共查询到16条相似文献,搜索用时 75 毫秒
1.
为了解决生鲜肉多个品质参数快速、无损、同时检测的问题,该文利用双波段(350~1 100 nm和1 000~2 500 nm)可见/近红外光谱技术,结合硬件单元和编写的软件控制程序,研发了多品质参数同时检测装置,实现对双波段光谱信息的同时采集、实时处理、显示以及保存。基于该检测装置,采集覆盖生鲜肉多个品质参数的可见/近红外光谱信息(350~2 500 nm),经过平滑和标准正态变量变换(standard normal variate,SNV)预处理后,分别基于单波段和双波段光谱数据,与国家标准方法测定的猪肉颜色(L*、a*、b*)、p H值、挥发性盐基氮(total volatile basic nitrogen,TVB-N)、含水率、蒸煮损失和嫩度建立偏最小二乘(partial least square,PLS)预测模型。在此基础上,利用竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)筛选特征变量,建立简化的PLS模型,对各个品质参数的预测集相关系数分别为0.962 5、0.933 6、0.938 9、0.941 5、0.936 3、0.912 3、0.920 0和0.901 9,预测误差为0.628 7、0.757 6、0.547 1、0.078 2、2.835 4 mg/(100 g)、0.380 9%、2.560 0%和6.896 7 N。结果表明,该装置可以实现生鲜肉多个品质参数的同时检测,研究结果可为实时获取肉品品质信息,实现肉品评定和分级提供参考。 相似文献
2.
为了解决普通检测装置难以覆盖不同果径(25~95mm)柑橘的检测需求问题,研发了覆盖多果径柑橘的便携式双档位多品质无损检测装置。以砂糖橘(果径25.35~48.61mm)和武鸣沃柑(果径53.24~94.71mm)为研究对象,基于研发的双档位探头,在赤道部位每隔120°采集一次光谱,平均光谱作为该柑橘的原始光谱。经标准正态变量变换(standard normal variable,SNV)、多元散射校正(multiplicative scatter correction,MSC)预处理,再利用竞争性自适应加权抽样算法(competitive adaptive reweighted sampling, CARS)筛选特征波长,分别建立了沃柑和砂糖橘的可溶性固形物含量(soluble solids content,SSC)和水分的偏最小二乘预测模型。沃柑的SSC和水分预测模型验证集相关系数分别为0.937、0.951,均方根误差分别为0.382°Brix、0.491%;砂糖橘的SSC和水分预测模型验证集相关系数分别为0.921、0.935,均方根误差分别为0.460°Brix、0.673%... 相似文献
3.
4.
可见/近红外光谱结合遗传算法无损检测牛肉pH值 总被引:2,自引:4,他引:2
为了实现牛肉在整个货架期内(4℃环境)pH值的无损快速检测,该文采用可见/近红外光谱技术并结合遗传算法(GA,genetic algorithm),搭建了可见/近红外光谱检测系统,采集储藏在4℃下1~18d的120个牛肉样品400~1700nm范围的光谱,用不同预处理方法处理,并分别建立全波段光谱和经过遗传算法提取有效光谱的预测牛肉pH值的多元线性回归(MLR,multiple linear regression)模型、偏最小二乘回归(PLSR,partial least-squares regression)模型和最小二乘支持向量机(LS-SVM,least square-support vector machine)模型。结果表明,多元散射校正(MSC,multiplicatives catter correction)结合Savitzky-Golay(SG)平滑为最佳预处理方法,遗传算法提取光谱后所建模型的预测精度均高于全波段光谱所建模型,其中LS-SVM为最佳预测模型,其预测相关系数和标准差分别为0.935和0.111,相比全波段LS-SVM模型预测,精度得到了提高。研究表明可见/近红外光谱技术结合遗传算法所建LS-SVM预测模型能够实现4℃下牛肉整个货架期内pH值的无损快速检测。该研究为进一步开发实用的牛肉pH值无损快速检测设备提供依据。 相似文献
5.
桃在鲜果市场中占有重要份额。可溶性固形物含量(soluble solid content,SSC)是衡量桃品质的重要参数,是挑选优质桃以及预测最佳采摘时期的重要决策依据。该研究开发了一款基于可见近红外光谱技术的手持式黄油桃SSC无损检测设备。该设备的硬件系统主要由微型光谱仪、卤素灯、OLED显示屏、微控制器以及自主设计的驱动电路组成。为了评估所开发设备的检测性能,采用北京平谷区种植的黄油桃作为样品进行验证。首先,获取校正集样品在680~940 nm范围内的可见近红外光谱,经5点平均平滑和最大值归一化对光谱预处理建立黄油桃SSC偏最小二乘回归模型并用于预测集样本的SSC分析,预测相关系数和均方根误差分别为0.947和0.728%,单果检测时间不超过2 s。为了提高模型精度和稳定性,将校正集和预测集合并后作为新的校正集进行建模,并将重新构建的模型对独立验证集进行预测,SSC预测值与实测值的相关系数为0.906,均方根误差为0.732%。采用分段直接校正算法将主机模型传递到从机。经过模型传递后,从机对独立验证集SSC的预测值与实测值的相关系数和均方根误差分别为 0.865和0.919%。该手持式SSC检测设备可将SSC预测数据以蓝牙方式传输到手机客户端,借助手机定位功能,在地图上实现黄油桃SSC空间可视化分布。研究结果表明,该手持式SSC无损检测设备可以实现黄油桃SSC的准确测量,借助模型传递算法。实现了模型在不同设备间的有效传递,避免了重复建模,可为该设备批量生产节约大量成本,具有广阔的应用前景。 相似文献
6.
针对近红外光谱技术在生鲜肉品质检测中预测模型适用范围窄、检测指标单一、模型稳定性差、难以有效应用于生产检测等问题,本研究采集不同月龄宁夏滩羊宰后3个时期4个部位肉的可见-近红外光谱信息,测定色泽、pH值、蒸煮损失、剪切力以及蛋白质、粗脂肪和水分含量,利用2个波段(370~1 050 nm、900~1 700 nm)的光谱数据分别构建各个指标的偏最小二乘回归(PLSR)预测模型以实现滩羊肉多品质指标同步无损检测。结果表明,两波段中各品质指标的PLSR预测模型相关系数(R)均大于0.80,第二波段中水分含量PLSR模型预测集R可达0.941;两波段中各品质指标预测模型的性能较好,其中370~1 050 nm波段的光谱数据对样品色泽参数预测效果更好。综上所述,可见-近红外光谱技术可实现滩羊肉7个品质指标的快速无损检测。本研究结果为滩羊肉品质控制和滩羊屠宰加工企业优质特色产品的生产提供了技术支撑。 相似文献
7.
为实现苹果多产地多品质指标的现场快速无损检测与评价,该研究基于可见近红外光谱技术研发低成本、低功耗、小型化的苹果品质手持式无损检测终端。检测终端集成宽谱LED光源和水果特征响应窄带光电探测器,接入物联网云端数据系统,实现检测数据上传和模型的远程更新维护。利用研制的检测系统可有效获取不同产区苹果500~1 050 nm波长范围内的漫反射光谱,优选光谱预处理算法消除干扰并采用不同特征波长提取算法对数据进行降维,分别建立了多产地苹果可溶性固形物含量、硬度和维生素C含量的通用检测模型,模型的预测相关系数分别为0.926、0.798和0.704,预测均方根误差分别为0.585%、1.405 kg/cm2和0.968 mg/100g。将通用检测模型载入云端数据系统作为云模型,检测样本时调用云模型进行计算并反馈至检测终端。通过多个产地独立样本的验证表明,该系统可满足苹果产业现场无损检测的实际需求,为手持式光谱检测仪的实用化设计提供参考。 相似文献
8.
便携式生鲜猪肉多品质参数同时检测装置研发 总被引:2,自引:3,他引:2
针对农畜产品检测现场的需求,基于可见/近红外光谱检测技术和嵌入式系统,开发了灵活方便的猪肉品质无损检测装置。该装置利用卤素灯作为光源,新型光导探头和微型光谱仪采集肉样光谱信息,通过ARM(advanced RISC machines)控制处理器进行集中控制和数据的处理;在内嵌linux操作系统上,采用Qt开发工具,设计出人性化的交互界面,并将猪肉品质的检测结果输出到装置触摸屏上。为了建立多品质无损检测数学模型,获取了猪肉里脊在400~1 000 nm波长范围内的光谱数据,通过国标方法测得猪肉里脊主要品质参数颜色(L*、a*、b*)和p H值,采用标准正态变量变换(standard normalized variate,SNV)和Savitzky-Golay(S-G)平滑对光谱数据进行预处理,并结合理化数据建立偏最小二乘(partial least squares regression,PLSR)模型。用全交叉验证法选取PLSR建模的主成分数。p H值、L*、a*和b*的预测相关系数为0.88、0.90、0.97和0.97,预测标准差为0.19、1.77、1.17和0.63。通过现场试验表明,轻便式多品质无损检测装置具有较高的检测精度,满足于猪肉的颜色和p H值等品质参数检测的要求。 相似文献
9.
可见/近红外光谱技术无损检测果实坚实度的研究 总被引:7,自引:2,他引:7
该研究的目的是建立可见/近红外光谱与梨果实坚实度之间的数学模型,评价可见/近红外光谱技术无损测量梨果实坚实度的应用价值。在可见/近红外光谱区域(350~1800 nm),试验对比分析了不同测量部位、不同光谱预处理方法和不同校正建模算法的梨果实坚实度校正模型。结果表明:赤道部位吸光度一阶微分光谱的偏最小二乘回归所建梨果实坚实度校正模型的预测性能较优,其校正和预测相关系数分别为0.8779和0.8087,校正和预测均方误差分别为1.0804 N和1.4455 N。研究表明:可见/近红外光谱技术无损检测梨果实坚实度是可行的。 相似文献
10.
柿子可溶性固形物含量的可见-近红外光谱检测 总被引:3,自引:0,他引:3
为了实现柿子(Diospyros kaki thunb)可溶性固形物含量的快速无损检测,提出了一种采用可见-近红外光谱分析技术无损检测柿子可溶性固形物含量的方法。采用Field Spec 3光谱仪对3种不同品种的柿子进行光谱分析,共获取66个样本数据。利用平均平滑法对样本数据进行预处理,再采用主成分分析法,依据可信度获取光谱的6个主成分数据。将样本随机分成51个建模样本(每种各17个)和15个验证样本(每种各5个),把6个主成分数据作为BP神经网络的输入变量,柿子的可溶性固形物含量作为输出变量,隐含层的节点数为11,建立3层BP神经网络检测模型,并用该模型对15个验证样本进行预测。结果表明,所建校正模型的校正标准差(SEC)为0.232,对预测集样本可溶性固形物含量的预测相对误差在3%以下,预测值和实测值的决定系数(R2)为0.99,预测标准差(SEP)为0.257。结果表明应用近红外光谱技术结合主成分分析和神经网络算法检测柿子的可溶性固形物含量是可行的。 相似文献
11.
品质监测对茶鲜叶适时采摘和茶叶加工品控具有重要意义。该研究基于可见/近红外光谱技术,研发了便携式茶鲜叶品质无损检测装置。该装置分为主机和手柄2部分,主机大小约240 mm×250 mm×240 mm,包括光谱仪、光源、可充电锂电池、稳压板和散热风扇;手柄大小约130 mm×100 mm×30 mm,包括光纤探头、金属灯杯、白参考板和外触发按钮。基于该设备,采集了茶鲜叶500~900 nm范围内可见/近红外漫反射光谱,对比了归一化(Normalize,NOR)、一阶导数(First Derivative,FD)、标准正态变量变换(Standard Normal Variable Transformation,SNV)和概率商归一化(Probabilistic Quotient Normalization,PQNOR)等不同光谱预处理方法对茶叶光谱的处理结果,建立了茶鲜叶干物质含量、水浸出物含量、茶多酚含量的偏最小二乘定量预测模型。结果表明,PQNOR预处理后建立的偏最小二乘预测模型精度最好,干物质、水浸出物和茶多酚含量预测模型在验证集的相关系数分别为0.905、0.896和0.747,均方根误差分别为0.860%、0.559%和0.549%。在茶园对装置的精度进行了现场测试,单片茶鲜叶检测时间约为1 s,干物质、水浸出物和茶多酚含量预测值与测量值的均方根误差分别为0.903%、0.634%和0.551%。该装置可以实现茶鲜叶光谱原位采集和干物质含量、水浸出物、茶多酚的定量分析,对及时掌握茶树生长情况、辅助决策采茶方案和保障茶叶品质具有重要作用。 相似文献
12.
针对探针式土壤水分传感器插入土壤后因反馈点固定而需大量布点、成本高、破坏耕层等问题,该研究提出一种基于法布里-珀罗干涉近红外传感器的非接触式土壤墒情在线检测系统。系统硬件部分由机载自动检测装置、电气控制箱和北斗双天线实时差分定位系统(Real Time Kinematic,RTK)组成。整套系统样机的试制包括:传感器的选型和模块设计封装、升降检测装置设计、传感器避障与采样点北斗定位、土壤含水量预测建模、软件中的二次开发和系统与润禾2ZBA-2型移栽机的集成等。田间试验结果表明:当移栽机以0.3 m/s速度行进时,土壤水分传感器参比校准后进行土壤水分的测定,5 s内工控机上实时显示水分含量值,水分含量预测值与实测值的相对误差范围为0.18%~14.46%,平均相对误差7.77%,所测水分值结合北斗RTK系统测得的定位坐标生成土壤表层含水率分布图,为后续喷灌、滴灌等变量灌溉提供参考依据。 相似文献
13.
利用近红外光谱技术检测掺假豆浆 总被引:2,自引:1,他引:2
为了对豆乳内在营养指标及掺假豆乳进行快速检测,试验运用近红外光谱技术,利用偏最小二乘法进行回归分析,分别建立83个真伪豆浆样品的蛋白质和总固形物含量定标模型,并对模型的预测性能进行分析。结果表明:选取主成分数为12和14,蛋白质和总固形物含量的近红外光谱预测值与化学实测值之间的相关系数R分别为0.9756和0.9489,校正均方根误差分别为0.186和0.175,预测集样品的预测值和实测值之间的残差值均较小、接近零,残差之和分别为-0.074和-1.191,说明建立的定标模型可以准确预测豆浆中蛋白质和总固形物含量,且预测性能较好;通过对预测集样品的预测值与豆浆行业标准规定值相比较,确定预测集样品中掺假豆浆的正确判别率为100%,说明建立的蛋白质和总固形物含量定标模型可以应用于掺假豆浆的判别检测,且判别结果准确率高。本试验表明利用近红外光谱技术可实现对豆浆主要品质指标的快速无损检测,也可准确进行真伪豆浆的快速判别,本检测方法可为豆乳行业健康持续发展提供一定的技术支撑。 相似文献
14.
便携式生鲜肉品质无损快速检测装置的设计 总被引:3,自引:1,他引:3
针对生鲜肉检测部门对可移动、便携式检测设备的实际需求,设计了基于ARM处理器便携式生鲜肉品质无损快速检测装置。介绍了该装置的工作原理、硬件构成、软件系统和功能测试。硬件系统由ARM控制处理单元、光源及检测单元、光谱数据采集单元、LCD触摸屏显示单元和散热单元组成,设计了Linux操作系统和生鲜肉品质参数采集处理应用程序。该系统可实现脱离计算机采集光谱信号、存储、显示及处理分析一体化的功能。该装置体积为184 mm×127 mm×114 mm,装置质量约为3.5 kg。以批量样品验证装置检测精度,试验结果表明,颜色L*、a*、b*3个参数的均方根误差分别为1.49、1.09和0.59,平均检测一个样品时间约为1 s。该装置可以快速获得样品参数,具有体积小、便携、无损伤、快速检测的特点,可用于生鲜肉品质的便携式检测。 相似文献
15.
果蔬品质手持式近红外光谱检测系统设计与试验 总被引:5,自引:7,他引:5
为满足果蔬加工过程快速检测和质量控制的实际需求,研发近红外光谱技术的低成本、实用化、小型化的果蔬品质手持式检测系统。在分析当前近红外光谱实用化过程的瓶颈问题的基础上,提出果蔬品质的手持式检测系统设计方案,阐述了硬件系统选择和软件系统构建,介绍了检测系统的工作原理;选用近红外微机电系统的数字微镜器件作为分光元件,以单点探测器获取检测信息,从而实现光谱检测系统的微型化设计和系统成本的显著降低。以检测番茄为例,利用设计的手持式检测系统,获取番茄900~1 700 nm范围的近红外光谱,利用先选择特征波段再优选波长的建模策略,分别建立了番茄中番茄红素和可溶性固形物含量的定量检测模型;可溶性固形物含量模型的预测相关系数和预测均方根误差分别为0.899和0.133%;番茄红素模型的预测相关系数和预测均方根误差分别为0.886和2.508 mg/kg。研究表明该系统能够满足果蔬品质的快速无损检测要求,可为实用化、小型化的手持式光谱检测仪设计和开发提供参考。 相似文献
16.
黄桃表面缺陷和可溶性固形物光谱同时在线检测 总被引:1,自引:2,他引:1
表面缺陷和可溶性固形物是评价黄桃品质的重要指标,采用可见/近红外漫透射光谱技术,探讨黄桃表面缺陷与可溶性固形物同时在线检测的可行性。在运动速度为5个/s、积分时间100 ms、光照强度1 000 W的条件下采集黄桃表面缺陷果与正常果的近红外漫透射光谱。对比分析了同一个黄桃样品损伤前后的光谱特征,建立了黄桃的最小二乘支持向相机判别模型与偏最小二乘判别模型。同时建立了黄桃可溶性固形物偏最小二乘回归模型并采用连续投影算法对模型进行优化,研究了表面缺陷果对黄桃可溶性固形物检测模型精度的影响,最终实现了黄桃表面缺陷与可溶性固形物同时在线检测。采用未参与建模的样品来评价模型的在线分选的准确性,其中表面缺陷果的正确判断率为100%,可溶性固形物分选准确率达到93%。试验结果表明:黄桃表面缺陷与可溶性固形物同时在线检测是可行的,研究可为黄桃在线分选提供技术参考和理论依据。 相似文献