首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In order to study the effects of salinity and drought stress on echophysiological parameters and micronutrients concentration of pomegranate leaves, a factorial experiment was conducted based on completely randomized design with 0, 30, and 60 mM of salinity levels of sodium chloride and calcium chloride (1:1) and three irrigation intervals (2, 4, and 6 days) with three replications on ‘Rabab’ and ‘Shishegap’ cultivars of pomegranate. The results analysis of shoot and root indicated that the water salinity and drought affected the concentration of iron (Fe2+), zinc (Zn2+), copper (Cu2+) and manganese (Mn2+) in pomegranate leaves and roots. Mineral concentration of zinc (Zn2+), copper (Cu2+) and manganese (Mn2+) in roots and manganese (Mn2+) in shoot was increased with increasing salinity. Drought treatments decreased the concentration of Zn2+ in the shoot and increased Zn2+ in roots. Both cultivars showed significant differences in the Fe2+ concentrations of shoot, however the most accumulation of Fe2+ was observed in ‘Shishegap’ cultivar.  相似文献   

2.
ABSTRACT

The effects of three sodium chloride (NaCl) levels (0, 1200, and 2400 mg kg? 1 soil) and three irrigation intervals (3, 7, and 14 d) on the growth and chemical composition of two Pistacia vera rootstocks (‘Sarakhs’ and ‘Qazvini’) were investigated under greenhouse conditions. Eight-week-old pistachio seedlings were gradually exposed to salt stress which afterward, water stress was initiated. At any irrigation interval, plant height and shoot and root dry weights of both rootstocks were reduced with increasing salinity. However, increasing irrigation intervals alleviated the adverse effects of soil salinity. A negative relationship observed between relative shoot growth and electrical conductivity of soil saturation extract (ECe) confirmed the above findings. Under 3-d irrigation interval, the ECe required to cause a 50% growth reduction was lower than those under 7- and/or 14-d irrigation intervals. Shoot and root chemical analyses indicated that the salinity as well as irrigation regime affected the concentration and distribution of sodium (Na+), potassium (K+), and chloride (Cl?) in pistachio. The concentration of Na+, K+ and C1? ions increased with a rise in NaCl level, and was generally declined with increasing irrigation interval. Based on plant height, shoot and root dry weights and the concentrations of Na+, K+, and C1? in the plant tissues, at lowest irrigation intervals ‘Sarakhs’ shows a higher sensitivity to soil salinity than ‘Qazvini’, but with increasing irrigation interval, ‘Sarakhs’ and ‘Qazvini’ can be classified as resistant and sensitive to salinity, respectively.  相似文献   

3.
The effects of salinity on four faba bean (Vicia faba L) cultivars [Giza 429, Giza 843, Misr 1 (Orobanche-tolerant), and Giza 3 (Orobanche-susceptible)] and soil properties were investigated in a pot experiment with addition of 0, 50, and 100 mM sodium chloride (NaCl) for 9 weeks. Salinity significantly decreased calcium (Ca2+), magnesium (Mg2+), potassium (K+), bicarbonate (HCO3 ?), and sulfate (SO4 2?) while significantly increasing sodium (Na+), chloride (Cl?), pH, and electrical conductivity (EC; dS m?1). Root length density (cm cm?3), root mass density (mg cm?3), total dry weight, and salt-tolerance indexes were significantly reduced as a result of application of salinity. The results presented support evidence on the positive relationship between Orobance tolerance and salt tolerance in the three cultivars (Giza 429, Giza 843, and Misr 1). This adaptation was mainly due to a high degree of accumulation of inorganic nitrogen (N), phosphorus (P), K+, Ca2+, and Mg2+ and lesser quantities of Na+ and Cl?, as well as greater K+/Na+ and Ca2+/Na+ ratios.  相似文献   

4.
The salinity tolerance of nine grape genotypes was studied. Salinity was applied as nutrient solutions containing 0, 25, 50, and 100 mM sodium chloride (NaCl) for two weeks. Growth was significantly reduced by salinity, whereas chloride (Cl?) and sodium (Na+) contents increased. Sodium ion accumulation exceeded that of Cl? in all treatments. Shirazi and H6 had higher and lower Cl? concentrations in their lamina than others. There were significant positive correlations (P < 0.01) between Cl? and Na+ and negative correlation between Na+ and potassium (K+) in roots and laminas of all genotypes. Soluble sugars, proline, and glycine betaine contents increased in laminas of all of the genotypes with moderate salinity. There were positive correlations (P < 0.01) between lamina and root Na+ and Cl? contents and compatible solutes in all genotypes. Overall results revealed that unlike Shirazi with higher Na+ and Cl? accumulation in shoot, H6 showed a higher capacity to restrict Na+ and Cl? transport to shoot.  相似文献   

5.
Strawberry is listed as the most salt sensitive fruit crop in comprehensive salt tolerance data bases. Recently, concerns have arisen regarding declining quality of irrigation waters available to coastal strawberry growers in southern and central California. Over time, the waters have become more saline, with increasing sodium (Na+) and chloride (Cl?). Due to the apparent extreme Cl? sensitivity of strawberry, the rising Cl? levels in the irrigation waters are of particular importance. In order to establish the specific ion causing yield reduction in strawberry, cultivars ‘Ventana’ and ‘Camarosa’ were grown in twenty-four outdoor sand tanks at the ARS-USDA U. S. Salinity Laboratory in Riverside, CA and irrigated with waters containing a complete nutrient solution plus Cl? salts of calcium (Ca2+), magnesium (Mg2+), Na+, and potassium (K+). Six salinity treatments were imposed with electric conductivities (EC) = 0.835, 1.05, 1.28, 1.48, 1.71, and 2.24 dS m?1, and were replicated four times. Fresh and dry weights of ‘Camarosa’ shoots and roots were significantly higher than those of ‘Ventana’ at all salinity levels. Marketable yield of ‘Camarosa’ fruit decreased from 770 to 360 g/plant as salinity increased and was lower at all salinity levels than the yield from the less vigorous ‘Ventana’ plants. ‘Ventana’ berry yield decreased from 925 to 705 g/plant as salinity increased from 0.835 to 2.24 dS m?1. Relative yield of ‘Camarosa’ decreased 43% for each unit increase in salinity once irrigation water salinity exceeded 0.80 dS m?1. Relative ‘Ventana’ yield was unaffected by irrigation water salinity up to 1.71 dS m?1, and thereafter, for each additional unit increase in salinity, yield was reduced 61%. Both cultivars appeared to possess an exclusion mechanism whereby Na+ was sequestered in the roots, and Na+ transport to blade, petiole and fruit tissues was limited. Chloride content of the plant organs increased as salinity increased to 2.24 dS m?1 and substrate Cl increased from 0.1 to13 mmolcL?1. Chloride was highest in the roots, followed by the leaves, petioles and fruit. Based on plant ion relations and relative fruit yield, we determined that, over the range of salinity levels studied, specific ion toxicity exists with respect to Cl?, rather than to Na+ ions, and, further, that the salt tolerance threshold is lower for ‘Camarosa’ than for ‘Ventana’.  相似文献   

6.
Salinity is one of the most important agricultural problems in Iran. The effect of different levels of salinity and phosphorus on shoot length, root and shoot fresh and dry weight, nutrient elements (sodium (Na+), potassium (K+), phosphorus (P) and chloride (Cl?), proline and soluble sugar contents of barley were investigated. Two cultivars of barley, Hordeum murinum (wild resistant germplasm) and Hordeum vulgar, variety Afzal were treated in vegetative stage under hydroponics condition in a factorial arrangement based on completely randomized block (CRB) design with four levels of salinity [0, 100, 200 and 300 mM sodium chloride (NaCl)] and three levels of phosphorus (15, 30 and 55 μm L?1) with three replications. By increasing salinity, all the measured parameters, except sodium (Na+) content were reduced. Furthermore, with increased in phosphorus levels from 15 to 55 μm, Na+ content of the plant shoots decreased, but length, fresh and dry weights of roots and shoots and K+, P, Cl?, proline, and soluble sugars content of the shoots increased. The results indicated that accumulation of mineral ions for osmotic adjustment and restriction of Na+ accumulation in shoots were involved in phosphorus enhancement of the salt tolerance of barley. Thus, it seems that in saline soils, where there is no possibility for soil leaching and amending, application of phosphorus fertilizers can lead to a satisfactory growth and production in barely yield.  相似文献   

7.
ABSTRACT

The effect of salinization of soil with Na2SO4, CaCl2, MgCl2, and NaCl (70:35:10:23) on the biochemical characteristics of three wheat (Triticum aestivum L.) cultivars (‘LU-26S,’ ‘Sarsabaz’ and ‘Pasban-90’) was investigated under natural environmental conditions. Twenty-day-old seedlings of all three cultivars were subjected to three salinity treatments: 1.3 (control), 5.0, and 10 dSm?1 for the entire life period of plants. After 120 d of seed sowing, plant biomass production decreased by 49% and 65%, respectively, in response to 5 and 10 dSm?1 salinity levels. Addition of salts to growth medium also had a significant adverse effect on plant height. Increasing salinity treatments caused a great reduction in nitrate reductase activity (NRA) of the leaf. The inhibitory effect of salinity on nitrate reduction rate was more pronounced at the reproductive stage than at the vegetative stage of plant growth. Wheat cultivars ‘LU-26S’ and ‘Sarsabaz’ showed less reduction in NRA due to salinity compared with ‘Pasban-90.’ Ascending salinity levels significantly reduced potassium (K+) and calcium (Ca2+) accumulation in shoots, while the concentration of sodium (Na+) was increased. Salts of growth medium increased the shoot nitrogen (N) concentration, whereas phosphorous (P) concentration of shoots was significantly reduced due to salinity. Wheat cultivars ‘LU-26S’ and ‘Sarsabaz’ proved to be the salt-tolerant ones, producing greater biomass, showing less reduction in NRA, maintaining low sodium (Na+), and accumulating more K+ and Ca2+ in response to salinity. These two cultivars also showed less reduction in shoot K+/Na+ and Ca+/Na+ ratios than in ‘Pasban-90,’ particularly at the 10 dSm?1 salinity level.  相似文献   

8.
An experiment with factorial arrangement of treatments on a randomized complete block (RCB) design basis with three replications was conducted in a greenhouse during Spring 2010 to investigate changes in sodium ion (Na+), potassium ion (K+), Na+/K+ and to determine proline, protein content, and superoxide dismutase (SOD) of four wheat and four barley cultivars. Three salt levels {1, control (no salt), 7, and 13 dS m?1 [2.5 and 5 g salt [sodium chloride (NaCl) and sodium sulfate (Na2SO4) in 1:1 ratio] per kg of soil, respectively]} were used in this investigation. Salt stress treatments were applied 4 weeks after planting (at 2 leaf stage). Leaf samples were taken four weeks after imposition of salt treatment. The results showed that salinity caused an increased in proline and protein content, and SOD in all wheat and barley cultivars. The highest proline and protein content of barley and wheat cultivars at all salinity levels were observed in ‘Nimrooz’ and ‘Bam’ cultivars, respectively. At all salinity levels, wheat and barley cultivars ‘Kavir’ and ‘Nimrooz’, respectively, had the lowest Na+ content. Barley cultivar ‘Kavir’ and wheat cultivar ‘Bam’ had higher K+ and K+:Na+ ratios. This might be related to salt tolerance in these two cultivars. Wheat and barley cultivars showed differences with regard to proline, protein, and SOD content, Na+, K+, and K+:Na+ ratio, indicating existence of genetic diversity among the cultivars. These findings indicated that higher K+, K+:Na+ ratio, proline, protein, and SOD content could be the key factors, which offer advantage to barley over wheat for superior performance under saline conditions.  相似文献   

9.
The salinity tolerance of loquat grafted onto anger or onto loquat was studied. The plants were irrigated using solutions containing 5, 25, 35, 50, or 70 mM sodium chloride (NaCl) for five months. Different parameters of vegetative growth were studied, all of them showing that plants grafted onto loquat are much less salinity-tolerant than those grafted onto anger. Thus, the concentration of NaCl that produced a growth reduction of 50% (C50) for the growth parameters of the shoot was around 35 mM for loquat plants grafted onto loquat. With the NaCl levels employed, loquat-anger plants did not reach the C50. Lower chloride (Cl?) and sodium (Na+) uptake, higher potassium (K+)-Na+ selectivity and a lower reduction in the leaf magnesium (Mg2+) concentration for the loquat-anger combination can explain the higher salinity tolerance compared to loquat-loquat.  相似文献   

10.
ABSTRACT

One month old rice calli were exposed to 0, 50, and 100 mol m?3 sodium chloride (NaCl) in the liquid LS basal medium supplemented with 2.5 mg L?1 2,4-dichlorophenoxy acetic acid (2,4-D) and 0.5 mg L?1 kinetin. Callus relative growth rate (RGR; fresh) of both cultivars indicated a progressive decrease; however, callus dry weight increased as the NaCl level increased in the culture medium. Salinity stress increased the callus sodium (Na+), manganese (Mn2+), and magnesium (Mg2+) contents while potassium (K+), calcium (Ca2+), and iron (Fe2+) contents decreased. ‘Basmati-385’ showed less reduction in callus RGR, K+, and Ca2+ contents and a larger increase in callus dry weight, Na+, Mn2+, and Mg2+ contents as compared to ‘Basmati-Karnal’. However, the reverse was true for Fe2+ contents. K+/Na+ and Ca2+/Na+ ratios generally decreased under salt stress. Overall, reduction in callus relative growth rate was found to be inversely correlated with decrease in K+, Ca2+, and Fe2+ uptake and directly correlated with increased Na+ and Mg2+ concentration in callus tissue.  相似文献   

11.
To explore the possibility that saline wastewaters may be used to grow commercially acceptable floriculture crops, a study was initiated to determine the effects of salinity on two pollen-free cultivars of ornamental sunflower (Helianthus annuus L.). ‘Moonbright’ and ‘Sunbeam’ were grown in greenhouse sand cultures irrigated with waters prepared to simulate wastewaters commonly present in two inland valley regions of California: 1) San Joaquin Valley (SJV) where saline-sodic drainage waters are dominated by sodium (Na+) and sulfate (SO 2? 4 ) and 2) Coachella Valley (CV) where major ions in tailwaters are Na+, chloride (Cl?), SO 2? 4 , magnesium (Mg2+), calcium (Ca2+), predominating in that order. Ten-day-old seedlings were subjected to five salinity treatments of each water composition, each replicated three times. Electrical conductivities (EC) of the irrigation waters were 2.5, 5, 10, 15, and 20 dS·m?1. Flowering stems were harvested when about 75% of the ray flowers were nearly horizontal. Stem length and fresh weight, flower and stem diameter were measured. Mineral ion concentrations in upper and lower stems, upper and lower leaves were determined. Sodium was excluded from the young tissues in the upper portions of the shoot and retained in the basal stem tissue. Inasmuch as sunflower is also a strong potassium (K)-accumulator, K+/Na+ selectivity coefficients were unusually high in the younger shoot organs. Despite a five-fold increase in substrate Ca2+ in both solutions, shoot-Ca decreased as salinity increased and this cation was retained in the older leaves. A few of the lower leaves of plants irrigated with ICV waters at EC = 10 dS·m?1 and higher, exhibited necrotic margins which were undoubtedly caused by high concentrations of Cl? in the tissues. Flowering stems produced in all treatments met florist quality standards in terms of diameters for stems (0.5 to 1.5 cm) and blooms (8 to 15 cm). Across treatments, stem lengths ranged from 60 to 175 cm. Both ornamental sunflower cultivars proved to be good candidates for production of marketable flowering stems using moderately saline wastewaters.  相似文献   

12.
ABSTRACT

The effects of saline water containing 0, 50, 100, and 150 mM sodium chloride (NaCl), and 100 mM NaCl + 100 mM potassium (K) on photosynthesis, water relations, and ion and carbohydrate content of olive (Olea europaea L.) cultivars ‘Koroneiki’ and ‘Mastoidis’ were studied on five-year-old trees. Salinity increased sodium (Na+) and chloride (Cl?) in tissues of both cultivars, but more so in ‘Koroneiki’ than in ‘Mastoidis.’ Salt-toxicity symptoms were observed at 100 and 150 mM, but not in plants receiving extra K. In salt-stressed plants, leaf water potential declined, whereas turgor potential remained positive due to a rapid decrease in osmotic potential. Salinity increased mannitol content up to 41.3% in ‘Mastoidis’ and 15.8% in ‘Koroneiki’, but reduced starch content in leaves. Photosynthetic rates fell significantly with increasing salinity in both cultivars, but more so in ‘Koroneiki’ than in ‘Mastoidis’. Potassium supplements reduced the concentration of Na+ and increased the concentrations of K+ in leaves, but decreased photosynthesis.  相似文献   

13.
A study of the salinity effect on mineral content in rice genotypes differing in salt tolerance was conducted in a factorial Completely Randomized Design experiment. The results indicated that the genotypes developed differently by mutation conventional breeding. NS15 represented as salt-sensitive, Pokkali was included as an internationally salt-tolerant check and Iratom24 was moderately tolerant. The content of Na+, Ca2+, Mg2+ and Cl? followed an increasing pattern in roots and shoots of all the rice genotypes due to increasing salinity levels except Ca2+ and Mg2+ in the root. However, the concentration of K+ showed more or less an increasing pattern in root and a decreasing pattern in shoot. The concentration of Na+ and Ca2+ sharply increased with increasing the salinity levels in both the roots and shoots of NS15. The concentration of K+ sharply decreased in shoot and increased in the root of susceptible genotype NS15 with increasing salinity over 6 dS m?1 salinity levels, where the transformation of K+ from root to shoot was disrupted by Na+. The Cl? content sharply increased with increasing salinity in the root of NS15 as compared to shoot. The effect of different salinity levels on Na+/K+ ratio in the shoots of the selected rice genotypes sharply increased in susceptible genotype NS15 as compared to the other genotypes.  相似文献   

14.
A greenhouse experiment was conducted to investigate the impact of water and salt stress in Quinoa plants (Chenopodium quinoa Willd.). Irrigation treatments using saline solutions of 0 (control), 50(T1), 200(T2), 400(T3), 600(T4), and 800(T5) mM sodium chloride (NaCl) were adopted. The results indicated that quinoa plants can tolerate water stress (50%FC) when irrigated with moderately saline water (T1 and T2, respectively). Salinity stress increases quinoa drought tolerance in terms of biomass production. Neither osmotic stress nor ions deficiency/toxicity seems to be determinant under T1 and 100%FC. Salinity induced a significant increase of sodium (Na+) and chloride (Cl?), while reduced magnesium (Mg2+) and calcium (Ca2+) in stems, leaves, seed’s coating, and seeds. The potassium (K+)/Na+ ratio never fell below 1 with T1; yet, fell to 0.78 and 0.89 with T2 for 100% and 50%FC, respectively. The seed coat limited the passage of possibly toxic concentrations of Na+ and Cl? to seed interior, as high Na+ and Cl? was found in the seed coat.  相似文献   

15.
Net uptake and partitioning of sodium (Na+) and potassium (K+) in plants of two sesame cultivars (Sesamum indicum cv. ‘PB-1’ and cv. ‘UCR’) exposed to 20 mM sodium chloride (NaCl) were studied over a period of 28 days. Both cultivars showed a marked discrimination between K+ and Na+ during uptake. The reduction of K+ in the plants caused by the NaCl treatment was of similar magnitude in the two cvs. The cv. ‘UCR’ showed lower Na+ concentrations in the shoot tissues than ‘PB-1’ and K+/Na+ selectivity ratios were higher in cv. ‘UCR’ than in cv. ‘PB-1’. At the last sampling on day 28 there was a marked decrease of shoot growth in cv. ‘PB-1’ in comparison to the cv. ‘UCR’. Leaves of cv. ‘PB-1’ showed clear toxic symptoms, while those of cv. ‘UCR’ did not. It is concluded that Na+ exclusion from the shoot contributes to salt tolerance of sesame, cv. ‘UCR’.  相似文献   

16.
ABSTRACT

This study reports the relationship of the leaf ionic composition with the grain yield and yield components of wheat in response to salinity x sodicity and salinity alone. The study was conducted in soil culture in pots with three treatments including control (ECe 2.6 dS m? 1 and SAR 4.53), salinity (ECe 15 dS m? 1 and SAR 9.56), and salinity x sodicity (ECe 15 dS m? 1 and SAR 35). The soil was treated before being put in the pots and the pots were arranged in a completely randomized factorial arrangement with five replications. The seeds of three wheat genotypes were sown directly in the pots and the study was continued till the crop maturity. At booting stage, the leaf second to the flag leaf of each plant was collected and analyzed for sodium (Na+), potassium (K+), and chloride (Cl?). At maturity, plants were harvested and data regarding grain yield and yield components were recorded. This study shows that salinity and sodicity in combination decreases the grain yield of wheat more than the salinity alone with a greater difference in the sensitive genotype. This study also shows that as for salinity, the maintenance of lower Na+ and higher K+ concentrations and higher K+: Na+ ratio in the leaves relates positively with the better development of different yield components and higher grain yield in saline sodic soil conditions. Although, the leaf Cl? concentration was increased significantly by salinity as well as salinity x sodicity and would have affected the growth and yield, yet it does not seem to determine the genotypic tolerance or sensitivity to either salinity or salinity x sodicity.  相似文献   

17.
Ion inclusion or ion exclusion are the two main strategies developed by plants to tolerate saline environments. Shoot sodium (Na+), potassium (K+), and calcium (Ca2+) in four perennial grass species (tall wheatgrass, Nuttall's alkaligrass, creeping foxtail, and switchgrass) treated with nutrient solution salinity levels ranging from 2 to 32 dS m?1 were measured. As the nutrient solution salinity was increased from 2 to 10 dS m?1, tall wheatgrass, creeping foxtail and Nuttall's alkali grass had increased shoot Na+ and decreased Ca2+ concentration while maintaining growth suggesting that these species tolerated these changes in shoot ion concentration. In contrast, switchgrass excluded Na+ from the shoot and maintained K+ and Ca2+ concentrations but suffered dramatic shoot dry weight reduction. Thus, the Na+ exclusion mechanisms present in switchgrass were less efficient in maintaining growth under the 10 dS m?1 nutrient solution treatment than the Na+ inclusion mechanisms used by the other three species.  相似文献   

18.
Plant dry matter accumulation rate (DMAR), relative water content (RWC), electrolyte leakage percentage (ELP), chlorophyll content, osmotic adjustment ability (OAA), and osmotica accumulation in leaves of sunflower (Helianthus annuus L.) seedlings under different levels of dehydration and salinity stress induced by iso-osmotic PEG (polyethylene glycol) or sodium chloride (NaCl) were evaluated. Plants were subjected to four stress treatments for 10 days: ?0.44 MPa PEG6000, ?0.44 MPa NaCl, ?0.88 MPa PEG6000, ?0.88 MPa NaCl. Results showed that PEG and NaCl treatments decreased the plant's DMAR and RWC, and NaCl treatments had more severe inhibitory effect on the plants than PEG treatments. Leaf ELP in sunflower seedlings increased after NaCl and PEG treatments. However, leaf ELP under salt stress was higher than that under dehydration stress (PEG treatment). All stress treatments increased OAA in plant leaves. Leaf OAA was enhanced significantly as PEG concentration increases, while leaf OAA was less enhanced at higher concentration of NaCl. OAA of sunflower leaves under dehydration stress was due to an increase in potassium (K+), calcium (Ca2+), amino acid, organic acid, magnesium (Mg2+), and proline content. OAA of sunflower leaves under moderate salt stress was owing to an increase in K+, chlorine (Cl?), amino acid, organic acid, sodium (Na+), and proline content, and was mainly due to an accumulation of K+, Cl?, Na+, and proline under severe salt stress.  相似文献   

19.
To successfully use salt water for crop production and start a breeding program, more information is needed about the response of salt‐tolerant plants to saline environments. The objective of this experiment was to test the growth of 12 cultivars of the United Arab Emirates date palm seeds at four sodium chloride (NaCl) levels. The experiment was a randomized complete block design with three replicates. Optimal growth was found at control and 3000 ppm of NaCl. Relative growth rate (RGR), biomass, and number of leaves (NL) decreased significantly by increasing salinity. Increased NaCl leads to significant decreases in potassium (K+), magnesium (Mg2+), and calcium (Ca2+) contents of plants. The Na/K ratios were lower in shoots than in roots. ‘Lulu,’ ‘Fard,’ ‘Khnaizi,’ ‘Nabtat Safi,’ and ‘Razez’ cultivars showed greater RGR and biomasses, whereas ‘Khnaizi,’ ‘Mesally,’ and ‘Safri’ had greater Na/K ratios than others in the control indicating greater Na+ discriminations from plant parts.  相似文献   

20.
Two cultivars ("Spirit”; and “Jubileo") of maize (Zea mays L.) were studied to compare their response to various levels of potassium (K+) (0.1, 1, and 6 mol/m3) and sodium chloride (NaCl) (0 and 50 mol/m3) in nutrient solutions with 16 h photoperiod, day/night temperature regime of 25/20°C, and a photon flux density of 380 nmol/m2/sec. ‘Spirit’ produced about 1.5 times more biomass than ‘Jubileo’ at 6 mol/m3 K+in the control treament, while at 0.1 mol/m3 K+ the growth of both cultivars was similar. Plant fresh weight was reduced by 20% in ‘Spirit’ and by 30% in ‘Jubileo’ with 50 mol/m3 NaCl and 6 mol/m3 K+. Growth reduction of maize plants by salinity was associated with an excessive accumulation of sodium (Na+) and chloride (Cl) rather than an effect on water relations. The higher salt tolerance of ‘Spirit’ can be related to its greater capacity to exclude Na+ and Cl from the leaves and to maintain a higher K+/Na+ ratio. Increasing the K+ supply in the rooting media did not improve growth reduction imposed by the 50 mol/m3 NaCl treatment. ‘Jubileo’ had a lower turgor potential than ‘Spirit’. High concentrations of Na+ in the leaves may help to maintain turgor, but cannot substitute for K+ to give adequate growth of maize. The accumulation in leaf tissue of inorganic ions was sufficient for osmotic adjustment in both cultivars and no single organic solute appears to be important in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号