首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two hundred and eighty-seven worldwide eggplant accessions were examined for genetic diversity and population structure analysis with 45 SSR markers. The results resolved 242 alleles across all the accessions. Gene diversity ranged from 0.104 to 0.832 with an average of 0.558. Polymorphic information content ranged from 0.102 to 0.815 with an average of 0.507. The genetic diversity analysis classified all accessions into four groups, and the data showed that gene exchanges occurred in two groups during germplasm introduction, domestication, and improvement; however, the frequency was low. Population structure analysis classified 269 accessions into two subgroups, and the remaining 18 accessions were defined as admixed. The accessions from the same geographic origin tend to be clustered into same group. These results provide new insights into the exploitation of genetic diversity of germplasm for eggplant breeding program.  相似文献   

2.
Solanum pimpinellifolium, due to its close relationship to S. lycopersicum, has been a genetic source for many commercially important tomato traits. It is a wild species found in the coastal areas of Peru and Ecuador. In this study, the genetic variation of S. pimpinellifolium was studied using the diversity found in 10 microsatellites in 248 plants spread throughout its entire distribution area, including Ecuador, which has been underrepresented in previous studies. Peruvian and Ecuadorian accessions are genetically quite differentiated. A possible cause of these differences could be the non-uniform nature of the coastal Ecuadorian and Peruvian climates, seeing as an important correlation between genetic differentiation and climate has been found. In addition, Ecuadorian and south Peruvian accessions have a lower genetic diversity and a higher homozygosity due to their higher autogamy, lower population size, and possible colonization bottlenecks. The Galápagos Islands population is an extreme case, with no diversity, likely caused by a recent colonization from the northern continental Ecuadorian region where genetically identical plants have been found. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Elena Zuriaga and José M. Blanca contributed equally to this work.  相似文献   

3.
The aim of this study was to identify the group of highly polymorphic microsatellite markers for the identification of six pear cultivars (P. communis) and two individuals of wild pear (P. pyraster). From among 40 tested SSR markers, 19 were selected to profile genetic diversity in pear genotypes due to high polymorphisms. These markers showed high heterozygosity levels (0.5–1) and, on average, 6.4 alleles per marker were found. The set of microsatellite markers employed in this study demonstrated usefulness of microsatellite markers for the identification of pear genotypes. The examined wild forms were represented in this study by only two individuals of P. pyraster. It can be assumed that these forms were distinctly different from the cultivated pear cultivars.  相似文献   

4.
Calamintha nepeta and Micromeria thymifolia have been traditionally used in the Mediterranean area as condiments and medicinal plants for a long time. Whereas in parts of Italy C. nepeta (special recipes have been developed in Lazio and Tuscany) is also an established garden plant showing different evolutionary products and their interaction among each other and the wild progenitor, M. thymifolia is being developed into a new crop plant. Both plants and their uses are described with regard to Italy. There is a marked tendency to broaden the use of condiments and spices which results in new crop plants which have to be documented and elaborated in further studies. Many species of Labiatae are predisposed to use by man and new items can be found even in areas which have to be considered as well studied.  相似文献   

5.
Neglected and underutilized species often play a vital role in securing food and livestock feed, income generation and energy needs of rural populations. In spite of their great potential little attention has been given to these species. This increases the possibility of genetic erosion which would further restrict the survival strategies of people in rural areas. Ziziphus spina-christi is a plant species that has edible fruits and a number of other beneficial applications that include the use of leaves as fodder, branches for fencing, wood as fuel, for construction and furniture making, and the utilization of different parts e.g. Fruits, leaves, roots and bark in folk medicine. Moreover, the plant is adapted to dry and hot climates which make it suitable for cultivation in an environment characterized by increasing degradation of land and water resources. Lack of research in Z. spina-christi hinders its successful improvement and promotion. Therefore, studies are needed to fully exploit this species. This article aims at summarizing information on different aspects of Z. spina-christi to stimulate interest in this crop which is of importance in Sudan and other countries of the semi-arid tropics.
Amina Sirag SaiedEmail:
  相似文献   

6.

Purpose  

Few studies have been conducted to evaluate the effects of mixtures of chemicals in terrestrial environment. Thus, it seems important to evaluate if the combined application of pesticides currently used in agricultural fields may pose a risk to terrestrial plants.  相似文献   

7.
This study aimed to investigate the effect of inoculation with plant growth-promoting Rhizobium and Pseudomonas species on NaCl-affected maize. Two cultivars of maize (cv. Agaiti 2002 and cv. Av 4001) selected on the basis of their yield potential were grown in pots outdoors under natural conditions during July. Microorganisms were applied at seedling stage and salt stress was induced 21 days after sowing and maintained up to 50% flowering after 120 days of stress. The salt treatment caused a detrimental effect on growth and development of plants. Co-inoculation resulted in some positive adaptative responses of maize plants under salinity. The salt tolerance from inoculation was generally mediated by decreases in electrolyte leakage and in osmotic potential, an increase in osmoregulant (proline) production, maintenance of relative water content of leaves, and selective uptake of K ions. Generally, the microbial strain acted synergistically. However, under unstressed conditions, Rhizobium was more effective than Pseudomonas but under salt stress the favorable effect was observed even if some exceptions were also observed. The maize cv. Agaiti 2002 appeared to be more responsive to inoculation and was relatively less tolerant to salt compared to that of cv. Av 4001.  相似文献   

8.
Genetic diversity of populations stored ex situ or in situ can be altered due to the management practices they are subjected to. In this paper, we compare populations of two common bean (Phaseolus vulgaris L.) landraces grown on farms with material collected from the same farms and now kept in two ex situ collections (CIAT and REGEN) with the purpose to monitor any changes that have occurred due to ex situ conservation. The diversity was measured using seven bean microsatellite markers. Further phenotypic and developmental traits were registered in a field experiment. Compared with the in situ populations, the ex situ ones had a lower level of gene diversity and we suggest that this is due to the regeneration process. Most of the phenotypic traits did not differ significantly between ex situ and in situ populations, although for yield and 100-seed weight, the CIAT material showed significant lower values. We assume that these populations have gone through an adaptational change. Overall, the conservation ex situ has been successful in maintaining the majority of the adaptations found in the landraces studied, however, the probable loss of genetic diversity that we have observed, suggest that protocols for the regeneration process must be carefully worked out if the majority of alleles are to be preserved for the future. This study also highlights the complementarity of ex situ and in situ conservation methods in order to preserve landrace adaptations and to capture new, useful diversity generated in in situ populations.  相似文献   

9.
Random amplified polymorphic DNA markers were used to assess relatedness and genetic diversity for 15 lingonberry (Vaccinium vitis-idaea) populations. Seven primers yielding 59 polymorphic bands were used to analyse 13 populations, representing ssp. vitis-idaea from Sweden, Finland, Norway, Estonia and Russia, and two populations, representing ssp. minus from Japan and Canada. A cluster analysis and a multidimensional scaling analysis (MDS) showed similar phenetic patterns among populations, with a pronounced geographic grouping in most cases. Significant correlations were obtained between geographic and genetic distances for the entire set of populations as well as for the 13 ssp. vitis-idaea populations. Mean within-population diversity was 0.206 when estimated with Lynch and Milligan's index, and 0.431 when estimated with Shannon's index, which is in agreement with the mixed mating system reported for lingonberry. Within-population variability accounted for 68.6% of the total variance when all populations were included, and for 78.8% when only populations of ssp. vitis-idaea were analysed. Two different approaches were applied to the selection of plant material for a potential gene bank: (1) a hierarchical sampling strategy based on a cluster analysis and (2) the Maximum genetic diversity program, developed for the establishment of core collections. Random sampling was undertaken for comparisons with the selected data sets. The most diverse and representative set of lingonberry specimens was obtained when samples were selected with the Maximum diversity program.  相似文献   

10.
DNA sequences of nuclear gene Got2 was studied in 60 accessions of Aegilops tauschii, 29 of subsp. tauschii and 31 of subsp. strangulata. It was found that Got2 allozyme polymorphism in Ae. tauschii is due to a single, unique, mutation which led to replacement of glutamic acid by isoleucine in residue 256 of the enzyme molecule, encoded by Got2. As revealed by Got2 DNA sequences variation, initially in its history Ae. tauschii was presented by subsp. strangulata, and among phylogenetic lineages of subsp. strangulata, the lineage “t-91s” (TauL3) is the most ancient, a relict one. Subspecies tauschii is relatively “young”. Initially it was presented by the lineage marked by combination of allozyme alleles Got2 105 and Acph1 100. In the past it inhabited the Continental area from Caucasia to Pakistan, but later on it was forced out by newly originated, now—a major lineage of subsp. tauschii, marked by Got2 100. This lineage extended the Continental area of the species up to Kirgizstan, but actually failed to penetrate into pre-Caspian area, occupied by subsp. strangulata. These results essentially differ from those obtained previously, using chloroplast DNA (cpDNA) sequences polymorphism. As revealed by cpDNA, the major, “usual”, subsp. strangulata (TauL2) is “younger” than subsp. tauschii, which resided on phylogenetic tree between relict lineage “t-91s”of subsp. strangulata—and major subsp. strangulata. But both cpDNA and Got2 DNA sequences indicate that the level of genetic variation in subsp. tauschii is much lower than in subsp. strangulata. According to Got2 DNA sequences variation, it was Ae. tauschii subsp. strangulata lineage “k-109″ which donated genome D to Triticum aestivum L. This lineage includes accessions: k-109 from South-Eastern Precaspian Azerbaijan; KU-2105, KU-2159 from Western Precaspian Iran; KU-2080 from Eastern Precaspian Iran.  相似文献   

11.
The diversity among 269 rhizobia isolated from naturally occurring root nodules of soybean collected from two different agro-ecological regions of India, based on RFLP and sequences of the intergenic spacer (IGS) between the 16S and 23S rRNA genes, growth rate, and indole acetic acid production, revealed their significant, site-dependent genomic diversity. Among these bacteria, nine IGS genotypes were identified with two endonucleases. They were distributed into five divergent lineages by sequence analysis of each IGS representative strain, i.e., (1) comprising IGS genotypes I, II, III, and reference Bradyrhizobium yuanmingense; (2) with genotype IV and strains of unclassified bradyrhizobia genomic species; (3) including genotypes V, VI, and Bradyrhizobium liaoningense; (4) with IGS genotype VII and Bradyrhizobium elkanii strains; and (5) comprising IGS genotypes VIII, IX, and different Ensifer genus bacteria. Host-specificity test revealed that all rhizobia-nodulated soybean and cowpea and only part of them formed nodules on Arachis hypogeae and Cajanus cajan. The great diversity of soybean nodulators observed in this study emphasises that Indian soil is an important reservoir of nitrogen-fixing rhizobia.  相似文献   

12.
The genus Aegilops L. is a very important genetic resource for the breeding of bread wheat Triticum aestivum. Therefore, an accurate and easy identification of Aegilops species is required. Traditionally, identification of Aegilops species has relied heavily on morphological characters. These characters, however, are either not variable enough among Aegilops species or too plastic to be used for identification at the species level. Molecular markers that are more stable within species, therefore, could be the alternative strategy towards an accurate identification. Since the chloroplast DNA has a lower level of evolution compared to the nuclear genome, an attempt was made in this study to investigate polymorphism in the chloroplast DNA among 21 Aegilops species (including Ae. mutica that is now known as Amblyopyrum muticum) and between the latter and T. aestivum to generate markers for the diagnosis of all targeted species. Cleaved amplified polymorphic sequence (CAPS) applied on 22 coding and non-coding chloroplast regions using 80 endonucleases and sequencing of two of those regions revealed little polymorphism between T. aestivum and the various Aegilops species examined and to a less extent was the variation among Aegilops species. Polymorphism observed among species analysed allowed the discrimination of T. aestivum and 12 Aegilops species.  相似文献   

13.
V. rhomboidea is a wild Vigna species that is a potential source of genes for pubescence which could be incorporated into cultivated cowpea for insect pests resistance. Due to the lack of reliable records on the crossability and gene pool relationships between V. rhomboidea and cowpea, crossing trials were conducted in the screenhouse to observe if V. rhomboidea is reciprocally crossable (compatible) with cowpea. Crossability of V. rhomboidea (as seed parent) with cowpea (as pollen parent) was, for the first time, successfully achieved at the rate of 5.7% from 1145 crosses. Reciprocal crosses with cowpea as seed parent and V. rhomboidea pollen parent gave an average of 22.6% pod set from 2299 crosses. It is concluded that V. rhomboidea is reciprocally compatible with cowpea. This implies that V. rhomboidea belongs to the primary gene pool of cowpea.  相似文献   

14.
The genus Arachis is divided into nine taxonomic sections. Section Arachis is composed of annual and perennial species, while section Heteranthae has only annual species. The objective of this study was to investigate the genetic relationships among 15 Brazilian annual accessions from Arachis and Heteranthae using RAPD markers. Twenty-seven primers were tested, of which nine produced unique fingerprintings for all the accessions studied. A total of 88 polymorphic fragments were scored and the number of fragments per primer varied from 6 to 17 with a mean of 9.8. Two specific markers were identified for species with 2n = 18 chromosomes. The phenogram derived from the RAPD data corroborated the morphological classification. The bootstrap analysis divided the genotypes into two significant clusters. The first cluster contained all the section Arachis species, and the accessions within it were grouped based upon the presence or absence of the ‘A’ pair and the number of chromosomes. The second cluster grouped all accessions belonging to section Heteranthae.  相似文献   

15.
Paracetamol, the most widely and globally used analgesic and antipyretic, is easily accumulated in aquatic environments. In the present study, the biodegradation of paracetamol in different media (one for general growth, one specific for sulfate reducing bacteria, a mineral salts medium and municipal wastewater) inoculated with two types of sludge (from anaerobic lagoon and from oxidation ditch) under different oxygenic conditions (anoxic; moderate oxygenation in open flasks and high oxygenation by aeration) was investigated. In addition, bacteria with relative abundances increasing simultaneously with paracetamol degradation, when this drug was the only carbon source, thus with a putative role in its degradation, were identified using 16S rRNA gene sequences. The results show that aerobic microorganisms had a major role in the degradation of paracetamol, with 50 mg/L totally removed from municipal wastewater after 2 days incubation with aeration, and that the metabolites 4-aminophenol and hydroquinone plus one compound not identified in this work were produced in the process. The identification of bacteria with a role in the degradation of paracetamol revealed a strain from genus Pseudomonas with the highest final relative abundance of 21.2%, confirming previous works reporting strains of this genus as paracetamol decomposers. Besides, genera Flavobacterium, Dokdonella and Methylophilus were also in evidence, with initial relative abundances of 1.66%, 1.48 and 0.00% (not detected) in the inoculum and 6.91%, 3.80 and 3.83% after incubation, respectively. Therefore, a putative role of these genera in paracetamol biodegradation is suggested for the first time.
Graphical Abstract ?
  相似文献   

16.
Maize (Zea mays L.) and Asian rice (Oryza sativa L.), two most important cereals for human nutrition, have undergone strong artificial selection during a long period of time. Currently, a number of genes with stronger signals of selection have been identified through combining genomic and population genetic approach, but research on artificial selection of maize and Asian rice is scarcely done from the perspective of phenotypic difference of a number of agronomic traits. In this study, such an investigation was carried out on the basis of 179 published studies about phenotypic quantitative trait locus (QTL) mapping of Zea and Oryza species via QTL sign test. At the overall level, the proportions of antagonistic QTLs of Zea and Oryza species were 0.2446 and 0.2382 respectively, deviating significantly from neutrality. It indicated that these two genera have undergone similar selection strength during their evolutionary process. A previous study showed that 4 traits undergoing the directional selection during domestication were identified in Asian rice via QTL sign test, and 16 individual traits in Asian rice and 38 ones in maize that newly detected in this study deviated significantly from neutrality as well, demonstrating the dominant influence of artificial selection on them. Moreover, analysis of different categories of cross type including O. sativa × Oryza rufipogon (perennial and annual forms) crosses, maize × teosinte (Zea mays subsp. parviglumis) crosses, O. sativa × O. sativa crosses, and maize × maize crosses showed that their proportions of antagonistic QTLs were 0.1869, 0.1467, 0.2649, and 0.2618 respectively. These results revealed that selection strength of domestication is significantly stronger than that of modern genetic improvement. However, interestingly, the proportion of antagonistic QTLs (0.1591) in maize × maize with long-term selection was very similar to that (0.1467) in the maize × teosinte (Zea mays subsp. parviglumis) crosses. It suggested that some favorable traits could be cultivated within a few decades if we carry out strong selection. In addition, the proportions of antagonistic QTLs of the widely cultivated hybrids of rice (Minghui 63 × Zhenshan 97) and maize (Zheng 58 × Chang 7-2) in China were 0.309 and 0.3472 respectively. It suggested that selection during modern genetic improvement has significantly acted on them.  相似文献   

17.
Trigeneric hybrids may help establish evolutionary relationships among different genomes present in the same cellular-genetic background, and also offers the possibility to transfer different alien characters into cultivated wheat. In this study, a new trigeneric hybrid involving species from the Triticum, Psathyrostachys and Secale was synthesized by crossing wheat-P. huashanica amphiploid (PHW-SA) with wheat-S. cereale amphiploid (Zhongsi 828). The crossability of F1 hybrid was high with 35.13%, and the fertility was 41.95%. The morphological characteristics of F1 plants resembled the parent Zhongsi 828. The trigeneric hybrids pollen mother cells (PMCs) regularly revealed averagely 19.88 univalents, 9.63 ring bivalents, 3.97 rod bivalents, 0.60 trivalents and 0.03 tetravalents per cell. Multivalents consisted of trivalents and tetravalents can be observed in 52.7% of cells. A variation of abnormal lagging chromosome, micronuclei and chromosome bridge were formed at anaphase I and telophase II. The mean chromosomes number of F2 progenies was 2n = 46.13, and the distribution range was 42–53. GISH results revealed that most F2 plants had 6–12 S. cereale chromosomes, and only 0–2 P. huashanica chromosomes were detected. The results indicated that S. cereale chromosomes can be preferentially transmitted in the F2 progenies of trigeneric hybrid than P. huashanica chromosomes. A survey of disease resistances revealed that the stripe rust resistance from the PHW-SA were completely expressed in the F1 and some F2 plants. The trigeneric hybrid could be a useful bridge for the transference of P. huashanica and S. cereale chromatins to common wheat.  相似文献   

18.
This study reports for the first time the presence of diazotrophic bacteria belonging to the genera Achromobacter and Zoogloea associated with wheat plants. These bacterial strains were identified by the analysis of 16S rDNA sequences. The bacterium IAC-AT-8 was identified as Azospirillum brasiliense, whereas isolates IAC-HT-11 and IAC-HT-12 were identified as Achromobacter insolitus and Zoogloea ramigera, respectively. A greenhouse experiment involving a non-sterilized soil was carried out with the aim to study the endophytic feature of these strains. After 40 days from inoculation, all the strains were in the inner of roots, but they were not detected in soil. In order to assess the location inside wheat plants, an experiment was conducted under axenic conditions. Fifteen days after inoculation, preparations of inoculated plants were observed by the scanning electron microscope, using the cryofracture technique, and by the transmission electron microscope. It was observed that all isolates were present on the external part of the roots and in the inner part at the elongation region, in cortex cells, but not in the endodermis or in the vascular bundle region. No colonizing bacterial cells were observed in wheat leaves.  相似文献   

19.
Simple sequence repeats (SSRs), highly dispersed nucleotide sequences in genomes, were used for germplasm analysis and estimation of the genetic relationship of the D-genome among 52 accessions of T. aestivum (AABBDD), Ae. tauschii (DtDt), Ae. cylindrica (CCDcDc) and Ae. crassa (MMDcr1Dcr1), collected from 13 different sites in Iran. A set of 21 microsatellite primers, from various locations on the seven D-genome chromosomes, revealed a high level of polymorphism. A total of 273 alleles were detected across all four species and the number of alleles per each microsatellite marker varied from 3 to 27. The highest genetic diversity occurred in Ae. tauschii followed by Ae. crassa, and the genetic distance was the smallest between Ae. tauschii and Ae. cylindrica. Data obtained in this study supports the view that genetic variability in the D-genome of hexaploid wheat is less than in Ae. tauschii. The highest number of unique alleles was observed within Ae. crassa accessions, indicating this species as a great potential source of novel genes for bread wheat improvement. Knowledge of genetic diversity in Aegilops species provides different levels of information which is important in the management of germplasm resources.  相似文献   

20.
A fertile amphidiploid × Brassicoraphanus (RRCC, 2n = 36) between Raphanus sativus cv. HQ-04 (2n = 18, RR) and Brassica alboglabra Bailey (2n = 18, CC) was synthesized and successive selections for seed fertility were made from F4 to F10. F10 plants exhibited good fertility with 14.9 seeds per siliqua and 32.3 g seeds per plant. Cytological observation revealed that frequent secondary pairing occurred among 3 chromosome pairs in pollen mother cells of plants (F4) with lower fertility, but not of plants with high fertility (F10). GISH analysis indicated that these F10 plants included the expected 18 chromosomes from R. sativus and B. alboglabra, respectively, but they lost approximately 27.6% R. sativus and 35.6% B. alboglabra AFLP (amplified fragment length polymorphism) bands. The crossability of the Raphanobrassica with R. sativus and 5 Brassica species (13 cultivars) were investigated. Seeds or F1 seedlings were easy to be produced from crosses × Brassicoraphanus × R. sativus, and B. napus, B. juncea and B. carinata × Brassicoraphanus. Fewer seeds or seedlings were obtained from crosses × Brassicoraphanus × B. napus, B. juncea and B. carinata. However, few seeds were harvested in the reciprocals of × Brassicoraphanus with B. rapa and B. oleracea. The possible cause of fertility improvements and the potential of the present × Brassicoraphanus for breeding were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号