首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探索贮藏温度影响种苗质量的光合生理机制,以西瓜品种早佳8424嫁接苗为材料(砧木为南瓜品种壮士),研究黑暗条件下25℃和15℃贮藏温度对西瓜幼苗叶片超微结构及其光合特性的影响。结果表明,黑暗贮藏造成叶绿体内片层排列紊乱、片层数量减少,叶绿体内淀粉粒消失;PSⅡ最大光化学效率(Fv/Fm)、PSⅡ实际光化学效率(ΦPSⅡ)、净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均随着黑暗贮藏时间的延长持续降低;贮藏4 d内,Pn、Gs和胞间CO2浓度(Ci)同步降低,此时是气孔限制造成的Pn降低;贮藏时间延长至6 d,Pn和Gs继续下降,Ci却显著上升,非气孔限制成为Pn降低的主要因素。与15℃黑暗贮藏相比,25℃黑暗贮藏6 d的叶绿体片层结构受损更严重,叶绿体内有较多的嗜锇颗粒,且Fv/Fm、ΦPSⅡ、Gs和Tr显著低于前者。定植后,从贮藏时间看,黑暗贮藏4 d的幼苗Fv/Fm、ΦPSⅡ和叶绿体结构在定植后6 d均能恢复至对照(CK)水平,贮藏6 d的幼苗叶绿体结构和Pn则不能完全恢复;从贮藏温度看,25℃黑暗贮藏6 d,Fv/Fm和ΦPSⅡ在定植后6 d不能恢复;而15℃黑暗贮藏6 d,Fv/Fm和ΦPSⅡ在定植后6 d均可恢复。两种黑暗贮藏温度导致的幼苗地上部干重降低在定植后6 d均不能恢复到CK水平,但15℃黑暗贮藏显著高于25℃黑暗贮藏。与25℃黑暗贮藏相比,15℃黑暗贮藏的幼苗能够保持较好的叶绿体结构,较高的碳同化水平和PSⅡ光化学活性以及定植后较快的光合性能恢复和物质积累速度。综上,建议西瓜种苗低温黑暗贮藏不宜超过6 d,而常温黑暗贮藏应控制在4 d内。本研究结果为瓜类种苗贮藏及植物对光温胁迫响应的生理机制研究提供了理论参考。  相似文献   

2.
Evaluations of vegetative growth and leaf concentrations of nitrogen (N), potassium (K), calcium (Ca), magnesium (Mg), and iron (Fe) were made of apple (Malus domestica Borkh. cvs. Granny Smith, Gala, and Golab) grown with five treatments of NO3?:NH4+ ratios in pot culture. The concentrations of NO3?:NH4+ ratios were 2.5:0.1, 6:0.3, 6:0.5, 6:0.7, and 6: 1 meq L?1. Regression analysis showed that growth parameters of main stems and branches were not affected by increases of NH4+ in the ratios. Granny Smith, Gala, and Golab differed in some of these parameters. Concentrations of N and Fe increased as NH4+ increased, whereas K and Ca decreased and Mg was not affected significantly. Generally, the treatment of 2.5:0.1 produced leaves with lower N but higher K, Ca, and Mg concentrations than the other treatments. This research showed that vegetative growth was not affected by NH4+ concentration whereas elemental composition was affected.  相似文献   

3.
A two-year field experiment was conducted during the growing seasons 2016 and 2017 to investigate the response of drip fertigated watermelon to different rates of nitrogen (0, 10, 20, 30, and 40?g/m3 N) applied in the form of ammonium sulfate (AS). The combined effect of nitrogen (N) and sulfur (S) was investigated. Irrigation water use efficiency (IWUE) under the different N levels was, also, evaluated. N levels in the irrigation water induced a significant effect on yield parameters (total and commercial yields, dry matter yield, plant yield, and fruit number). Increasing the level of N also induced significant increases in fruit length and fruit fresh weight. IWUE was also significantly improved at high levels of N. Fertigation using modern techniques can be considered an efficient method in the delivery of N to the crop at N levels of 30–40?g/m3, as ammonium sulfate.  相似文献   

4.
Roots are important organs that supply water and nutrients to growing plants. Data related to root growth and nutrient uptake by tropical legume cover crops are limited. The objective of this study was to evaluate root growth of tropical legume cover crops and nutrient uptake and use efficiency under different phosphorus (P) levels. The P levels used were 0 (low), 100 (medium), and 200 (high) mg kg?1 of soil, and five cover crops were evaluated. Root dry weight, maximum root length, and specific root length were significantly influenced by P and cover crop treatments. Maximum values of these root growth parameters were achieved with the addition of 100 mg P kg?1 soil. The P?×?cover crops interactions for all the macro- and micronutrients, except manganese (Mn), were significant, indicating variation in uptake pattern of these nutrients by cover crops with the variation in P rates. Overall, uptake pattern of macronutrients was in the order of nitrogen (N) > calcium (Ca) > potassium (K) > magnesium (Mg) > P and micronutrient uptake pattern was in the order of iron (Fe) > Mn > zinc (Zn) > copper (Cu). Cover crops which produced maximum root dry weight also accumulated greater amount of nutrients, including N, compared to cover crops, which produced lower root dry weight. Greater uptake of N compared to other nutrients by cover crops indicated that use of cover crops in the cropping systems could reduce loss of nitrate (NO3 ?) from soil–plant systems. Increase in root length and root dry weight with the addition of P can improve nutrient uptake from the soil and lessen loss of macro- and micronutrients from the soil–plant systems.  相似文献   

5.
郑丽  樊剑波  何园球  郑学博  许小伟 《土壤》2015,47(4):664-669
通过盆栽试验,比较分析了磷素对旱作条件下不同水稻品种苗期生长、根系形态及磷素吸收利用效率的影响。结果表明,施用磷肥促进水稻地上部和根系的生长,低磷胁迫显著增大了植物的根冠比,且品种间差异明显,丛矮2在低磷水平和高磷水平下的根冠比比值为1.982,而黄华占相应的比值为1.096;随供磷浓度的增加,水稻植株含磷量增加而磷素生理利用率降低,在3种磷水平下,3345的磷素吸收效率均高于其他4个品种,磷素生理利用率却低于其他4个品种。根系形态参数与磷素吸收、利用效率的相关性分析表明:根系总长对水稻植株吸磷量影响最大。总之,适当地施用磷肥能更好地协调根系与地上部的关系,促进根系的生长和根系对磷素的吸收。  相似文献   

6.
利用田间试验,探讨了地下部分隔对蚕豆/玉米间作氮素吸收和土壤硝态氮残留的影响,结果表明:蚕豆/玉米间作,蚕豆不分隔条件下籽粒和秸秆吸氮量比分隔分别增加20 10%,34 43%;玉米不分隔条件下籽粒吸氮量与分隔近似,但秸秆吸氮量比分隔减少13 04%;蚕豆和玉米不分隔条件下土壤硝态氮累积量都高于分隔。蚕豆/空带间作,蚕豆不分隔籽粒吸氮量高于分隔,但土壤硝态氮累积量没有差异。空带/玉米间作,地下部分隔与否,作物吸氮量和土壤硝态氮累积量都没有差异。  相似文献   

7.
以宁麦9号为材料,研究施氮量及氮肥基追比例对稻茬小麦土壤硝态氮含量、根系生长、植株氮素积累量、产量和氮素利用效率的影响。结果表明,拔节前0-60cm土层硝态氮含量随基施氮量的增加而显著增加,随生育进程的推进各处理硝态氮显著向下层土壤淋洗;拔节期追施氮肥显著提高了孕穗期0-40cm土层硝态氮含量,且随追施氮量的增加而显著增加,N300和N3/7处理硝态氮显著向40-60cm土层淋洗。根系主要生长于0-20cm土层,拔节前各土层根长密度均随基施氮量的增加而增加,拔节后则随施氮量增加和适当的追肥比例而增加。各施氮处理均以拔节至开花期为小麦氮素积累高峰期。适宜增加施氮量并适当提高追肥比例,有利于提高产量、植株氮素积累量和氮素利用效率。因此,在小麦生产中,适当降低施氮量并提高拔节期追肥比例有利于促进小麦根系生长和植株氮素积累,进而提高小麦产量并减少硝态氮淋洗损失。  相似文献   

8.
ABSTRACT

The use of applied phosphorus (P) and the uptake of nutrients from the soil by plants can be improved when the fertilizer is combined with the application of humic substances (HS). However, these beneficial effects are inconsistent and can depend on the type of soil. This study was performed to evaluate the effects of the application of HS (0, 1.25, and 7.50 mL pot–1), as Humic HF®, and fertilizer-P (10, 50, 100, and 200 mg P dm–3), as triple superphosphate, on root morphological characteristics, dry matter accumulation, nutrient uptake, and tuber yield of potatoes grown in sandy and clayey soils. Only under low P supply in the sandy soil did the supply of HS, at the rate of 1.25 mL pot–1, increase the plant growth, yield of tubers, and uptake of macronutrients by the plants, without affecting the efficiency of the P fertilization. In the clayey soil, which had a higher organic matter content, the application of HS did not affect plant growth, tuber yield or nutrient uptake. In both soils, P fertilization increased plant growth, tuber yield, and nutrient uptake. The combined application of HS and P increased the root length of potatoes in sandy soil.  相似文献   

9.
Two hydroponic experiments were carried out to investigate the effects of nitrogen (N) levels and forms on the oxalate concentrations of different form in edible parts of spinach. Nitrogen was supplied at five levels (4, 8, 12, 16, 20 mM) in Experiment 1 and five ratios of nitrate (NO3 ?) to ammonium (NH4 +) (100/0, 75/25, 50/50, 25/75, 0/100) at a total N of 8 mM in Experiment 2. Biomass of spinach increased markedly from 4 mM to 8 mM N and reached the flat with further increase in N. The total oxalate and soluble oxalate in leaves and shoots (edible parts) increased significantly with increasing N levels from 4 to 12 mM, while the total oxalate and insoluble oxalate decreased markedly when N level was further increased from 12 to 20 mM. Oxalates of different forms in petioles increased first and then decreased and elevated again with increasing nitrogen levels. In the second experiment, decreasing NO3 ?/NH4 + ratios markedly increased at first and then significantly decreased the biomass of spinach plants and the maximum biomass was recorded in the treatment of the NO3 ?/NH4 + ratio of 50:50. The oxalate concentrations of different form in leaves and shoots were all decreased obviously as the ratio of NO3 ?/NH4 + decreased from 100:0 to 0:100. Concentrations of total oxalate and soluble oxalate in petioles could be reduced by increasing ammonium proportion and were the lowest as the ratio of NO3 ?/NH4 + was 50:50 and insoluble oxalate decreased as nitrate/ammonium ratio decreased. The concentrations of oxalate forms in leaves were all higher than those in petioles and soluble oxalate was predominant form of oxalates in both trials. It is evident that high biomass of spinach can be achieved and oxalate concentrations of different forms can be reduced by modulating N levels and NO3 ?/NH4 + ratio, so this will benefit for human health especially for those people with a history of calcium oxalate kidney stones.  相似文献   

10.
浮萍吸收不同形态氮的动力学特性研究   总被引:23,自引:0,他引:23  
吸收试验结果表明,浮萍(Spirodela oligorrhiza)吸收铵态氮和硝态氮的动力学特性可用M ichaelis-M enten方程来描述。浮萍对铵态氮的亲和力大于对硝态氮的亲和力,证实了浮萍“优先吸收净化铵态氮”的观点。研究还发现,浮萍吸收硝态氮的最大速率大于吸收铵态氮的最大速率,基于浮萍吸收不同形态氮的动力学特性,提出了构建物理作用(增氧工艺)—微生物(硝化作用)—植物(浮萍)复合污水净化体系的见解。  相似文献   

11.
为探讨CO2浓度升高条件下不同水稻品种粤杂889 (YZ)和荣优398(RY)对耐Cu胁迫性的变化特征,利用水培试验研究不同Cu浓度下CO2浓度升高对2种水稻幼苗生物量、Cu含量、根形态及植物络合素(GSH和PCs)的影响.结果表明,低铜处理对水稻生长具有促进作用,增加2种水稻生物量及根系根毛数、总根长、表面积和体积.随着Cu处理浓度升高,根系GSH和PCs含量分别呈现渐减和渐增趋势.CO2浓度升高条件下,2种水稻生物量显著增加,600 μmol/L Cu处理时增加比例最大,YZ和RY分别增加59.8%和49.0%;水稻根、茎叶Cu含量降低,但根系形态各个指标明显增加,且在高Cu处理下其增加比例较大.CO2浓度升高显著增加根系PCs合成,50 μmol/L Cu处理时增加比例最大,YZ和RY分别增加121.6%,78.7%.在CO2浓度正常与升高条件下,根系GSH、PCs含量与Cu浓度都具有显著相关性.CO2浓度升高通过增加根系形态和PCs含量以增强水稻对Cu的抗逆性,但存在着品种差异,YZ的增加比例大于RY.  相似文献   

12.
陈雨娇  李汛  田兴军  段增强 《土壤》2020,52(6):1121-1130
在开顶式生长箱内,以黄瓜为试验材料,采用营养液培养方法,研究了不同氮水平、磷水平条件下大气CO2浓度对黄瓜植株内矿质养分含量以及根系形态的影响。结果表明:黄瓜植株各部位氮素含量随供氮水平提高而增加,磷水平提高,也能促进各部位氮含量的提高。植株各部位磷含量随供磷水平的提高而升高,在相同磷水平下,缺氮会使各部位磷含量升高。大气CO2浓度升高会使黄瓜植株各部位氮及特定部位的磷含量降低。黄瓜根部的Ca含量随CO2浓度的升高而显著降低,氮和磷水平的升高极显著地增加了其含量,且CO2浓度与供磷水平、供氮与供磷水平以及这三者之间存在明显的交互作用。供氮、供磷水平的升高极显著的提高了黄瓜叶片Ca的含量以及茎部Mg的含量,且两者存在明显的交互作用。黄瓜总根长和总根表面积随CO2浓度的增加有增大的趋势;在缺磷条件下,总根长和总根表面积随氮水平的提高而增大;而同一氮水平和CO2浓度下,磷水平的降低会增加总根长和总根表面积。总体看来,大气CO2浓度的升高能促进黄瓜根系的生长,但会使得黄瓜植株某些部位氮、磷、钙、镁等矿质元素含量降低,而供氮、供磷水平的提高可以通过增强黄瓜的生长与活力促进黄瓜根系对矿质养分的吸收,从而缓解由于CO2浓度升高带来的矿质元素含量降低的风险。这启示我们在对设施蔬菜CO2施肥的同时,也要注重适量提高合理配比下矿质元素的供应。  相似文献   

13.
Dry bean is an important legume and nitrogen (N) deficiency is one of the most yield-limiting factors in most of the bean-growing regions. A greenhouse experiment was conducted with the objective to determine influence of N on growth, yield, and yield components and N uptake and use efficiency of 23 dry bean genotypes. Straw yield, grain yield, yield components, maximum root length, and root dry weight were significantly increased with the addition of N but varied with genotypes. The N × genotype interactions were also significant for most of these traits, indicating variation in responses of genotypes with the variation in N levels. There was significant difference in N uptake and use efficiency among genotypes. Most of growth and yield components were significantly and positively associated with grain yield. Based on grain yield efficiency index (GYEI), genotypes were classified into efficient, moderately efficient, or inefficient group in N-use efficiency. Nitrogen concentration was greater in grain compared to straw, indicating greater N requirement of dry bean genotypes.  相似文献   

14.
补光时间及光质对黄瓜幼苗生长及根系活力的影响   总被引:1,自引:0,他引:1  
为了明确温室黄瓜幼苗生长及根系活力对补光时间及光质的响应,本研究分析了补光时间(2、4和8h)及光质[红蓝复合光(R∶B=7∶3,R∶B=8∶2)、蓝光(B)、红光(R)和白光(W)]对黄瓜幼苗地上部形态、根系形态、根系活力及干物质积累的影响。结果表明,补光时间及光质对黄瓜幼苗株高、茎粗、根长、根表面积、根分枝数、根系活力及地上部干重和壮苗指数影响显著,且互作效应显著。补光4h后黄瓜的各项生长指标均优于补光2、8h和不补光(CK);补照红蓝复合光处理后黄瓜的各项生长指标均优于补照蓝光、红光、白光和CK。其中,补照4h红蓝复合光(7∶3)处理下黄瓜幼苗株高、茎粗、根长、根表面积、根分枝数和根系活力最高,黄瓜幼苗地上部干重和根干重分别显著高于补照2h蓝、红、白光,补照8h的蓝、红、白光及CK。黄瓜幼苗地上部干重、根干重均与根系活力呈显著正相关关系。说明通过补充4h红蓝复合光(7∶3)可显著提高根系活力,进而有效促进黄瓜幼苗干物质的积累,为培育壮苗奠定了生理基础。  相似文献   

15.
土壤水分胁迫对红砂幼苗细根形态和功能特征的影响   总被引:2,自引:1,他引:1  
通过盆栽人工模拟干旱试验,研究了土壤水分胁迫对红砂幼苗细根形态及功能的影响。结果表明:(1)随胁迫程度的加剧红砂幼苗细根直径和体积呈减小趋势,而根长、比根长、表面积、比表面积均呈增大趋势,表明在胁迫条件下,红砂幼苗细根可通过根长、比根长、表面积、比表面积的增加与直径和体积的减小来适应逆境胁迫。随根序的升高红砂幼苗细根直径呈增大趋势,而根长和比根长表现出减小趋势,比表面积呈先升高后降低的趋势。(2)随胁迫程度的加剧红砂幼苗细根全C含量呈降低趋势,而全N含量先呈明显的降低趋势,后呈升高趋势,表明在中度胁迫下红砂幼苗细根呼吸作用明显降低。随根序的升高红砂幼苗细根全C含量呈增加趋势,而全N含量呈下降趋势,表明红砂幼苗较低级根序具有较强的呼吸作用与代谢活性。(3)红砂幼苗细根根长与全C含量之间呈极显著正相关关系;直径与全C含量之间呈显著正相关关系;比根长与C含量呈显著负相关关系。  相似文献   

16.
The use of plant growth-promoting rhizobacteria (PGPR) as agricultural inputs for increasing crop production needs the selection of efficient bacteria with plant growth-promoting (PGP) attributes. Therefore, the purpose of this study was to evaluate the effects of 20 multi-traits bacteria on tea growth, nutrient uptake, chlorophyll contents, and enzyme activities under field conditions for over 3 years. These isolates were screened in vitro for their PGP traits such as the production of indole acetic acid (IAA), nitrogenase activity, phosphorus (P) solubilization, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Screening of rhizobacteria that show multiple PGP traits suggests that they stimulated overall plant growth, including shoot development and leaf yield, improving macro- and micro-nutrient uptake, chlorophyll contents, and activities of enzymes of tea plant. Use of strains with multiple PGP traits could be a more effective approach and have great potential for the environmentally-friendly tea production.  相似文献   

17.
钾素营养对莲藕生长和干物质累积的影响   总被引:4,自引:0,他引:4  
采用大盆试验研究了钾素营养对莲藕生长和干物质累积的影响,结果表明,钾素营养明显增加莲藕立叶数量和立叶面积、提高立叶相对叶绿素值和组织器官含水量、延缓叶片衰老、增强立叶抗逆性,从而促进莲藕生育前期光合产物的累积和健康生长;钾素营养还适当延长莲藕成熟期,促进干物质从叶片转移并贮存到产品中,使莲藕增产20.4%.  相似文献   

18.
保水剂与氮磷肥配施对玉米生长及养分吸收的影响   总被引:3,自引:0,他引:3  
以夏玉米为研究对象,采用避雨桶栽试验方法精确控制水肥条件,研究保水剂(SAP)与5种氮磷肥配比(N∶P分别为1∶4,2∶3,1∶1,3∶2,4∶1)模式对土壤肥力水平、玉米植株生长及其养分吸收利用的效应。结果表明,保水剂与氮磷肥均衡施用(N∶P为1∶1)能够促进玉米植株的生长及对养分的吸收利用,生育期内平均株高、叶面积较其他处理分别提高了3.36%~7.19%,5.36%~29.26%;干物质积累与植株氮、磷累积量较其他处理分别提高了13.79%~27.61%,15.91%~32.47%,18.66%~33.75%;同时与未施保水剂处理相比,生育期内土壤平均无机氮含量减少5.42%,有效磷含量提高3.55%;在本试验条件下,施用SAP 1.68g/pot、N 2.89g/pot、P 2.89g/pot可得到最大玉米产量113.93g/pot,收获时产量较其他处理提高了18.69%~30.94%。试验结果为华北地区应用保水剂条件下的夏玉米氮磷肥施用配比提供了参考。  相似文献   

19.
The interactive effect of rhizotrophic microorganisms on growth, yield, and nutrient uptake of wheat (Triticum aestivum L.) was determined in a pot experiment using sterilized soil deficient in available phosphorus (P). Positive effect on plant vigor, nutrient uptake, and yield in wheat plants was recorded in the treatment receiving mixed inoculum of nitrogen-fixing Azotobacter chroococcum + phosphate solubilizing microorganism (PSM) Pseudomonas striata + arbuscular mycorrhizal (AM) fungus Glomus fasciculatum. The available P status of the soil improved significantly (P ≤ 0.5) following triple inoculation with A. chroococcum, P. striata, and G. fasciculatum. The residual nitrogen (N) content of the soil did not change appreciably among the treatments. Addition of Penicillium variable to single- or double-inoculation treatments negatively affected the measured parameters. The population of A. chroococcum, PSM, percentage root infection, and spore density of the AM fungus in inoculated treatments increased at 80 days of wheat growth. The present finding showed that rhizotrophic microorganisms can interact positively in promoting plant growth, as well as N and P uptake, of wheat plants, leading to improved yield.  相似文献   

20.
供氮水平对雄性不育玉米物质生产和氮代谢的影响   总被引:4,自引:0,他引:4  
在池栽条件下,比较了不同供氮水平下玉米细胞质雄性不育系(CMS)及其同型可育系碳氮代谢的差异。结果表明,两种供氮水平下,CMS玉米子粒产量和收获指数均高于其同型可育系(P0.05),生物产量差异不显著(P0.05),根量较多,根/冠比高于其可育系(P0.05)。CMS玉米保绿性好,净同化率高,果穗叶光合速率生育后期优势明显。果穗叶硝酸还原酶(NRase)、谷氨酰胺合成酶(GS)和谷氨酸脱氢酶(GDH)活性均具有较高活性,两种供氮水平下都表现出相对优势;其叶片、茎秆和根中氮百分含量和氮积累量都表现出花后0—20 d较高,生育后期较低的特点。CMS玉米的氮素转运多,贡献率和氮利用效率高,且不施氮水平下优势更为明显。说明雄性不育植株光合碳生产和果穗叶氮代谢能力强,促进了植株对氮素的转运和利用,有利于子粒灌浆充实和产量提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号