首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
铰接式车辆静态转向阻力矩分析   总被引:3,自引:1,他引:3  
从运动学观点建立铰接式车辆在静态转向情况下的力学模型,从动力学观点分析计算双桥驱动与单桥驱动的铰接车辆静态转向阻力矩及其特点,并用实验验证了理论分析的正确性。  相似文献   

2.
为了解决重型多轴转向车辆转向杆系损坏的问题,针对其主要影响因素轮胎原地转向阻力矩进行试验研究。通过采用整车道路实测的试验方法,分析了车轮转角、轮胎垂直载荷、摩擦系数和轮胎气压等因素对轮胎原地转向阻力矩的影响。利用MATLAB软件对主要影响因素进行了试验数据拟合分析,给出了轮胎原地转向阻力矩经验公式,通过对同型号轮胎测试结果的分析验证,该公式的预测误差小于10%。为提高液压助力转向系统的安全性、可靠性和匹配性提供了理论和试验参考。  相似文献   

3.
橡胶履带行走装置转向性能分析   总被引:2,自引:1,他引:1  
基于履带车辆的转向理论,分析了转向时行走装置的橡胶履带与地面间的相互作用,得出转向时转向阻力矩的数学表达式和反映橡胶履带行走装置转向灵活性的转向比的数学表达式,为合理地确定履带的接地长度和履带轨距提供依据。  相似文献   

4.
以联合收割机液压转向系统控制过程为研究对象,从收割机转向过程前轮负载入手,对收割机转向过程前轮运动特点进行分析,建立联合收割机转向过程前轮动力学模型,计算得出转弯时前轮承受的最大阻力矩;建立收割机转向系统液压控制系统,采用PLC进行液压系统精准控制,驱动液压缸伸缩运动,带动齿轮齿条机构进行收割机前轮转向。  相似文献   

5.
为解决高速履带车辆静液驱动转向行驶控制问题,在对静液驱动履带车辆转向行驶理论分析基础上,得到了考虑转向安全性和系统最高承受压力影响的车速与相对转向半径间的相互制约关系。设计了高速履带车辆静液驱动转向控制策略,该转向控制策略由综合转向控制单元和泵、马达排量控制器相互配合实现。运用Matlab/Simulink软件对系统进行转向控制仿真分析,仿真结果表明该转向控制策略可在满足系统压力限制以及保证车辆不侧滑的条件下自动降低平均车速以保证驾驶员期望转向半径的准确实现。  相似文献   

6.
高速履带车辆静液驱动转向控制策略   总被引:2,自引:0,他引:2  
为解决高速履带车辆静液驱动转向行驶控制问题,在对静液驱动履带车辆转向行驶理论分析基础上,得到了考虑转向安全性和系统最高承受压力影响的车速与相对转向半径间的相互制约关系.设计了高速履带车辆静液驱动转向控制策略,该转向控制策略由综合转向控制单元和泵、马达排量控制器相互配合实现.运用Matlab/Simulink软件对系统进行转向控制仿真分析,仿真结果表明该转向控制策略可在满足系统压力限制以及保证车辆不侧滑的条件下自动降低平均车速以保证驾驶员期望转向半径的准确实现.  相似文献   

7.
履带式车辆接地比压在斜坡转向时的变化分析   总被引:1,自引:1,他引:1  
根据履带式车辆斜坡转向的运动特点,运用数力学中的矢量分析理论和达朗伯原理分析了接地比压为线性分布时履带式车辆在斜坡上转向时的接地比压变化规律,建立并推导了相应的动力学方程,得出了接地比压与车辆质心位置、转向半径、行进速度、加速度、车辆方位相互关系的计算公式。对某型履带式车辆进行了实例分析计算,得出了具有实际指导意义的结论。  相似文献   

8.
针对拖拉机在丘陵山区适应性差,田间地头转向半径大、易损害作物,耗时长和效率低等问题,设计了一种可原地转向的504型丘陵山地拖拉机底盘。整机采用四驱轮式行走系统,前进和后退速度为0~5 km/h,可无级调速。传动系统采用机械式“H”型传动路线,通过纵梁内外双轴的设计将左右两侧的驱动力独立分开。采用离合器式转向分动器,通过转向分动箱内的牙嵌式离合器两两组合,完成底盘不同作业状态的控制,两路动力通过正转+正转、反转+反转、正转+反转和反转+正转4种状态的组合,实现拖拉机的前进、倒退、左右大小半径转向和原地转向。结果表明,整机最大牵引力为10.78 kN,最大及最小总传动比分别为732.50和73.25,前后驱动桥传动轴最高及最低转速分别为31.07和6.21 r/min。底盘的轮距和轴距比值为1,其所受滑移阻力矩与滚动阻力矩之和小于其所受驱动力矩,可在窄小地头实现原地转向,减小拖拉机田间作业的空行程,提高作业效率,有效保护农作物。   相似文献   

9.
详细分析了轮式车辆在低速稳态条件下的滑移转向过程,建立了稳态转向数学模型,最后基于某6×6全地形车,使用建立的数学模型对其转向动力学性能进行仿真分析。仿真结果表明:转向半径越小,车辆的滑转、滑移现象越严重,车辆受到的转向阻力也越大;地面附着系数越小,车辆受到的转向阻力越小,但附着系数较小时,车辆则容易打滑,不利于转向。  相似文献   

10.
在考虑履带滑转的基础上,建立了履带车辆原地转向时的数学模型,并进行相关的运动学和动力学分析,推导出履带实际转向速度、转向角速度和滑转率的表达式均与横向偏移量S有关。列出动力学平衡方程,运用Matlab软件计算出横向偏移量S值。结果表明:在已知履带车辆结构参数λ为定值时,履带原地转向时相对应的横向偏移量S随地面参数f/μ的增大而增大;考虑履带滑转情况下的履带转向角速度是未考虑时结果的65.3%;选取不同地面参数对应的横向偏移量S在0.3~0.5之间变化时,履带车辆滑转率为30.8%~42.6%;机车主要参数已知时,对应的转向阻力矩约是传统算法下转向阻力矩的1.26倍。  相似文献   

11.
赵玉霞  张志显 《湖南农机》2015,(3):47-48,50
通过对汽车静止转向状态下汽车转向阻力矩的研究分析,介绍了常用的转向系统设计时选用的转向阻力矩公式,并引入摩擦模型进行比较。在此基础上,根据常用的轮胎模型,引入两种不同的轮胎载荷分布,利用载荷与轮胎接触斑点模型相结合进行计算,并将计算结果与经验公式结果进行比较,得出了汽车轮胎的载荷分布比较接近的理论模型,该模型对实际计算过程中不同汽车不同轮胎的经验参数的选择具有重要意义。  相似文献   

12.
主要介绍一种新型履带式联合收割机转向机构三维实体模型的建立,并采用Pro/Engineer仿真软件中的mechanism模块对该转向机构进行仿真分析,找出联合收割机在转向时随着转向半径的变化,左右履带所需的转向阻力矩、左右两侧履带速度、整车速度的变化曲线。  相似文献   

13.
本文根据驱动轮的扭矩方程式,使用微分几何的方法,确定了车辆行驶阻力和驱动轮动力半径的变化范围。在此基础上,提出了用扭矩曲线求解扭矩方程式中两个未知数——车辆行驶阻力和驱动轮动力半径的简单逼近法,并得出了这两个参数的求解方程式。  相似文献   

14.
轮式车辆稳态滑移转向特性研究   总被引:1,自引:0,他引:1  
车辆的稳态转向特性直接影响到其工作效率以及安全性.建立了轮式车辆稳态滑移转向的数学模型并提出了数值求解方法,最后基于某4×4全地形车,仿真分析了车速和转向中心线移动量对其转向性能的影响.仿真结果表明:转向半径越小,滑转、滑移越严重,车辆受到的转向阻力越大;地面附着系数越大,车辆受到的牵引力和制动力越大,转向消耗的功率更多.  相似文献   

15.
全液压转向特性测试的实验与分析   总被引:1,自引:0,他引:1  
分析全液压转向系统的特性,提出拖拉机全液压转向特性的实验测试方法及传感器在拖拉机上的安装方法,采用lab-view软件平台设计测试软件,实验测试分别在水泥硬路面与泥土软路面上进行,将所测得的数据导入到Matlab软件中绘制出不同工况下的特性曲线并对其进行了分析.结果表明:全液压转向系统的方向盘转角与油缸活塞位移有着对应的函数关系,而方向盘转矩的大小不随着轮胎转向阻力矩大小的变化而变化.这些结论对今后转向系统的研究具有非常重要的指导意义与参考价值.  相似文献   

16.
典型综合传动装置转向特性分析   总被引:1,自引:0,他引:1  
主要对几种典型传动装置的转向特点进行了分析,得出了综合传动装置的转向半径、最大转向角速度和最短时间的关系,为后续履带车辆动力性能的研究提供了可靠的理论分析依据.  相似文献   

17.
基于回正性与轻便性的前轮定位参数优化设计   总被引:8,自引:0,他引:8  
分析了作用于汽车转向轮的转向力矩并推导了转向轮回正力矩与转向阻力矩的计算模型。根据此模型得出了转向手力矩及车轮回正时残余横摆角速度与前轮定位参数的函数关系。在此基础上提出了考虑回正性能与转向轻便性的主销内倾角与后倾角的优化设计理论。根据所述理论对某轻型货车前轮定位参数进行了改进设计,试验证明优化后的汽车具有更好的回正性能与轻便性。  相似文献   

18.
二级行星转向机广泛应用在高速履带车辆上,由于转向机操纵装置结构与工作原理的限制,无法实现小制动器制动力的调节,不能实现第一位置基础上转向半径的调节,高速行驶时很难准确修正方向,影响了车辆性能的发挥。分析了某重型履带车辆行星转向机操纵装置存在的问题,设计了液压操纵装置,改造了该型履带车辆,对改造后的样车进行了实车试验,在大半径范围内,转向半径可进行无级调节。  相似文献   

19.
基于AMESim软件建立了四轮独立驱动电动汽车动力学仿真模型,并应用Matlab/Simulink建立了差动助力转向控制系统模型,在此基础上研究了旨在降低转向盘手力和辅助转向轮回正的左右前轮转矩分配控制策略,并采用后轮差动实现车辆横摆校正。联合仿真结果表明,该差动助力转向控制策略在满足转向轻便性、路感回馈及辅助回正基本要求的同时,还可以补偿前轮差动驱动对车辆稳定性的影响,提高了差动助力转向技术的实际应用能力。通过差动助力转向控制系统的快速原型实车双移线道路试验进一步验证了该系统的转向助力可行性和路感保持能力。  相似文献   

20.
差速转向履带车辆的载荷比试验   总被引:4,自引:0,他引:4  
研究了一种用于液压机械双流传动履带车辆的差速式转向机构,提出了差速转向履带车辆载荷比的计算公式和试验方案,并进行了样机试验.通过试验可知,该转向机构能够实现履带车辆任意半径的转向,在小半径转向时,不需制动功率损失即能够实现两侧履带的正、反转转向;载荷比随转向控制输入转速和转向半径变化平稳,在大半径转向时,转向半径从2.38m减小到0.6m,载荷比从1.63增加到2.64;在小半径转向时,转向半径从0.36m减小到0.25 m时,载荷比从3.09增加到4.78,而转向半径为0.25 m时,已经接近原地转向,差速转向履带车辆转向时的最大载荷比接近于4.78.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号