首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
生态交错带是全球气候变化的最敏感区域,因而对生态交错带不同土地利用类型土壤有机碳的研究,可为生态交错带土地利用和有效管理提供基础数据。岷江上游山地森林-干旱河谷交错带6种土地利用类型的土壤有机碳含量和有机碳储量均随土壤深度的增加而降低;土壤有机碳储量的大小顺序为天然川滇高山栎次生林(104.15±4.84t/hm2)>灌木林地(100.84±2.43t/hm2)>灌丛地(97.35±15.21t/hm2)>经济林(85.16±10.58t/hm2)>人工刺槐林(70.78±12.43t/hm2)>农耕地(56.56±7.21t/hm2);农耕地转变为人工刺槐林和经济林后,其土壤有机碳储量分别增加了25.13%和50.56%;人为干扰以及交错带生态系统的脆弱性及其叠加效应是导致岷江上游山地森林-干旱河谷交错带不同土地利用类型土壤有机碳储量偏低的重要原因。  相似文献   

2.
沱江流域不同土地利用方式紫色土有机碳储量特征   总被引:3,自引:0,他引:3  
沱江流域是长江上游四川境内的重要支流,紫色土为其主要的耕地资源。由于长期人口过载和不合理利用,流域内紫色土退化普遍严重。以四川盆地沱江流域紫色土为研究对象,按流域各区段分上中下游三层选样,研究不同土地利用方式下紫色土有机碳储量特征,为紫色土退化评估及地力维护提供参考。结果显示,不同土地利用方式紫色土壤有机碳总量以林地(13.876g/kg)显著高于果园地(9.655g/kg)、菜园地(9.261g/kg)、草坡地(7.968g/kg),以玉米地(6.134g/kg)最低。水溶性有机碳的含量呈现林地〉果园地〉菜园地〉草坡地〉玉米地趋势。同时,流域上、中、下游紫色土有机碳总量总体上差异显著,且以上游区段紫色土壤有机碳总量最高。流域中下游紫色土有机碳总量变化较大。其中,林地以下游高于中游,果园及草坡地以中游高于下游。而且,菜园地、玉米地在3个区段上差异未达显著水平。沱江流域紫色土有机碳储量总体特征表现上游最高,中下游变化复杂,下游略高于中游区域。  相似文献   

3.
煤矿区土壤有机碳含量的遥感反演与分布特征   总被引:1,自引:0,他引:1  
孙问娟  李新举 《水土保持学报》2018,32(3):328-333,339
高光谱数据与多光谱影像结合能实现区域高精度、大面积的土壤有机碳含量反演。以山东省鲍店矿区表层0-20cm土壤有机碳含量为研究对象,采用波段平均法把高光谱的窄波段拟合成GF-1 WFV影像的宽波段,建立土壤有机碳含量的高光谱模型,进而通过比值订正法,将最优高光谱模型校正到多光谱模型并通过决策树分类获取土壤有机碳含量空间分布状况,结合土地利用现状分析土壤有机碳含量分布特征。结果表明:(1)通过波段拟合和比值订正获得的多光谱模型,检验决定系数为0.76,可以稳定实现矿区土壤有机碳含量的反演。(2)研究区土壤有机碳含量范围为0.71~38.15g/kg,均值为14.12g/kg,总体上处于中等水平;区域内土壤有机碳含量以11.60~17.40g/kg为主,其次是5.80~11.60g/kg,分别占据48%,29%。(3)采矿区和部分道路、居民点的有机碳含量偏高,耕地处于中等水平,林地和草地含量较低;塌陷地形成的水域周围有机碳含量明显偏低。  相似文献   

4.
研究了岷江上游森林/干旱河谷交错带川滇高山栎次生林、人工刺槐林、灌木林地、灌丛地、经济林和农耕地6种土地利用类型的土壤有机碳及微生物量碳、水溶性有机碳和易氧化碳。结果表明:6种土地利用类型土壤有机碳及3种活性有机碳含量以川滇高山栎次生林高于或显著高于其他土地类型(p<0.05),以农耕地低于或显著低于其他土地类型(p<0.05)。6种土地利用类型的土壤平均有机碳含量(13.65g/kg)低于同区域土壤的平均有机碳含量(17 g/kg)。6种土地利用类型的土壤微生物量碳、水溶性有机碳和土壤易氧化碳占有机碳的比率分别介于1.36%~2.35%,0.82%~1.34%和7.77%~10.50%之间。研究结果说明交错带6种土地利用类型的土壤有机碳含量较低,有不断下降的趋势,且活性大,容易转化。因此,减少人为干扰对于维持和增加森林/干旱河谷交错带土壤有机碳具有重要的作用。  相似文献   

5.
贾豪  严宁珍  程永毅  刘洪斌 《核农学报》2019,33(6):1256-1263
为评价区域农田土壤肥力及优化农业生产管理措施,选取渝东南地区黔江区为研究区域,基于重庆市测土配方施肥的615个表层(0~20 cm)土样数据,运用地统计学和地理信息系统(GIS)相结合的方法分析黔江区土壤有机碳(SOC)的空间分布特征及其影响因素。结果表明,研究区土壤表层SOC含量为13.27 g·kg-1,变异系数为31.44%,具有中等程度的空间变异且空间自相关范围较大。块金效应为45.59%,空间分布受结构性因素和随机性因素的共同影响。研究区SOC分布呈斑块状,总体表现为东高西低。方差分析和回归分析表明,成土母质、土壤类型、土地利用方式及坡度、坡向对SOC的空间分布的影响极显著(P<0.01),土壤质地、海拔高度的影响显著(P<0.05)。随着海拔的增加,土壤中SOC含量也逐渐增加。而随着坡度增加,土壤中SOC含量呈先降低后增加的趋势。本研究结果为渝东南农田SOC管理及农作物合理施肥提供了理论依据。  相似文献   

6.
密云水库上游流域径流曲线模型的参数修订   总被引:5,自引:2,他引:3  
为探讨同时率定CN值和初损率2个参数得到的模拟结果是否比单独率定一个参数更为理想,且在不同土地利用类型下SCS-CN模型是否均适用,选取了密云水库上游石匣小流域为研究区域,根据石匣小流域坡面试验小区2006—2010年实测降雨-径流数据和SCS-CN模型的计算公式,在0.05~0.40范围内,等间隔选取8个不同的初损率值,并利用算术平均值法反推各初损率值条件下对应的CN值,以纳什效率系数为SCS-CN模型的适用性评价参数,确定裸地、耕地、草地和林地4种不同土地利用类型下模拟效果最佳的CN值与初损率,最后对4种不同土地利用类型下的SCS-CN模型进行了适用性评价。结果表明:(1)4种不同土地利用类型条件下,当初损率为0.05时纳什效率系数值最高,分别为裸地(0.75)、耕地(0.48)、草地(-1.11)、林地(-0.24);(2)在石匣小流域内利用SCS-CN模型对该研究区域的径流值进行预测时,裸地条件下的CN1值为86,耕地条件下的CN1值为74,草地条件下的CN1值为58,林地条件下的CN1值为63,4种不同土地利用类型的初损率取值均为0.05;(3)通过同时率定2个参数可以使得SCS-CN模型的模拟效果得到一定的提高;(4)在石匣小流域内,SCS-CN模型在裸地和耕地条件下可以较好地模拟地表径流,但草地和林地条件下其模拟结果不理想。  相似文献   

7.
[目的]探讨土地利用方式对土壤有机碳含量及碳矿化的影响,为塔里木盆地北缘绿洲土壤生态系统的保护和恢复建设提供理论依据。[方法]基于野外采样和室内培养试验,分析土壤有机碳含量的基本特征,利用回归分析法拟合出土壤有机碳矿化动态变化过程。[结果]矿化累积释放的CO2含量大小依次为:果园棉田人工林弃耕地荒草地盐碱地沙地。不同土地利用方式土壤有机碳矿化反应趋势相同,1~6d为快速分解阶段,日均矿化量高但反应时间短,6~28d为缓慢分解阶段,动态变化与前者相反。有机碳矿化率大小依次为:沙地荒草地盐碱地弃耕地人工林棉田果园,沙地最高,达(10.36±0.24)%,表明沙地土壤有机碳稳定性最差,而果园具有较强的固定有机碳能力。[结论]土地利用方式对土壤有机碳矿化及其固碳能力均有显著影响。  相似文献   

8.
通过土壤样品的室内培养,运用三库一级动力学理论,分析桂林毛村典型岩溶区旱地、灌丛、果园、林地4种不同土地利用类型下石灰土有机碳库容大小、各碳库平均周转时间及其影响因素。结果表明:4种土地利用类型土壤有机碳含量分别为15.41~20.10g/kg,13.07~31.16g/kg,9.38~14.74g/kg,30.82~37.52g/kg。活性有机碳占总有机碳的比例最小,分别为0.61%~0.93%,0.95%~1.24%,0.77%~1.00%,1.49%~1.66%。缓效性有机碳库分别占总有机碳含量的21.13%~30.18%,13.58%~23.46%,29.54%~46.58%,30.39%~33.84%。平均周转时间分别为7,8,7,12年。惰性有机碳占总有机碳的比例最高,分别为69.18%~78.26%,75.27%~85.47%,56.63%~69.70%,64.64%~68.12%。延长缓效性碳库驻留时间在一定程度上是提高土壤有机碳库的关键因素。相关分析表明,土壤有机碳总量、土壤碳酸钙含量、总钙量、土壤pH值、全氮含量、C/N与土壤有机碳各库库容及周转时间存在显著的正相关,腐殖质含量与土壤有机碳库及周转时间呈极显著正相关,土壤过氧化氢酶及脲酶活性显著影响土壤有机碳库含量及周转时间。  相似文献   

9.
对重庆市中梁山低山岩溶区角砾状白云质灰岩的黄色石灰土剖面进行研究.结果表明:土地利用方式明显地影响了土壤微生物量碳、微生物商、可矿化碳和硫酸钾浸提碳的含量,微生物商能更准确的反映土壤有机碳库对土地利用方式的响应,微生物商依次为:菜地橘林地耕地草地灌丛,平均值分别为3.09,2.46.1.92.1.55和1.14.土壤微生物量碳和微生物商在土壤0-30 cm范围内的变化规律不明显,仅在灌丛中的变化相似;而可矿化碳和硫酸钾浸提碳基本上随土壤深度的增加而降低,规律性明显.相关分析说明,硫酸钾浸提碳与全氮、水解氮和速效钾相关极显著,与全磷相关显著,相关系数分别为0.421,0.375,0.576和0.274,可以作为土壤肥力变化的重要指标;机械组成分析中砂粒对土壤有机碳组分的分布和含量影响相对比较明显,与土壤微生物量碳相关极显著(0.355),与土壤可矿化碳相关显著(0.313).  相似文献   

10.
研究丘陵地区不同土地利用方式下土壤有机碳密度的分布及其影响因素,为丘陵地区土壤肥力培育和生产力提升提供技术参考。通过密集采样,分析东南丘陵水田、旱地、果园和茶园4种典型利用方式下耕层土壤有机碳密度变化及其影响因素。结果表明,东南丘陵地区土壤有机碳密度平均为4.14kg/m2,其变化受地形、土地利用方式及土壤化学性状等因素影响。海拔为200~800m时有机碳密度最高,平均为4.38kg/m2;坡度对土壤有机碳密度影响表现为2°~6°>6°~15°>15°~25°>0~2°>25°以上;从坡向看,南北坡有机碳密度较高,东西坡较低;不同土地利用方式土壤有机碳密度果园>茶园>水田>旱地;水田土壤有机碳密度与土壤中碱解氮、速效磷和速效钾呈显著正相关,与缓效钾呈极显著负相关,旱地与速效磷和速效钾呈显著正相关,果园与碱解氮和速效钾呈正相关,茶园仅与碱解氮呈显著正相关。  相似文献   

11.
宋旭  蔡艳  张世熔  李婷  袁大刚  杨杰  黄爱萍 《土壤》2010,42(4):589-594
以典型地震灾区彭州市新黄村为研究对象,应用地统计学和GIS相结合的方法,分析了该区土壤有机C含量分布特征及其影响因素。结果表明,该区域内表层土壤有机C含量为24.83g/kg,其空间分布呈带状,自西部高值区(31g/kg)向东部低值区(13g/kg)递减;不同土地利用方式典型土壤剖面有机C含量总体趋势是随深度的增加而减少,水田、旱地土壤0~20cm有机C含量最高,荒地土壤20~40cm有机C含量最高。影响因素分析表明,不同土地利用方式中水田有机C含量极显著高于荒地,旱地显著高于荒地,水田和旱地差异不显著;地震及震后人类活动能改变土壤有机C含量。  相似文献   

12.
海南岛红树林湿地土壤有机碳分布规律及影响因素研究   总被引:5,自引:0,他引:5  
辛琨  颜葵  李真  邱明红  胡杰龙 《土壤学报》2014,51(5):1078-1086
以海南岛为例,选择环岛东、西、南、北四个方向的典型红树林群落,对土壤进行取样,测定土壤有机碳含量,计算土壤有机碳密度。通过对比群落结构、土壤理化性质、不同区域的自然条件,探讨红树林土壤有机碳的分布规律以及影响碳储量的主要因素。研究表明,土壤有机碳分布特征在垂直方向上差异显著,土壤有机碳含量最大值出现在20~40 cm,土壤有机碳密度最大值出现在0~20cm;不同群落类型土壤有机碳含量存在明显差异,以东寨港红树林为例,海莲群落土壤有机碳含量最高,为20.89±6.75 g kg-1,人工无瓣海桑林最低,为12.71±3.62 g kg-1,进一步相关分析显示,土壤有机碳含量与群落植株胸径和基盖度呈显著正相关,与株高无关;在空间分布上,表现为东方四泌湾文昌清澜港儋州新英湾海口东寨港三亚湾。最后结合海南岛红树林面积,得出海南岛红树林土壤有机碳总储量为2.39×106t。  相似文献   

13.
Soil organic carbon (SOC) is an important component in agricultural soil, and its stock is a major part of global carbon stocks. Estimating the SOC distribution and storage is important for improving soil quality and SOC sequestration. This study evaluated the SOC distribution different land uses and estimated the SOC storage by classifying the study area by land use in a small watershed on the Loess Plateau. The results showed that the SOC content and density were affected by land use. The SOC content for shrubland and natural grassland was significantly higher than for other land uses, and cropland had the lowest SOC content. The effect of land use on the SOC content was more significant in the 0-10 cm soil layer than in other soil layers. For every type of land use, the SOC content decreased with soil depth. The highest SOC density (0-60 cm) in the study area was found in shrublandII (Hippophae rhamnoides), and the other land uses decreased in the SOC density as follows: natural grassland > shrublandI (Caragana korshinskii) > abandoned cropland > orchard > level ground cropland > terrace cropland > artificial grassland. Shrubland and natural grassland were the most efficient types for SOC sequestration, followed by abandoned cropland. The SOC stock (0-60 cm) in this study was 23,584.77 t with a mean SOC density of 4.64 (0-60 cm).  相似文献   

14.
土壤有机碳稳定性影响因素的研究进展   总被引:12,自引:0,他引:12  
增加土壤碳汇是应对全球气候变化的有效措施,作为土壤碳汇来源之一的有机碳在其中发挥重要作用。过去几十年,土壤有机碳的分子结构性质被认为是预测有机碳在土壤中循环的主要标准。然而最近的研究结果表明有机碳的分子结构并非绝对地控制着土壤有机碳的稳定,而土壤环境因子与有机碳的相互作用显著降低了土壤有机碳被降解的可能性。土壤微生物不仅参与有机碳的降解,其产物本身也是土壤有机碳的重要组成成分。非生物因子直接或间接地控制着土壤有机碳的稳定,包括土壤中的无机颗粒、无机环境以及养分状况等。其中,有机碳与土壤矿物的吸附作用和土壤团聚体的闭蓄作用被普遍认为高效地保护了有机碳。土壤矿物的吸附作用取决于其自身的矿物学性质和有机碳的化学性质。土壤团聚体在保护有机碳的同时也促进了有机碳与矿物的吸附,而有机-矿物络合物同样可以参与形成团聚体。此外,土壤无机环境也影响着有机碳循环。总之,土壤有机碳的稳定取决于有机碳与周围环境的相互作用。同时,有机碳的结构性质也受控于环境因素。然而,无论有机碳的结构性质,还是其所处的生物与非生物环境,都是生态系统的基本属性,且各属性间相互影响、相互作用。因此,土壤有机碳的稳定是生态系统的一种特有性质。  相似文献   

15.
为了更合理地利用土地、减少面源污染,利用密云水库上游石匣坡地径流场不同土地利用试验小区的5年观测数据,分析不同土地利用方式对面源污染的影响。研究表明:不同土地利用方式多年平均次径流系数差异明显,依次为清耕休闲地>坡耕地玉米>荒草坡>鱼鳞坑刺槐>水平条山楂,多年平均土壤侵蚀量与径流中TP、TN和CODMn流失量随径流系数的增大而增加,流失量与径流系数呈显著的正相关关系;径流中养分含量与径流系数之间没有显著相关关系。因此,通过增加植被覆盖或改变土地利用方式可大大减轻水土流失及其造成的面源污染。  相似文献   

16.
黄土高原草地土壤有机碳分布及其影响因素   总被引:16,自引:0,他引:16  
以黄土高原水平方向的4种主要草地类型为研究对象,分析了不同草地类型土壤有机碳(SOC)的分布特征及其影响因素。结果表明:土壤有机碳含量随土壤深度的增加而降低,其中0~20 cm土壤有机碳含量与20~40、40~60、60~80、80~100 cm有机碳含量差异显著。4种草地类型土壤有机碳含量分布规律:0~40 cm为高山草甸草原>典型草原>森林草原>荒漠草原,40~100 cm为高山草甸草原>森林草原>典型草原>荒漠草原;4种草地类型中各土层土壤有机碳含量最高的是高寒草甸,其空间变异最大,最小的是荒漠草原,其变异最小。黄土高原上高寒草甸草原、森林草原、典型草原土壤有机碳均集中分布在浅表层0~40 cm,分别占0~100 cm的71%、50%、46%,而荒漠草原各层分布较均匀;黄土高原土壤有机碳含量与海拔高度呈显著正相关(p<0.01);0~40 cm土壤有机碳含量与土壤含水量呈显著正相关(p<0.01);与全氮有极显著的正相关性,相关系数达0.984 3;与年均温呈极显著负相关(p<0.01),几种草地类型100 cm深土壤有机碳含量与年降水量无明显相关。  相似文献   

17.
研究外源碳输入和气候变暖对土壤有机碳矿化的影响,对于深入理解土壤有机碳的稳定和积累机制以及其对全球变化的响应具有重要意义。通过为期35 d的室内培养试验,利用~(13)C稳定同位素标记技术,研究了华北平原典型农田和湿地土壤在15℃和25℃下的土壤有机碳矿化及激发效应。结果表明,土地利用类型(农田/湿地)、温度(15℃/25℃)和葡萄糖添加[0.4mg(C)·g~(-1)]对土壤有机碳矿化均具有显著影响。在相同培养温度下,未添加葡萄糖的农田和湿地土壤有机碳矿化无显著差异,而添加葡萄糖处理下农田土壤有机碳矿化显著高于湿地土壤。除湿地土壤在15℃下培养外,添加葡萄糖显著促进了农田和湿地土壤有机碳矿化,农田土壤有机碳矿化的激发效应显著高于湿地土壤。温度升高显著促进了农田和湿地土壤有机碳矿化,培养过程中土壤有机碳矿化温度敏感性Q10为1.2~1.6,土地利用类型和葡萄糖添加对土壤有机碳矿化温度敏感性的影响都不显著。在温度升高和外源碳输入的共同作用下,农田土壤有机碳矿化显著高于湿地土壤。  相似文献   

18.
太湖流域典型地区农田土壤有机碳变化状况研究   总被引:1,自引:1,他引:1  
刘咏梅  江南 《土壤》2009,41(5):715-718
以太湖流域某一典型区为例,研究了上世纪50年代至本世纪初农田土壤有机碳变化状况.研究结果表明,上世纪50年代至上世纪80年代初,由于大量施用化肥、有机肥用量急剧减少等原因,农田土壤有机碳含量显著降低;上世纪80年代初至2004年,由于大量粮食作物转变为蔬菜等经济作物的种植,而蔬菜等经济作物有机肥施用量较大,导致典型区农田土壤有机碳基本保持稳定甚至略有增加.肥料施用策略的变化以及种植制度的改变是导致太湖流域典型区农田土壤有机碳发生变化的主要原因.  相似文献   

19.
探明区域农田土壤有机碳密度(soil organic carbon density, SOCD)空间分布特征及其影响因素对增加农田土壤碳汇、实现“双碳”目标具有重要意义。该研究以北京市为研究区,基于2022年采样实测的0~60 cm各层SOCD数据,采用3D概念模型、Mantel test、地理加权回归、地理探测器模型开展SOCD空间变异分析,探究不同因素对SOCD的影响程度及各因素间交互后的作用力。结果表明:1)研究区SOCD在空间上呈自表层向深层逐渐降低的趋势,其中0~15 cm土层的SOCD显著高于30~60 cm(P < 0.05),0~60 cm土层的有机碳储量约为10.80 Tg。2)土壤含水率、土壤亚类、地形部位分别对0~15、15~60、45~60 cm土层的SOCD产生了显著影响(P < 0.05);土壤亚类、土壤母质、土壤质地、地形部位与SOCD的空间关联性较强,关联程度自表层向下逐渐增大。3)各重要因子交互后对研究区SOCD的解释能力呈双因子增强或非线性增强的关系,土壤亚类与其他各因子交互后对SOCD的解释能力提升最为突出。今后研究区内开展土壤有机碳空间变异等相关研究时应尽可能综合考虑多因素间的交互作用,其中土壤亚类(土壤类型)可作为重点指标。研究结果可为优化农田资源空间结构,制定农田固碳增汇措施提供科学参考。  相似文献   

20.
不同有机物料还田对华北农田土壤固碳的影响及原因分析   总被引:2,自引:3,他引:2  
中国农业面临着废弃物数量大、污染严重,农田土壤生产力低的现实问题。该研究以增加农田土壤固碳为目标对砂质农田进行有机物料还田,将秸秆、猪粪、沼渣和生物炭4种物料用尿素调节等氮还田,对农田土壤有机碳、颗粒有机碳、可溶性有机碳和微生物量碳的含量进行测定,并探究不同有机物料还田对土壤有机碳的影响原因。研究结果表明:物料还田3a后,生物炭、猪粪和沼渣处理土壤有机碳(SOC)比秸秆处理分别高262.4%、26.8%和20.7%;2014—2015年生物炭处理的土壤微生物量碳(MBC)较秸秆处理降低2.9%~35.5%,猪粪处理和沼渣处理的土壤可溶性有机碳(DOC)分别提高17.1%~60.1%和7.2%~64.8%;2014—2015年生物炭、猪粪和沼渣处理土壤颗粒有机碳(POC)较秸秆处理提高10.8%~148.2%、9.5%~58.3%和11.3%~57.6%;物料还田后,土壤总有机碳(TOC)和POC呈极显著的回归关系(R2=0.67,P0.001),土壤DOC与MBC有极显著相关性(R2=0.52,P0.001)。与秸秆还田相比,生物炭还田有利于土壤POC的累积进而促进土壤有机碳的提升,猪粪和沼渣则通过提高土壤MBC、DOC和POC的含量,促进土壤有机碳的周转和固定。从农田土壤固碳角度而言,生物炭,猪粪和沼渣还田优于秸秆还田。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号