首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine if treatment with silicon (Si) may improve nutrient uptake by soybean under ultraviolet-B (UV-B) radiation stress. Soybean (Glycine max L.) cultivars, ‘Kennong 18’ (K 18) and ‘Zhonghuang 13’ (ZH 13), were grown in hydroponic cultures under ambient and supplemental levels of ultraviolet-B (UV-B, 280–315 nm) with and without Si. Supplemental UV-B radiation simulating 30% stratospheric ozone depletion significantly decreased plant biomass by 74.9 to 135.6%, increased leaf nitrogen (N) and phosphorus (P) by 9% and 16%, respectively, decreased leaf magnesium (Mg) contents by 9%, and calcium (Ca) by 24%. UV-B radiation caused a substantial increase in the allocation of P, potassium (K) and Ca to roots compared with stem and leaves, presumably to ensure sustained nutrient uptake under the stress. Silicon application improved the uptake of P and Mg by 11%, which favored the partitioning of dry mass to shoots under UV-B radiation and the allocation of tissue P and Ca to roots. The overall changes due to Si supported a reasonable increase in dry mass of the ‘K 18’ cultivar.  相似文献   

2.
通过大田模拟试验,研究UV-B增强下施硅对大麦抽穗期叶片净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、胞间二氧化碳浓度(Ci)和水分利用效率(WUE)日变化的影响。UV-B辐射设2个水平即自然光(对照,A,1.5kJ·m-2)和UV-B增强(E,增强20%,1.8kJ·m-2),施硅量设2个水平即Si0(不施硅)和Si1(150kg·hm-2SiO2)。结果表明,不施硅情况下(Si0),UV-B增强处理的Pn、Tr、Gs和WUE的日平均值比自然光(A)处理分别下降23.13%、7.66%、1.07%和16.38%,而施硅情况下(Si1)则分别下降10.52%、5.71%、3.77%和12.15%,说明UV-B增强可降低大麦叶片的净光合速率、蒸腾速率和水分利用效率,而施硅可缓解UV-B增强对大麦净光合速率的抑制作用,但并不能缓解UV-B增强对大麦蒸腾作用以及气孔导度的抑制。研究结果对进一步研究UV-B增强下施硅对大麦产量和品质的影响具有积极意义。  相似文献   

3.
Two cultivars of soybean (Pusa 9814 and Pusa 9712) were investigated to evaluate the impact of ambient and elevated concentrations of ozone (O3) in a suburban site of India with and without application of 400 ppm ethylenediurea (EDU) in open top chambers having filtered air (FCs), non-filtered air (NFCs), and non-filtered plus 20 ppb O3 (NFCs?+?20 ppb). Significant reductions were observed in various growth parameters, biomass accumulation, and yield attributes of soybean cultivars due to ambient O3 in NFCs and elevated concentration of O3 in NFCs?+?20 ppb. Reductions in all parameters were of lower magnitude in plants treated with EDU as compared to non-EDU treated plants. Yield (weight of seeds plant?1) increased by 29.8% and 33% in Pusa 9712 and by 28.2% and 29.0% in Pusa 9814 due to EDU treatment in plants grown at ambient and elevated levels of O3, respectively. The results clearly showed that (a) EDU can be effectively used to assess phytotoxicity of O3 by providing protection against its deleterious effects, (b) EDU can be used for biomonitoring of O3 in areas experiencing its higher concentrations, and (3) EDU is more effective against higher concentrations of O3.  相似文献   

4.
A pot experiment was conducted to appraise the inhibitory effects of salt stress on biochemical attributes in the three mungbean cultivars (NCM-209, NCM-89 and NM-92). Salt stress caused a significant decrease in plant height, shoot relative water contents, photosynthetic pigments, endogenous levels of K+ and K+/Na+ ratios and increase in cellular levels of H2O2, MDA, Na+ and Cl?. However, cv. NCM-209 was found to be tolerant in terms of lower salt-induced decline in K+, K+/Na+ ratio and photosynthetic pigments. The endogenous levels of H2O2 and MDA were also lower in cv. NCM-209. Salt stress markedly also affected different yield attributes in all mungbean cultivars. Again cultivar NCM-209 exhibited less inhibitory effects of salt stress on different growth attributes. Salt stress resulted in a marked increase in the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase and ascorbate peroxidase) in mungbean cultivars. Activity of peroxidase was maximal in cv. NCM-209 and catalase activity was maximal in cv. NCM-89, whereas cvs. NCM-89 and NM-92 showed higher activities of superoxide dismutase. Similarly activity of ascorbate peroxidase was higher in cv. NM-92. It could be inferred from data of antioxidant enzymes that mungbean cultivars cannot be categorized as salt tolerant or sensitive on the basis of a single antioxidant enzyme.  相似文献   

5.
增强UV-B辐射对两个烤烟品种主要化学成分的影响   总被引:2,自引:0,他引:2  
以云南两个烤烟主栽品种“云烟87”和“红花大金元”为试验材料,模拟昆明地区24.65%和39.53%的臭氧衰减时增强的UV-B辐射(分别为T1 5.30 kJ·m-2·d-1和T2 8.50 kJ·m-2·d-1),研究了大田条件下增强UV-B辐射对两个烤烟品种烟叶常规化学成分、质体色素和酚类含量的影响,为揭示UV-B辐射对烤烟化学质量特征的影响机理提供理论依据.结果表明:两种UV-B辐射明显降低了两个烤烟品种的水溶性糖和邻苯二酚含量,同时造成两个烤烟品种全氮、全钾、游离氨基酸、质体色素和类黄酮明显增加.增强UV-B辐射对两个烤烟品种烟碱含量的影响不同,增强UV-B辐射使“云烟87”的烟碱含量增加,使“红花大金元”烟碱含量降低.水溶性糖和总氮含量变化对UV-B辐射的响应说明“云烟87”品种对UV-B辐射更敏感.  相似文献   

6.
Abstract

Sodium (Na) movement between plants and humans is one of the more critical aspects of bioregenerative systems of life support, which NASA is studying for the establishment of long‐term bases on the Lunar or Martian surface. This study was conducted to determine the extent to which Na can replace potassium (K) in red beet (Beta vulgaris L. ssp vulgaris) without adversely affecting metabolic functions such as water relations, photosynthetic rates, and thus growth. Two cultivars, Ruby Queen and Klein Bol, were grown for 42 days at 1200 μmol mol?1 CO2 in a growth chamber using a re‐circulating nutrient film technique with 0%, 75%, 95%, and 98% Na substitution for K in a modified half‐strength Hoagland solution. Total biomass of Ruby Queen was greatest at 95% Na substitution and equal at 0% and 98% Na substitution. For Klein Bol, there was a 75% reduction in total biomass at 98% Na substitution. Nearly 95% of the total plant K was replaced with Na at 98% Na substitution in both cultivars. Potassium concentrations in leaves decreased from 120 g kg?1 dwt in 0% Na substitution to 3.5 g kg?1 dwt at 98% Na substitution. Leaf chlorophyll concentration, photosynthetic rate, and osmotic potential were not affected in either cultivar by Na substitution for K. Leaf glycinebetaine levels were doubled at 75% Na substitution in Klein Bol, but decreased at higher levels of Na substitution. For Ruby Queen, glycinebetaine levels in leaf increased with the first increase of Na levels and were maintained at the higher Na levels. These results indicate that in some cultivars of red beet, 95% of the normal tissue K can be replaced by Na without a reduction in growth.  相似文献   

7.
The effect of elevated carbon dioxide (CO2) concentration on symbiotic nitrogen fixation in soybean under open-air conditions has not been reported. Two soybean cultivars (Glycine max (L.) Merr. cv. Zhonghuang 13 and cv. Zhonghuang 35) were grown to maturity under ambient (415?±?16?μmol?mol?1) and elevated (550?±?17?μmol?mol?1) [CO2] at the free-air carbon dioxide enrichment experimental facility in northern China. Elevated [CO2] increased above- and below-ground biomass by 16–18% and 11–20%, respectively, but had no significant effect on the tissue C/N ratio at maturity. Elevated [CO2] increased the percentage of N derived from the atmosphere (%Ndfa, estimated by natural abundance) from 59% to 79% for Zhonghuang 13, and the amount of N fixed from 166 to 275?kg N ha?1, but had no significant effect on either parameter for Zhonghuang 35. These results suggest that variation in N2 fixation ability in response to elevated [CO2] should be used as key trait for selecting cultivars for future climate with respect to meeting the higher N demand driven by a carbon-rich atmosphere.  相似文献   

8.
The possible ameliorative effects of selenium (Se) addition to soil on the detrimental effects of enhanced UV-B radiation were tested on strawberry and barley during 4 months of field experiment in Kuopio, Central Finland. Control plants were exposed to ambient levels of UV radiation, using arrays of unenergized lamps. A control for UV-A radiation was also included in the experiment. Added Se, applied as H2SeO4, at the level of 0.1 mg kg−1 soil (low dosage) and 1 mg kg−1 soil (high dosage) increased Se concentrations in plants more than 10 and 100 times, respectively. After 4 months of exposure, strawberry and barley plants were harvested for biomass analysis. Chlorophyll fluorescence was measured using the Hansatech FMS2 fluorescence monitoring system. Leaf anatomy and ultrastructure were observed by light and transmission electron microscope. Several effects of UV and Se as well as their interaction were found, mostly for strawberry, but not for barley, indicating species-specific responses. Our results provided evidence that the high Se concentration in soil had no ameliorative effect but increased the sensitivity of strawberry to enhanced UV-B radiation in the field. Under ambient radiation, Se did not alter leaf growth of strawberry, whereas under UV-B radiation, the high Se addition significantly decreased leaf growth. Strawberry runner biomass was affected by the interaction of Se and UV. Under ambient radiation Se did not change dry weight of runners, but in combination with UV-A or UV-B radiation the high Se dosage decreased dry weight of runners by about 30%. Although the high Se concentration positively influenced on quantum efficiency of photosystem II (PSII) in strawberry leaves, it reduced runner biomass, leaf number and ratio of starch to chloroplast area. This suggests that the harmful effects of the high Se dosage on photosynthetic processes occurred as a result of changes in activity or/and biosynthesis of enzymes, rather than alteration of PSII. At the low concentration, Se effects were slight and variable.Although barley leaves accumulated higher Se concentrations than strawberry, there were no apparent changes in their growth, biomass or chlorophyll fluorescence due to Se effect either alone or in combination with UV-B. However, at the ultrastructural level, an enlargement in the peroxisome area was found due to combination of UV radiation with Se, suggesting the activation of antioxidative enzymes, possibly catalase. Decrease in mitochondrial density in barley cells in response to Se might be attributed to alteration of mitochondrial division. Increase in the proportion of cells with cytoplasmic lipid bodies due to combined effect of UV-B and Se indicated the alteration of lipid metabolism and the acceleration of cell senescence in barley. Main UV-B effects were found, mostly at the tissue and ultrastructural level in strawberry, but not in barley, indicating species-specific susceptibility to enhanced UV-B radiation. UV-B-treated strawberry plants developed marginally thinner leaves with reduced ratio of starch to chloroplast area in their cells, suggesting negative influence of UV-B on photosynthetic processes.  相似文献   

9.
This research was conducted to evaluate silicon (Si) effects on the morphological characteristics and resistance to rice stem borer under greenhouse conditions at Sari Agricultural Sciences and Natural Resources University in 2009. The experiment was conducted as factorial in a complete randomized design (two factors) with three replications. The factors included four levels of silicon (Si) (Si0 = 0, Si1 = 5, Si2 = 10, Si3 = 20 g Si kg?1 soil) and three rice cultivars (Parto, Line 34, and Neda). The results showed Si fertilizer had a significant effect on percentage of white head, length of leaf, width of leaf, diameter of stem, and percentage of reproductive tiller. Also, increased stem Si increased the resistance to striped stem borer in the rice cultivars studied. The greatest resistance to striped stem borer was observed with the application of 20 g Si kg?1 soil. The application of Si at the rate of 20 g Si kg?1 soil significantly reduced the percentage of white head from 18.10% (without Si) to 0.11% (with 20 g Si kg?1 soil) in Parto cultivar.  相似文献   

10.
This study investigated the effects of O3 on growth, yields and physiological characteristics of Thai Jasmine rice cultivars. Rice was exposed to O3 for 7 h day?1 in a closed chamber for 113 days, beginning from seedling until harvest. O3 concentration in each chambers was controlled at 0 ppb, 50 ppb, 100 ppb, 150 ppb and at the ambient level. Effects of O3 on leaf area index (LAI) became obvious at maturity when LAI significantly decreased in the treatments under elevated O3 concentrations. Results in shoot biomass indicated that shoot length was more affected by O3 than shoot dry weight. Root length rather than dry weight was significantly reduced in all cultivars. The most severe damage of O3 was found in photosynthetic components, namely chlorophyll and carotenoid contents, and rate of net photosynthesis. Yield components were also strongly affected by O3. The highest reduction in filled seed per ear was found in the Pathumthani 1 cultivar by 78% when it was exposed to 150 ppb O3 compared to the control (0 ppb). Similarly, 100-grain weight was also reduced as much as 12.3% in this cultivar.  相似文献   

11.
The effect of nitrogen (30 and 120 mg N per cuvette) on photosynthetic rate of four cultivars of triticale (‘Bolero’, ‘Grado’, ‘Largo’, and ‘Lasko’) grown 14 days in phytotron was strongly modified by water content (75, 45 and 35% of full water capacity). For plants grown under 35% of full water capacity, it was higher when they were grown under 30 than under 120 mg N/cuvette (9.88 and 8.76 μmol CO2 m?2 s?1, respectively) but for plants grown under 45 and 75% of full water capacity there were not significant differences. Transpiration, stomatal conductance, photosynthetic water use efficiency, and internal water use efficiency were not influenced by nitrogen doses independently of water content. Photosynthetic rate, transpiration, stomatal conductance, photosynthetic water use efficiency, and dry matter of studied cultivars of triticale grown under 45 and 35% of full water capacity and both nitrogen doses were lower than for plants grown under 75% of full water capacity. With lowering of water content stomatal conductance was decreasing similarly as photosynthetic rate e.g. for plants grown under 35% of full water capacity as compared with those grown under 75% of full water capacity average stomatal conductance decreased from 0.209 to 0.138 mol H2O m?2 s?1 and photosynthetic rate from 13.69 to 9.32 μmol CO2 m?2 s?1 and as a result there were not significant differences in internal water use efficiency for all studied combinations (67.09 μmol CO2 mol?1 H2O) which shows that stomatal factors were mainly responsible for changes of photosynthetic rate. With lowering of water content from 75 to 35% of full water capacity the decrease of photosynthetic rate and stomatal conductance was much higher than the decreases of transpiration (from 3.57 to 3.02 mmol H2O m?2 s?1) what shows not direct dependence of transpiration on stomatal conductance (water use efficiency decreased from 3.87 to 3.10 μmol CO2 mmol?1 H2O). The effect of nitrogen on dry matter production was strongly modified by water availability e.g. for plants grown under 35% of full water capacity, dry matter was similarly independent of nitrogen dose but for plants grown under 45 and 75% of full water capacity dry matter was significantly higher than when they were grown under 120 (79.05 and 86.75 mg, respectively) or with 30 mg N/cuvette (74.03 and 80.30 mg, respectively).  相似文献   

12.
The potential impact of an increase in solar ultraviolet-B (UV-B) radiation due to human activity on higher plants has been the subject of many studies. Little work has been carried out so far on cotton responses to enhanced UV-B radiation. The objective of this study was to determine whether or not the current and projected increases in UV-B levels affect cotton growth and development, and to quantify and develop UV-B radiation functional algorithms that can be used in simulation models. Two experiments were conducted during the summer of 2001 using sunlit plant growth chambers in a wide range of UV-B radiations under optimal growing conditions. Leaves exposed to UV-B radiation developed chlorotic and necrotic patches depending on the intensity and length of exposure. Along with changes in visible morphology, cotton canopy photosynthesis declined with increased UV-B radiation. The decline in canopy photosynthesis was partly due to loss of photosynthetic pigments and UV-B-induced decay of leaf-level photosynthetic efficiency (maximum photosynthesis) and capacity (quantum yield) as the leaves aged. The total leaf area was less due to smaller leaves and fewer leaves per plant. Less plant height was closely related to a shorter average internode length rather than a fewer mainstem nodes. The UV-B did not affect cotton major developmental events such as time taken to square, time to flower, and leaf addition rates on the mainstem. Lower biomass was closely related to both smaller leaf area and lower photosynthesis. The critical limit, defined as 90% of optimum or the control, for stem elongation was lower (8.7 kJ m−2 per day UV-B) than the critical limit for leaf expansion (11.2 kJ m−2 per day UV-B), indicating that stem elongation was more sensitive to UV-B than leaf expansion. The critical limits for canopy photosynthesis and total dry weight were 7 and 7.3 kJ m−2 per day, respectively. The identified UV-B-specific indices for stem and leaf growth and photosynthesis parameters may be incorporated into cotton simulation models such as GOSSYM to predict yields under present and future climatic conditions.  相似文献   

13.
An experiment was conducted to determine if salinity stress alters the response and tolerance of soybean to defoliation. Four soybean [Glycine max(L.) Merr.] cultivars (‘Tachiutaka,’ ‘Tousan 69,’ ‘Dare’ and ‘Enrei’) in a growth chamber were exposed to two salinity treatments (0 and 40 mM NaCl) and two defoliation treatments (with and without defoliation). The interactive effects of salinity stress and defoliation on growth rate, leaf expansion, photosynthetic gas exchange, and sodium (Na+) accumulation were determined. The decrease in growth rate resulting from defoliation was more pronounced in plants grown under salinity stress than in those grown without the stress. Without salinity stress, defoliated plants of all four cultivars had leaf-expansion similar rates to those of the undefoliated ones, but the photosynthetic rates of their remaining leaves were higher than those of undefoliated plants. However, with salinity stress, defoliated ‘Tachiutaka’ and ‘Tousa 69’ had lower leaf expansion and photosynthetic rates than undefoliated plants. For cultivars ‘Dare’ and ‘Enrei,’ the defoliated plants had leaf-expansion rates similar to undefoliated ones, but the photosynthetic rate of the remaining leaves did not increase. Except for cultivar ‘Dare,’ defoliated plants grown under salinity stress had higher Na+ accumulation in leaves than undefoliated ones, and this result may be related to slow leaf expansion and photosynthesis. Salinity stress negatively affects soybean response and tolerance of defoliation, and the effects varied according to the salt tolerance of the cultivar.  相似文献   

14.
UV-B增强下施钾对大麦抽穗期生理特性日变化的影响   总被引:1,自引:0,他引:1  
娄运生  曾志平  韩艳  吴蕾  孟艳 《土壤》2014,46(2):250-255
通过大田试验,研究在UV-B增强条件下,不同施钾量对大麦抽穗期叶片净光合速率、气孔导度、蒸腾速率、胞间CO2浓度和水分利用率等生理指标日变化的影响。UV-B辐射设2水平,即对照(CK,自然光,辐射强度1.5 KJ/(m2·h))和增强120%(1.8 KJ/(m2·h));施钾量设2水平,即低钾(K1,K2O 73 kg/hm2)和高钾(K2,K2O 150 kg/hm2)。结果表明,UV-B增强降低大麦的叶绿素含量、净光合速率、气孔导度、蒸腾速率和水分利用率。增施钾肥可提高叶片中叶绿素的含量、净光合速率、气孔导度和蒸腾效率,但对大麦胞间CO2浓度和水分利用效率的影响不明显。增施钾肥可减缓UV-B增强对大麦净光合速率的抑制作用,但不能减缓UV-B增强对大麦气孔导度和蒸腾速率的抑制作用。  相似文献   

15.
A two-year field study was conducted to determine the effect of two zinc (Zn) levels [0 and 10 kg zinc sulfate (ZnSO4) ha?1] in respect with four potassium (K) levels (0, 20, 40 and 60 kg K2O ha?1) on growth, yield and quality of forage sorghum. The soil of the experimental field was loamy sand (Inceptisol), carrying 70, 08, 77, and 0.51 mg nitrogen (N), phosphorus (P), K, and Zn kg?1 soil, respectively. Increasing K levels significantly improved most of the growth, yield, and quality attributes gradually irrespective of the Zn levels. Zinc applied at 10 kg ZnSO4 ha?1 proved significantly better than no zinc application at various K application rates. The benefit of zinc application increased progressively with increasing K rates for most of the parameters studied, indicating significant response of the crop to positive K × Zn interaction in plants in respect with K and Zn application to the soil. Accordingly, 60 kg K2O ha?1 applied with10 kg ZnSO4 ha?1 boosted most of the attributes maximally. It resulted in about 20–40% increase in growth attributes, 25% increase in fresh matter yield, 36–38% increase in dry matter yield, and 38% increase in protein yield compared to the comparable K level applied without zinc. It also enhanced N uptake by 38%, P uptake by 5–19%, K uptake by 40–42%, and Zn uptake by 114–144%. Across the K rates, application of 10 kg ZnSO4 surpassed no zinc application by 30–35% in N uptake, by 8–15% in P uptake, by 33–36% in K uptake, by 120–140% in Zn uptake, by 19–21% in fresh matter yield, by 29–31% in dry matter yield, and by 30–34% in protein yield.  相似文献   

16.
A tub experiment was conducted to assess the effect of exogenously applied trehalose (0, 10, and 20 mM) on various attributes of two rice cultivars (Bas-385 and Bas-2000) under salt stress (0, 50, 100, and 150 mM). Salinity decreased growth, gas exchange characteristics, shoot and root potassium (K+) ions, hydrogen peroxide (H2O2), total soluble proteins, activity of catalase (CAT), and yield attributes, while it increased chlorophyll contents, shoot and root sodium (Na+) and calcium (Ca2+), malondialdehyde (MDA), glycinebetain (GB), free proline, and peroxidase (POD) activity. Foliar-applied trehalose improved growth attributes, net photosynthetic rate, GB, total soluble proteins, superoxide dismutase (SOD) and yield. Yield was not obtained at 150 mM salt stress. The rice cultivar Bas-2000 showed better performance with respect to gas exchange attributes and activities of enzymatic antioxidants. Overall, varying levels of foliar-applied trehalose proved to be effective in ameliorating adverse effects of salt stress on rice.  相似文献   

17.
Abstract

Seventeen soybean cultivars were screened to discern differences in aluminum (Al) sensitivity. The Sowon (Al-tolerant) and Poongsan (Al-sensitive) cultivars were selected for further study by simple growth measurement. Aluminum-induced root growth inhibition was significantly higher in the Poongsan cultivar than in the Sowon cultivar, although the differences depended on the Al concentration (0, 25, 50, 75 or 100?μmol?L–1) and the amount of exposure (0, 3, 6, 12 or 24?h). Damage occurred preferentially in the root apex. High-sensitivity growth measurements using India ink implicated the central elongation zone located 2–3?mm from the root apex. The Al content was lower 0–5?mm from the root apices in the Sowon cultivar than in the apices of the Poongsan cultivar when exposed to 50?μmol?L–1 Al for 12?h. Furthermore, the citric acid exudation rate was more than twofold higher in the Sowon cultivar. Protein production of plasma membrane (PM) H+-ATPase from the root apices (0–5?mm) was upregulated in the presence of Al for 24?h in both cultivars. This activity, however, decreased in both cultivars treated with Al and the Poongsan cultivar was more severely affected. We propose that Al-induced growth inhibition is correlated with changes in PM H+-ATPase activity, which is linked to the exudation of citric acid in the root apex.  相似文献   

18.
全生育期UV-B辐射增强对棉花生长及光合作用的影响   总被引:2,自引:1,他引:2  
植物光合系统是UV-B辐射最初和最重要的作用靶标。本文在大田条件下进行紫外灯照射处理,研究全生育期UV-B辐射增强(高于环境20%和40%)对棉花形态、干物质积累、光合色素和产量的影响,并通过分析棉花主茎功能叶片的气体交换参数和叶绿素荧光参数,探讨UV-B辐射增强影响棉花光合作用的机制。结果表明,UV-B辐射增强抑制了棉花生长和干物质积累,籽棉产量显著降低,且UV-B辐射越强,抑制作用越明显。随UV-B辐射的增强,棉花主茎功能叶的净光合速率(P_n)在各生育期均显著降低,叶绿素含量呈先升高后降低趋势,气孔导度(Gs)和蒸腾速率(Tr)未发生变化,胞间CO_2浓度(Ci)反而升高,说明P_n下降主要由非气孔限制因素造成。对叶绿素荧光参数的分析表明,PSⅡ的最大光化学量子产率(F_v/F_m)、实际光化学量子效率(ΦPSII)、线性电子传递速率(ETR)和光化学淬灭系数(qP)随着UV-B辐射的增强而降低,非光化学猝灭系数(NPQ)则显著升高,且各叶绿素荧光参数与Pn变化均显著相关;慢速弛豫NPQ(NPQS)及其在NPQ中的比例均随UV-B辐射的增强而显著提高,表明PSⅡ反应中心受损,光化学效率降低。以上结果证明,全生育期UV-B辐射增强降低了棉花的光合叶面积、叶绿素含量和净光合速率,引起棉花生长与物质积累受抑,产量降低。UV-B辐射增强引起的光合速率下降与PSⅡ反应中心遭到破坏密切相关。  相似文献   

19.
The purpose of this study was to analyze the effects of silicon (Si) nutrition on sorghum growth under drought. The present study investigated the distribution of Si in plant parts under stress conditions and its effects on physiological and growth traits. The study was conducted during 2 years (2007–2009) at PMAS Arid Agriculture University, Rawalpindi, Pakistan. Polyethylene glycol (PEG) 6000 (–4.0, –6.0, –8.0, and –10.0 Mpa) solution was used to screen drought-tolerant (Johar1) and drought-susceptible (SPV462) sorghum (Sorghum bicolor L.) cultivars, which were replicated three times with Si sources of potassium silicate (K2SiO3) (Si300: 300 ml L?1) and control (Si0) treatments. The results showed that drought-tolerant cultivars accumulated maximum Si under Si treatment versus Si absence, which resulted increased leaf water potential, leaf area index, Soil Plant Analysis Development (SPAD) chlorophyll, net assimilation, and relative growth rate over SPV462. Similarly, Si accumulation in leaves conserved transpiration and leaf water potential, verifying Si nutrition as a defense for plants under drought.  相似文献   

20.
Aspen bark was investigated for photosynthetic function, pigment content, and spectral characteristics during the 1993–1994 Boreal Ecosystem-Atmosphere Study (BOREAS) summer field campaigns in the boreal zone of Saskatchewan, Canada. Parameters related to photosynthetic function were similar for bark and leaves: chlorophyll (Chl) concentration; fluorescence responses; and spectral reflectance. Similar increases along a vertical gradient from base to tree top were observed for incident photosynthetically active radiation (PAR), photosynthetic pigment content, photosynthetic capacity, and spectral reflectance variables. Since transmittance of aspen bark periderm was 20–30% in the blue, and 50–60% in the red Chl absorption bands, the PAR available to the photosynthetic cortical layer in the natural, canopy environment (<1000 μmol m?2 s?1) was sufficient to support positive net assimilation (<8–10 νmol CO2 m?2 s?1) under ideal conditions (e.g., light, temperature, saturating CO2), a rate approximately 30–50% that of leaves. However, the respiring tissues comprising the greater fraction of bark tissue bias the balance of CO2 exchange in favour of respiration for the whole bark. Therefore, net photosynthesis under ambient conditions on the whole bark was, in general, negative. The total bark surface area was estimated to contain 17–40% of the whole tree Chl. The contribution of the bark surface area fraction of the full canopy (leaves plus bark) increased with age (<60 years), with a similar trend expected for bark in total tree (and stand) photosynthesis. A spectral reflectance variable, the red edge inflection point (REIP), was related to total bark Chl content (r2=0.74). A better predictive relationship (r2=0.82) for total bark Chl was observed using a spectral index calculated from the reflectance ratio of two narrow wavebands (R3/R2: R2 and R3 are between 0.715–0.726 μm and 0.734–0.747 μm, respectively), which may have greater utility in landscape remote sensing. The bark spectra for Chlcontaining bark should improve understanding of carbon balance in aspen forests, based on landscape-level radiative transfer simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号