between stressed and non-stressed vegetation were examined. As T increased up to about 4 °C, l , also increased. Beyond that point, l decreased while T continued to increase. This behavior was attributed to stomatal closure which permitted an increase in l of the stressed plants (hence reducing l ) even as T continued to increase.Published as Paper No. 6551, Journal Series, Nebraska Agricultural Experiment Station. The work reported was conducted under Regional Research Project 11–33 and Nebraska Agricultural Experiment Station Project 11–50. The work upon which this publication is based was supported in part by funds provided by the Office of Water Research and Technology B-044-NEB, US Department of the Interior, Washington, DC, as authorized by the Water Research and Development Act of 1978. This article was sponsored in part by the Nebraska Water Resources Center, Institute of Agriculture and Natural Resources, University of Nebraska-LincolnResearch Assistant, Associate Professor, Research Assistant, and Associate Professor, University of Nebraska, Lincoln. Contents of this puplication do not necessarily reflect the views and policies of the Office of Water Research and Technology, US Dept. of the Interior, nor does mention of trade names or commercial products constitute their endorsement or recommendation for use by the United States Government  相似文献   

15.
In countries around the world where small-scale irrigation systems are being improved, the design and functioning of these upgraded systems will be greatly enhanced if pre-existing patterns of land and water rights and established procedures for system operation are taken into account. An appreciation of these rights and procedures can greatly influence the layout of the water distribution network, water management practices, anticipated cropping patterns, and the related incidence of project benefits. Failure to do so will almost certainly have an adverse effect upon the functioning of the irrigation system, and can often result in serious conflicts. This is illustrated by the case of small-scale irrigation development in Baluchistan Province, Pakistan, where limited analysis of property rights and management practices and lack of consultation with intended beneficiaries caused major delays during the initial stages of project implementation. However, by introducing a methodology for social action that included an assessment of property rights and extensive consultation with affected households during the design and construction phases, the physical features and operating procedures for the upgraded irrigation system were crafted in a manner which maximized economic returns within the range of options acceptable to the local community.  相似文献   

16.
Summary The growth response of kenaf (Hibiscus cannabinus L.) to four irrigation schedules based on leaf water potential l was evaluated in a semi-arid tropical environment. Total dry matter production was unaffected by regimes in which the mean value of leaf water potential l (mean of solar noon and dawn value) did not fall below –1.26 MPa. Stem elongation was more sensitive than dry matter accumulation to plant water stress. — The economic yield for paper pulp production (i. e. total plant dry matter production minus that of the foliage and upper 60 cm of stem) increased with the frequency of irrigation. — Growth recovery by kenaf following a period of water stress was examined. Alleviation of water stress 10 weeks after irrigation, when l was –1.60 MPa, produced stem elongation rates that were greater than those of plants previously receiving irrigation. This ability to withstand water stress and partially compensate in growth following alleviation of the stress indicates that the kenaf crop has stress response features suitable for rainfall only production under semi-arid tropical conditions. — Irrigation schedules based on l resulted in water applications tailored to crop requirements in that water use increased, and the time interval between irrigation decreased, with increasing canopy development as well as with increasing evaporative demand. However, erratic fluctuations in l between irrigations make scheduling by this method difficult and the use of daily mean, dawn or noon values of l for scheduling irrigation of kenaf cannot be recommended in environments of high evaporative demand. The factors contributing to these fluctuations in (l) are discussed.  相似文献   

17.
Summary The effect of N and K nutrition on the salt tolerance of lettuce (Lactuca saliva L. cv. Saunas) and Chinese cabbage (Brassica campestris L., Pekinensis cv. Kazumi) was evaluated in three greenhouse experiments under a controlled aero-hydroponic system of cultivation. Three levels of KNO3 (1, 5 and 10 mM) were tested in all the experiments with rapidly circulated saline and nonsaline nutrient solutions. Two experiments, carried out between January and March 1989, with lettuce (Exp. I) and Chinese cabbage plants (Exp. III), consisted of two salinity levels, EC = 1.75 and 6.0 dS m–1, the former representing a nonsaline nutrient solution. In the third experiment with lettuce (Exp. II., conducted between March and May 1989), three saline nutrient solutions having EC levels of 4.7, 7.75 and 10.75 dS m–1 were compared to the nonsaline solution. The nutrient solutions were salinized with NaCl and CaCl2, in a 4:1 molar ratio. The highest yields of fresh weight of both crops were obtained from the 5 mM KNO3 under both saline and non-saline conditions. The 10 mM treatment caused yield reduction in Chinese cabbage, probably due to a severe tipburn disorder. The relatively high fresh weight yield obtained at the lowest (1 mM) KNO3 level can be explained by the positive effect of circulation velocity on nutrient uptake. The threshold salinity damage value for the vegetative yield of lettuce plants fed by 5 or 10 mM KNO3 was approximately 5 dSm–1 and the yield decreased by 6.5% per unit dS m–1 above the threshold. No yield improvement due to the addition of KNO3 occurred under highly saline conditions (Exp. II). The fresh weight of Chinese cabbage obtained from the saline 1 and 5 mM KNO3 treatments was approximately 15% lower than the non-saline-treatment (Exp. III). Salinity increased tipburn and the effect was not altered by the addition of KNO3. No significant interaction between nutrition (KNO3 level) and salinity was found. The application of salts increased the concentration of Na and Cl in plant tissue and reduced the levels of N and K; the opposite occurred in plants fed by the medium and high levels of KNO3.Contribution from Institute of Soils and Water, ARO, Volcani Center, PO Box 6, Bet Dagan 50250, Israel. No. 3092-E 1990 series  相似文献   

18.
This paper focuses on the performance evaluation of different decision-making processes that lead to overall irrigation system performance. First, the key decisions that contribute to the overall system performance in terms of water delivery are identified by means of an analytical framework for irrigation management. Consequently, these key decisions are described briefly and their potential performance indicators listed. The actual use of these performance indicators by two Sri Lankan agencies, government and donor are given in the same lists, which makes it possible to see what these organizations are actually aiming for with respect to water delivery. This approach makes it clear that at the time present the Sri Lankan agencies, government and donor do not care about the water delivery performance. Possibilities for improvement and the role of the different actors are discussed which suggests, at least in Sri Lanka, that initiation of successful performance improvement may have to come from the governments and donors, rather than from the managing agencies themselves.  相似文献   

19.
This paper presents new formulae to calculate the width of a buffer zone between a drained agricultural plot and a nature reserve area. These formulae are based on the classical Dupuit-Forchheimer assumptions and take into account the position of the impervious layer. With basic meteorological and agrological inputs, the proposed equations can be used to determine the length of the depression zone during watertable drawdown due to underground drainage. Calculating the required width of protection belts around peatland reserves is a typical and common application of the formulas presented in this paper.  相似文献   

20.
Summary Daily water use of irrigated wheat (Triticum aestivum L., var. Siete Cerros) was determined for three seasons between 1983 and 1986 using a hydraulic weighing lysimeter at Kadawa in the Kano River Irrigation Project of Kano State, Nigeria. Crop coefficients were determined for various time intervals during each growing season using the lysimeter data and a grass-based reference crop evapotranspiration estimated with Class A pan evaporation data. Mean crop coefficients for each ten-day period of crop growth were then determined. Observed length of a season ranges between 110 and 120 days. Seasonal crop water use ranges between 395 mm and 456 mm. Wheat crop water requirements (CWR) were then estimated for major irrigation projects in the Nigerian Sudan and Sahel savannah zones, between latitudes 10°N and 14°N, using the crop coefficients obtained and long term mean climatic data. The estimated CWR agreed with values obtained from the lysimeter experiments. Seasonal CWR values estimated by designers of three existing irrigation projects in the area agreed with the experimental results, but the designers' short term, ten-day period estimates differed from the results obtained.Contribution from the Irrigation Research Programme, Institute for Agricultural Research, Ahmadu Bello University, Zaria, Nigeria  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号