首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Producers use elemental ratios, such as calcium (Ca): magnesium (Mg), in fertility programs to ensure sufficient nutrient uptake. Kale (Brassica oleracea L. var. acephala D.C.) accumulates high levels of carotenoids which can be beneficial for human health. Objectives were to determine the influence of Ca:Mg fertilization on 1) biomass, 2) essential nutrients, and 3) carotenoids in kale leaf tissues. ‘Redbor’ kale was greenhouse-grown in solution culture. Ca:Mg ratio treatments were 9:1, 6:1, 3:1, 1:3, 1:6, and 1:9. Ca:Mg ratio significantly affected biomass, nutrient accumulation, and carotenoids. Plant biomass decreased linearly (P ≤ 0.001) and β-carotene, lutein, neoxanthin, and antheraxanthin all increased, then decreased quadratically (P ≤ 0.001) as the ratio of Ca:Mg changed from 9:1 to 1:9. Ca:Mg ratio also affected leaf tissue Ca, Mg, potassium (K), sulfur (S), boron (B), manganese (Mn), molybdenum (Mo) and zinc (Zn). Results indicate that producers wishing to maximize elemental uptake and carotenoid content of kale need to consider the ratio of Ca:Mg in their fertility programs.  相似文献   

2.
Brassica vegetables are a significant source of glucosinolates (GSs), which are sulfur (S)-containing phytonutrients exhibiting, upon hydrolysis by endogenous myrosinase, antioxidant and anti-carcinogenic activity. Selenium (Se) is an essential micronutrient in mammalian health exhibiting antioxidant activity by inhibiting experimental carcinogenesis in animal models and reducing cancer incidence in human clinical trials. Selenium is readily accumulated in both Brassica species and Arabidopsis thaliana, a model species with similar S-metabolism. The research objectives for this project were to: 1) compare the impact of Se fertilization on GS concentrations between Arabidopsis thaliana and rapid cycling Brassica oleracea; and 2) determine the level of Se fertilization needed to optimize plant tissue Se concentration to maximize potential human health benefits. Both S and Se concentrations increased in A. thaliana and B. oleracea tissues in response to increasing Se treatments. Concentrations of glucoiberin, glucoraphanin, aliphatic, and total GS differed significantly between A. thaliana and B. oleracea. Data demonstrates that anti-carcinogenic GSs can be modified through changes in Se treatment concentrations, yet high levels of anti-carcinogenic GSs can be maintained while increasing Se concentration to 0.8 mg Se L-1. Thus, it is feasible to increase Se to beneficial dietary levels without compromising GS concentrations.  相似文献   

3.
Land use choices differentially affect soil physical and biological properties. Tillage choices in particular affect soil erosion, the retention of soil organic matter, and the biological activity that organic matter supports. The present study evaluated the consequences of different cropping and tillage systems (undisturbed forest, coffee plantation, conventional, and no‐tillage row cropping) for soil microbial indicators and sulfur mineralization after 24 years of cropping on an Oxisol (Typic Haplorthox) in an experimental area at Londrina, Brazil. Soil samples were taken at 0–5, 5–10, and 10–20 cm depths and evaluated for microbial biomass P and S, S mineralization, and phosphatase and arylsulfatase activities. Land use affected microbial biomass P and S, and enzyme activity at all depths studied. The cultivated sites had lower values of microbial activity than the undisturbed forested site. Although the coffee site was not tilled and had high organic carbon content, there was low microbial activity, probably due to higher soil acidity and Al content. The estimates of pool stock for microbial P and annual P flux through the soil microbial biomass suggest that these pools are large enough to significantly affect plant nutrient availability. The greater microbial biomass and activity under forested and no‐tillage sites may be attributed, at least partially, to higher organic matter content. The soil microbial variables examined proved to be strong indicators of soil sustainability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
ABSTRACT

Spinach (Spinacia oleracea L.) has one of the highest United States per capita consumption rates among leafy vegetable crops, and also ranks second for lutein and β-carotene carotenoid concentration. The objectives of this study were to determine the effects of nitrogen (N) concentration on elemental and pigment accumulation in spinach. Two spinach cultivars (‘Melody’ and ‘Springer F1’) were greenhouse grown in nutrient solution culture under N treatments of 13, 26, 52, and 105 mg L? 1. Leaf tissue biomass increased from 45.6 to 273.2 g plant? 1 and from 127.0 to 438.6 g plant? 1 as N increased from 13 to 105 mg L? 1 for ‘Springer F1’ and ‘Melody’, respectively. Leaf tissue N, phosphorus (P), calcium (Ca), magnesium (Mg), copper (Cu), and zinc (Zn) responded to N treatments. Lutein accumulations, expressed on a fresh weight basis, responded quadratically to increasing N treatments for ‘Springer F1’. Maximum lutein values were 110 and 76 μ g g? 1 on a fresh weight basis, and maximum β-carotene values were 85 and 57 μ g g? 1 on a fresh weight basis for ‘Springer F1’ and ‘Melody’, respectively. Interestingly, N levels had a significant effect on carotenoid accumulation in both ‘Springer F1’ and ‘Melody’ when the pigments were expressed on a dry weight basis. Leaf tissue lutein increased from 0.59 to 1.06 mg g? 1 and from 0.59 to 0.90 mg g? 1 on a dry weight basis with increasing N treatments for ‘Springer F1’ and ‘Melody’, respectively. Reporting lutein and β-carotene on both a fresh and dry weight basis may be the most accurate way to express the carotenoid values of spinach.  相似文献   

5.
Selenium (Se) is an essential micronutrient for humans and animals, and also affects plant metabolism. In this study, the effects of increasing doses of Se application on the uptake of selenium (Se), nitrogen (N), and sulfur (S) content of three barley cultivars were investigated. The analysis indicated that the Se contents were highest in root tissues, intermediate in grain, and lowest in stem tissues in all cultivars. Total Se accumulations (whole plant) were highest in ‘Bülbül 89’ (0.171 mg kg?1), intermediate in ‘Çetin 2000’ (0.153 mg kg?1), and lowest in ‘Tarm 92’ cultivars (0.124 mg kg?1). In all cultivars, the increase in grain Se content resulted in a decrease in the grain N content. While ‘Bülbül 89’ can be suggested for biofortification purposes, less Se accumulating ‘Tarm 92’ cultivar can be suggested as a fodder in Se contaminated or high Se containing areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号