首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sorghum is cultivated on Vertisols in the Ethiopian Highlands. An experiment was conducted in the Gumara-Maksegnit watershed in 2013 and 2014 to assess the effect of rate and timing of nitrogen fertilizer application on the possibility to shorten the maturity period and to improve the productivity of sorghum. The experiment was laid out as Randomized Complete Block Design with three replications. Treatments were nitrogen doses between 0 and 87 kg N ha?1 as urea applied at planting, at knee-height stage or in split doses at both stages. Results showed that application of 23, 41, 64 and 87 kg ha?1 N gave a yield increase of 40, 53, 62 and 69% over the control (0 kg N ha?1), respectively. In addition, split application of 41 kg ha?1, 64 kg ha?1 and 87 kg ha?1 of nitrogen fertilizer, half at planting and half at knee height stage, gave 19%, 15% and 18% increase in sorghum grain yield over a single dose application, respectively. Applying 87 kg ha?1 nitrogen fertilizer with split application half at planting and half at knee height stage, along with 46 kg ha?1 of P2O5, gave the highest grain yield and income.  相似文献   

2.
Abstract

Optimisation of water and nitrogen use is an effective management tool to conserve resources and reduce environmental pollutions. Response surface methodology (RSM) is defined as a collection of mathematical and statistical methods that are used to develop, to improve or to optimize a product or process. In order to determine optimum levels of water, nitrogen and planting density of canola (Brassica napus L.), a 2-year experiment (2010–2011) was carried out by central composite design as RSM at the research station of Ferdowsi University of Mashhad. The treatments were designed based on low and high levels of irrigation (1500 and 4000 m3 ha?1), nitrogen (0 and 400 kg N ha?1) and density (50 and 150 plant m?2) as independent variables. Furthermore, seed yield, nitrogen losses, nitrogen use efficiency (NUE) and water use efficiency (WUE) were measured as response variables in a full quadratic polynomial model. Optimum levels of irrigation, nitrogen and planting density were suggested to achieve the target range of dependent variables based on three scenarios: economic, environmental and eco-environmental. The results showed that increasing irrigation and fertilizer led to an increase in seed yield and nitrogen losses, whereas increasing canola density resulted in an increase in seed yield but a decrease in nitrogen losses. The optimum levels of water, fertilizer and density based on environmental scenario were 1802 m3 ha?1, 11 kg N ha?1 and 122 plant m?2, respectively. To achieve optimum conditions under the economic scenario, it is necessary to use 3411 m3 water ha?1, 178 kg N ha?1 and 119 plant m?2. Amounts of 2347 m3 water ha?1, 92 kg N ha?1 and 114 plant m?2 were found to be the optimum conditions for the eco-environmental scenario. In general, it seems that resource use based on the eco-environmental scenario may be the most favorable cropping strategy for canola production.  相似文献   

3.
There is a great potential for greenhouse tomato fruit yield improvement in China for the low yield per hectare. We evaluated the effects of multi-factors (plant density, nitrogen (N) and K2O fertilizer) on fruit yield of tomato (Lycopersicon esculentum Mill. cv. Jinfan 4) by response surface methodology with a 5-level-3-factor central composite design. A multivariate quadratic regression model of fruit yield was established. Results showed that N fertilizer was the most significant for fruit yield, followed by K2O fertilizer and plant density. Fruit yield showed a parabolic trend with increasing fertilizer levels or plant density. There was a significant interaction effect between plant density and fertilizer levels. Optimal conditions were obtained: 4.83 × 104 plants ha?1 for density, 262 kg ha?1 for N and 513 kg ha?1 for K2O. Under these conditions, the predicted fruit yield was 119,381 kg ha?1, while the actual fruit yield from verification test was 121,005 kg ha?1.  相似文献   

4.
Corn (Zea mays L.) is planted in two seasons per year in northern Iran (mid-April as a main crop and mid-June as a second crop). The main objective of this study was to determine whether corn yield response would differ between these two seasons and different plant populations. Two field experiments were conducted at the Agricultural Research Center of Golestan – Iran in 2007 and 2008 at different planting densities. The results showed that the values of grain yield and most traits were significantly lower in the second season. Maximum grain yield was observed at planting densities of 6.5 plants m?2 in the first season, whereas in the second season grain yield was the same for planting densities between 2.5 and 12.5 plants m?2. Based on the second-year experimental results, the following functions were fitted to show the relationship between yield ha?1 (Y) and planting densities (X) for the first and second seasons, respectively: (Y = ?167.6X 2 + 2672.2X + 511.77; R 2 = 0.992) and (Y = 1200.1 ln(X) + 2924.4; R 2 = 0.935). This study found that the optimum plant population was 6.5 plants m?2 under low heat stress, and should be reduced to 2.5–4.5 plants m?2 under heat stress conditions.  相似文献   

5.
Farmers are looking for better management practices to utilize animal manure as an alternative to chemical fertilizers. A 2-year field experiment was conducted to study the effects of nitrogen (N) fertilizer source and application methods to Nicholson silt loam soil in central Kentucky, USA for no-till corn (Zea mays) production. The region has a temperate climate with a mean temperature of 14.5°C and rainfall of 1300 mm year?1. Treatments included a control, 179 kg N ha?1 urea ammonium nitrate (UAN) applied as preplant and sidedress, and swine effluent that was applied by three methods: broadcast, injection, and Aerway. Injection method produced the greatest corn grain yield (11.88 Mg ha?1) and biomass yield (18.9 Mg ha?1) in 2007. Results demonstrated that the effluent application methods and the timing of UAN application may not be agronomically important for corn production in this region. Hence, more studies are needed on different soils in this region.  相似文献   

6.
Variable corn emergence results in decreased yields. This study was conducted to determine corn (Zea mays L.) by-plant yield reduction arising from delayed emergence. Treatments included delayed planting of 0, 2, 5, 8, and 12 days at two nitrogen (N) rates. Corn was planted by hand to maintain 17.8 cm plant-to-plant competition. Fifteen plants within a row were divided into five 3-plant sequences (middle plant delayed and 2-adjacent non-delayed plants). Under irrigation, grain yields decreased when the middle plant was delayed 2, 5, 8, and 12 days, by 3, 10, 19, and 25%, respectively. At the rainfed site, grain yields decreased when the middle plant was delayed 2, 5, 8, and 12 days, by 14, 25, 23, and 11%, respectively. Over all sites and years, for each day delay in emergence (one out of every 3 plants), corn grain yields decreased 0.225 to 1.379 Mg ha?1 day?1.  相似文献   

7.
With respect to the important effects of nitrogen (N) on plant growth and fruit production, a five-year experiment was performed to evaluate the effects of different sources of N fertilization including chemical and organic on the quantity and quality of citrus fruit. Using five-year old trees, different types of fertilization including ammonium sulfate, urea coated with sulfur, ammonium nitrate and manure were tested using seven treatments in five replicates from 2002 to 2007. Different plant quantitative and qualitative parameters were determined. The most effective strategy on fruit yield production was the use of urea coated with sulfur and manure with 92.46 kg ha?1 fruit yield followed by ammonium sulfate and manure (87.06 kg ha?1) and ammonium sulfate (86.43 kg ha?1). The combination of mineral and organic fertilization may be the most suitable fertilization strategy for citrus production.  相似文献   

8.
Yield, dry matter production, nitrogen (N) uptake and nitrogen use efficiency (NUE) of Bangladesh Rice Research Institute (BRRI) dhan29 were investigated during two consecutive dry (Boro) seasons of 2009–10 and 2010–11. The experiments were set up in a randomized complete block design with three replication having six nitrogen (N) levels of 0, 40, 80 120, 160 and 200 kg ha?1. Nitrogen fertilization increased yield characters, dry matter production and N uptake. The economic optimum rate of N was 166 and 155 kg ha–1 in first and second year, respectively, with corresponding yield of 7.1 and 6.5 t ha?1. NUEs were higher in the first year, decreased with increasing N rates in most cases. Gross return over fertilizer reached the highest Tk 692 in 2009–10 and Tk 489 in 2010–11 with 160 kg N ha–1. The results suggest that BRRI dhan29 should receive an average of 160 kg N ha?1 for economic optimum yield.  相似文献   

9.
We evaluate the feasibility of using foliar-applied molybdenum, (Mo) instead of side-dressed nitrogen (N) in three experiments. In soils with native rhizobia, plants received 0, 30, 60, 90 or 120 kg N ha?1 with +Mo (80 g ha?1) or -Mo. N concentration in leaves (NCL) -Mo ranged from 35.1 to 42.5 g kg?1 and NCL +Mo from 40.3 to 49.2 g kg?1; yield -Mo ranged from 1560 to 3350 kg ha?1and yield +Mo from 2829 to 3567 kg ha?1. In two experiments, NCL or yield -Mo increased linearly or quadratically with increasing N rates, but NCL or yield +Mo did not. In one experiment, NCL increased linearly with increasing N rates and 16% with +Mo relative to –Mo, but yield was not affected significantly. Our results suggest that using Mo fertilizer instead of side-dressed N can allow common bean plants to meet crop demands for N to support yields as high as 3000 kg ha?1.  相似文献   

10.
A field experiment was conducted at the Arkansas Valley Research Center in 2005 through 2007 to study the effects of manure and nitrogen fertilizer on corn yield, nutrient uptake, N and P soil tests, and soil salinity under furrow and drip irrigation. Manure or inorganic N was applied in 2005 and 2006 only. There were no significant differences in corn yield between drip and furrow irrigation even though, on average, 42% less water was applied with drip irrigation. Inorganic N or manure application generally increased grain yield, kernel weight, grain and stover N uptake, and grain P uptake. Nitrogen rates above 67 kg ha?1 did not increase grain yield significantly in 2005 or 2006, nor did manure rates in excess of 22 Mg ha?1. High manure rates increased soil salinity early in the season, depressing corn yields in 2005 and 2006, particularly with drip irrigation. Salts tended to accumulate in the lower half of the root zone under drip irrigation. Residual nitrate nitrogen from manure and inorganic N application sustained corn yields above 12.0 Mg ha?1 in 2007. More research is needed to develop best manure and drip irrigation management for corn production in the Arkansas Valley.  相似文献   

11.
Appropriate nitrogen (N) management practices are of critical importance in improving N use efficiency (NUE), maize (Zea mays) yield and environmental quality. A six-year (2005–2010) on-farm trial was conducted in Ottawa, Canada to assess the effects of N rates and application methods on grain yield and NUE. In four out of the six-year study, grain yield increased by 60–77 kg ha?1 by sidedress, compared to 49–66 kg ha?1 for each kg N ha?1 applied at preplant. Grain yield response to N between the two strategies was similar in the other growing seasons. Sidedress strategy required 15 kg N ha?1 less of the maximum economic rate of N (MERN) than preplant application. Our results indicate that sidedress application of 90–120 kg N ha?1 with a starter of 30 kg N ha?1 resulted in greater yield, grain quality and NUE than preplant N application in this cool, humid and short growing-season region.  相似文献   

12.
In order to investigate the changes in chlorophyll fluorescence, chlorophyll, relative water content (RWC) and forage yield of corn and sorghum under various irrigation regimes and combination treatments of barley residue, zeolite and superabsorbent polymer, an experiment was conducted over 2 years in Kerman, Iran. A randomized complete block design arranged in a factorial split was used with three replications. Two irrigation regimes of normal and drought stress based on 70 and 140 mm cumulative pan evaporation, respectively, and two plant species (corn and sorghum) as factorial combinations were compared in the main plots. Five treatments, (1) 10 t ha?1 zeolite + 4.5 t ha?1 residue, (2) 60 kg ha?1 superabsorbent + 4.5 t ha?1 residue, (3) 5 t ha?1 zeolite + 30 kg ha?1 superabsorbent + 4.5 t ha?1 residue, (4) 4.5 t ha?1 residue and (5) – control, were compared in subplots. In both plants, forage yield, potential quantum yield (Fv/Fm), chlorophyll a, total chlorophyll and carotenoid contents decreased significantly under drought stress. Chlorophyll a content, SPAD index and Fv/Fm were higher in corn than in sorghum, but RWC was higher in sorghum. Corn produced higher forage yield (62.8 t ha?1) than sorghum (49.3 t ha?1). The application of 10 t ha?1 zeolite with 4.5 t ha?1 residue increased most traits more than any of the other treatments, but the superabsorbent had no significant effect on the studied traits.  相似文献   

13.
Maize yield is often limited by zinc (Zn) deficiency. The objectives of this study were to (i) evaluate maize yield response to Zn applied at four different rates, (ii) evaluate the yield response and agronomic efficiency of maize to the application of a complex fertilizer, MicroEssentials SZ (12N–40P–0K–10S–1Zn), compared to different rates of monoammonium phosphate (MAP) + ammonium sulfate (AS) + zinc sulfate (ZnSO4), and (iii) evaluate the association between tissue Zn concentration and soil-test Zn with the maize response to Zn fertilizer. Eleven experiments were carried out during the 2010, 2011, and 2012 growing seasons throughout eight states in the USA. Treatments consisted of four Zn rates of a physical blend of MAP + AS + ZnSO4 (0, 2.24, 4.48, 6.72, and 11.2 kg/ha Zn) and MicroEssentials SZ at a Zn rate of 2.24 kg/ha Zn. Nitrogen, phosphorus (P), and sulfur (S) rates were balanced across treatments (40 kg/ha P, 22 kg/ha S) and fertilizers were broadcast and incorporated immediately prior to planting. Treatment and location main effects were significant (P < 0.001) on corn yields, whereas the interaction treatment × location was not (P = 0.33). Maize responded positively to Zn fertilization; average yields across locations increased from 10,540 kg ha?1 without Zn to 11,530 kg ha?1 with 11.21 kg Zn ha?1 applied as a physical blend. The yield response and Zn agronomic efficiency of maize with the application of the complex fertilizer at a rate of 2.24 kg Zn ha?1 averaged 1004 kg ha?1 and 448 kg maize kg Zn?1, respectively, significantly higher (P < 0.1) than the yield response and Zn agronomic efficiency with the application of a physical blend with the same Zn rate, which averaged 293 kg ha?1 and 131 kg maize kg Zn?1, respectively. The Zn concentration in plant tissue of unfertilized plots varied greatly and was not related to the maize response to Zn fertilizer (r = 0.01; P = 0.98). With respect to soil Zn, a negative but nonsignificant relationship was found between maize response to Zn fertilizer and soil-test Zn (r = ?0.51; P = 0.16).  相似文献   

14.
The objective of this study was to determine the effect of nitrogen (N) application source and rate on silage corn (Zea mays L.). Urea, ammonium nitrate, and ammonium sulfate were compared at 50, 100, 150, and 200 kg N ha?1. The application of ammonium sulfate produced the highest plant height, leaf area index (LAI), total yield, and stem, leaf, and ear dry matter, followed by ammonium nitrate and urea. However, nitrogen sources had no marked effects on the content of protein, ash, oil, soluble carbohydrates, acid detergent fiber (ADF) and neutral detergent fiber (NDF). As the rate of nitrogen increased plant height, LAI, total yield, and stem, leaf, tassel, and ear dry matters, and protein, ash and oil contents increased while soluble carbohydrates, ADF, and NDF contents decreased. Ammonium sulfate was the most effective N source on production and 200 kg N ha?1 was the most effective N rate on corn yield and quality.  相似文献   

15.
Experiments were conducted to test the superiority of treatment combinations of nitrogen (N; 0, 50, 100, 150, 200 kg ha?1), phosphorus (0, 30, 60, 90 kg ha?1) and potassium (0, 30, 60 kg ha?1) for finger millet during 2005–2007. Application of 200-90-60 kg ha?1 gave maximum yield of 1666, 1426 and 1640 kg ha?1 in 3 years, respectively. The yield regression model through soil and fertilizer nutrients gave predictability of 0.98, 0.97 and 0.98, with sustainability yield index (SYI) of 50.4, 49.4 and 52.5 in 2005, 2006 and 2007, respectively. Optimum nitrogen, phosphorus and potassium (NPK) doses for attaining yields of 800 and 1200 kg ha?1 were derived at soil nitrogen, phosphorus and potassium of 75–400, 10–70 and 150–750 kg ha?1. Fertilizer nitrogen, phosphorus and potassium ranged from 30–128, 3–19, 13–25 kg ha?1 and 105–203, 4–32, 27–39 kg ha?1 for attaining 800 and 1200 kg ha?1 yield, respectively. The doses could be adopted for attaining sustainable yields under semiarid Alfisols.  相似文献   

16.
With regard to the low cation-exchange capacity and large saturated hydraulic conductivity of sandy soils, a field experiment was carried out in 2006–2007 to determine the impact of zeolite on nitrogen leaching and canola production. Four nitrogen (N) rates (0, 90, 180, and 270 kg ha–1) and three zeolite amounts (3, 6 and 9 t ha?1) were included as treatments. The results demonstrated that the highest growth parameters and seed yield were attained with 270 kg N ha?1 and 9 t zeolite ha?1. However, the highest and the lowest seed protein percentage and oil content were obtained with 270 kg N ha?1 accompanied by 9 t zeolite ha?1, respectively. Nitrate concentration in drained water was affected by nitrogen and zeolite. The lowest and highest leached nitrate values were found in control without N and zeolite (N0Z0) and in treatments with the highest N supply without zeolite (N270Z0), respectively. In general, nitrogen-use efficiency decreased with an increase in N supply. Application of 9 t zeolite ha?1 showed higher nitrogen use efficiency than other zeolite amounts. Also, application of more N fertilizer in soil reduced nitrogen uptake efficiency. In total, application of 270 kg N ha?1 and 9 t zeolite ha?1 could be suggested as superior treatment.  相似文献   

17.
The optimum dose of nitrogen (N) and phosphorus (P) for Withania somnifera was determined by utilizing graded levels of 0, 30, 45 and 60 kg ha?1 N and 0, 13, 26 and 40 kg ha?1 P in two separate simple randomized pot experiments. Soil-application of 45 kg N ha?1 and 26 kg P ha?1 proved the best dose for increasing shoot and root length, leaf area, fresh and dry weight of shoot and root, total chlorophyll and leaf-N, P, and potassium (K) content, nitrate reductase, and carbonic anhydrase activity, total alkaloid content, seed-yield per plant, root- yield per plant and berries per plant. While 30 kg N ha?1 proved best for root length, fresh and dry weights, as well as root-yield per plant. However, the effect of N and P fertilizers on carotenoid content, seeds per berry and 100-seed weight were insipid. Leaf- P remained unaffected by nitrogen application.  相似文献   

18.
ABSTRACT

Corn (Zea mays L.) production recommendations should be periodically evaluated to ensure that production practices remain in step with genetic improvements. Since most of the recent increases in corn grain yield are due to planting at higher densities and not to increased per-plant yield, this study was undertaken to measure the effects of plant density and hybrid on corn forage and grain yield and on nutrient uptake. Plant density (4.9, 6.2, 7.4, and 8.6 seeds m?2) and hybrid relative maturity (RM) [early (108 day RM); medium (114 day RM); and late (118 day RM)] combinations were evaluated over five site-years under irrigated and non-irrigated conditions. The interaction of hybrid with plant density was never significant for grain, stem, or leaf biomass. The latest RM hybrid out-yielded the medium and early hybrids by 550 and 1864 kg ha?1, respectively. Grain yield was highest at 8.6 plants m?2. Total stem yield was also greatest at the highest plant density but by only 340 kg ha?1 more than at 7.4 seeds m?2. Based on grain yield response over sites, the estimated optimum density was 7.6 seeds m?2, which is 0.7 seeds m?2 higher than the current recommendation at this average yield level (11.5 Mg ha?1). Grain nitrogen (N), phosphorus (P), and potassium (K) uptakes were highest for the medium RM hybrid. Nutrient uptake levels varied by planting density, with the lowest levels observed at the lowest and highest plant densities. At 4.9 seeds m?2, the reduced uptake is explained by lower biomass yields. At the 8.6 seeds m?2 rate, N and K levels may have been lower due to dilution.  相似文献   

19.
A field experiment was conducted to study different manures and inorganic fertilizers effect on damask rose during 2008–2012. The rose essential oil (EO) was obtained by hydro distillation in Clevenger type apparatus and the components in the rose oil were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). Application of 90:80:90 kg nitrogen: phosphorus: potassium (NPK) ha?1 outshine all other treatments and recorded significantly higher flower and oil yield as compared to control. EO yield was also significantly correlated with flower yield plant?1, number of flowers plant,?1 and flower yield ha?1. The higher percentage of citronellol+nerol was obtained by the application of 120:40:90 kg NPK ha?1. Geraniol (26.2%) was maximum when the plants were fertilized with 90:40:90 kg NPK ha?1. Citronellol+nerol/geraniol ratio was also high in fertilized plots. Furthermore, manure application resulted in a marked improvement in chemical properties (pH, percent organic carbon, available N, P, and K) of the soil.  相似文献   

20.
Environmental stresses, such as salinity, are becoming critical constraints to plant production especially in arid and semi-arid regions, one of the main targets of agricultural studies is to combat the environmental stresses on plants. An open field experiment was carried out to study the influence of sulfur (S) and urea on red cabbage plants under salt stress. The experiment was arranged as a split-plot design with three replications, the main plots included sulfur levels (0, 350, and 700 kg ha?1), while subplots included urea levels (0, 1, 2, and 4 g L?1). Results showed that urea spraying and sulfur soil additions resulted in improvement of growth and yield, and raised the level of potassium and nitrogen while lowering sodium content in plant leaves under salt stress conditions. Generally, larger and heavier heads were found with the application of 700 kg ha?1 sulfur and 2 g L?1 urea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号