首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
Rice is a main food crop for about half of the world's population, and phosphorus (P) is the main limiting nutrient in rice production in tropical lowlands. A greenhouse experiment was conducted to evaluate P requirements of lowland rice grown on a lowland soil (Inceptisol). Dry matter, grain yield, and yield-attributing characteristics were significantly (P < 0.01) influenced by P fertilization. Based on quadratic response, maximum shoot dry weight and grain yield were obtained with the application of 190 mg P kg?1 of soil. Maximum panicle, tiller number, and plant height were obtained with the application of 177 192, and 175 mg P kg?1 of soil, respectively. Mehlich 1–extractable P for maximum grain yield was 15.6 mg kg?1 of soil. Variability in grain yield with plant growth and yield parameters was in the order of tiller > shoot dry weight > panicle number > spikelet sterility > plant height > grain harvest index > panicle length > weight of 1000 grains. Phosphorus uptake in shoot and concentration and uptake in grain significantly (P < 0.01) increased grain yield. However, variability in grain yield was greater with concentration and uptake of P in the grain. Similarly, P harvest index was also significantly associated with grain yield. Agronomic P-use efficiency, apparent P-recovery efficiency, and P-utilization efficiency decreased quadratically with increasing P rates, whereas physiological P-use efficiency increased quadratically and agrophysiological P-use efficiency decreased linearly with increasing P rates. Agrophysiological and utilization P-use efficiencies had significant positive correlation with grain yield.  相似文献   

2.
Nitrogen (N) deficiency is one of the most yield-limiting nutrients in upland rice growing regions word wide. A greenhouse experiment was conducted with the objective to evaluate nineteen upland rice (Oryza sativa. L.) genotypes for N use efficiency. The soil used in the experiment was an Oxisol and two N levels used were without N application (low level) and an application of 400 mg N kg?1 of soil (high level). Grain yield and yield components and N uptake parameters were significantly affected by N and genotype treatments. Regression analysis showed that plant height, shoot dry weight, number of panicles per pot, number of grains per panicle, grain harvest index, N uptake in shoot and grain were having significant positive relation with grain yield. Nitrogen concentration of 6.4 g kg?1 in the shoot is established as deficient level and 9.5 g kg?1 as sufficient level at harvest. Agronomic efficiency of N (grain yield/unit of N applied) and N utilization efficiency (physiological efficiency X apparent recovery efficiency) were significantly different among genotypes. These two N use efficiencies were having significant quadratic relationship with grain yield. Soil pH, exchangeable soil Ca and base saturation were having significantly positive association with grain yield. However, soil extractable phosphorus (P), potassium (K), hydrogen (H+), aluminum (Al) and cation exchange capacity were having significantly negative association with grain yield.  相似文献   

3.
Lowland rice significantly contributes to world as well as Brazilian rice production and information on genotypes potassium-use efficiency is limited. A greenhouse experiment was conducted with the objective to evaluate lowland rice genotypes for potassium (K)–use efficiency. Ten genotypes were evaluated at 0 mg K kg?1 (low) and 200 mg K kg?1 (high) of soil. Grain yield and shoot dry weight were significantly affected by K as well as genotype treatments. Genotypes CNAi 8860, CNAi 8859, BRS Fronteira, and BRS Alvorada were the best in relation to K-use efficiency because they produced best grain yield at low as well as at higher K levels. Shoot dry weight, number of panicles per pot, and 1000-grain weight had highly significant (P < 0.01) association with grain yield. Spikelet sterility, however, had significant negative association with grain yield. These plant parameters were mainly influenced by genotypes, indicating importance of selecting appropriate genetic material for improving grain yield. Soil K depletion was significant at harvest, suggesting large amount of K uptake by lowland rice genotypes.  相似文献   

4.
Phosphorus (P) deficiency is one of the most yield limiting factors for dry bean (Phaseolus vulgaris) production in tropical acid soils. Dry beans are invariably grown as mono-crops or as inter-crops under the perennial tropical crops. Information is limited regarding the influence of phosphorus fertilization on dry bean yield and yield components and P use efficiency in tropical acid soils. A greenhouse experiment was conducted to evaluate the influence of phosphorus fertilization on dry bean growth, yield and yield components and P uptake parameters. Phosphorus rates used were 0, 50, 100, 150, 200, and 250 mg P kg?1 of soil. Soil used in the experiment was an acidic Inceptisol. Grain yield, shoot dry weight, number of pods, and 100 grain weight were significantly (P < 0.01) increased with phosphorus fertilization. Maximum grain yield, shoot dry matter, number of pods, and 100 grain weight were obtained with the application of 165, 216, 162, and 160 mg P kg?1 of soil, respectively, as calculated by regression equations. Grain yield was significantly and positively associated with shoot dry weight, number of pods, P concentration in grain and total uptake of P in shoot and grain. Phosphorus use efficiency defined in several ways, decreased with increasing P rates from 50 to 250 mg P kg?1 of soil. Maximum grain yield was obtained at 82 mg kg?1 of Mehlich 1 extractable soil P. Results suggest that dry bean yield in Brazilian Inceptisols could be significantly increased with the use of adequate rates of phosphorus fertilization.  相似文献   

5.
Phosphorus (P) deficiency is one of the most yield limiting factors for crop production in South American soils. Upland rice (Oryza sativa L.) is an important crop in South American cropping systems, including Brazil. A field experiment was conducted with the objective to evaluate 20 upland rice genotypes for phosphorus (P) use efficiency. The P rate used was low (0 kg P ha?1) and high [87 kg P ha?1 or 200 kg phosphorus pentoxide (P2O5) ha?1]. Plant height, shoot dry weight, grain yield, panicle number, 1000 grain weight, spikelet sterility, and grain harvest index were significantly influenced by P and genotype treatments. The P X genotype interaction was significant for grain yield, indicating that genotypes responded differently under two P rates. Overall, grain yield increased by 12% with the addition of P fertilization. Based on grain yield efficiency index, genotypes were classified into efficient, moderately efficient, and inefficient group. The genotypes that were classified as efficient in P use were BRA032048, BRA042094, BRA02601, BRA032051, BRA032033, BRA052015, BRA042156, BRA01600, BRA01506, BRA052023 and BRA042160. The inefficient genotypes in P us efficiency were BRS Primavera, BRA052045, BRA01596, and BRS Sertaneja. Grain harvest index had a significant positive association with grain yield and spikelet sterility had a significant negative association with grain yield, as expected. Average, P-use efficiency of five genotypes was about 17 kg kg?1 (kg grain yield per kg P applied).  相似文献   

6.

Phosphorus (P) deficiency is one of the most yield limiting factors in crop production in Brazilian Oxisols. A greenhouse experiment was conducted to evaluate 20 upland rice genotypes at low (25 mg P kg?1) and high (200 mg P kg?1) P levels applied to a Brazilian Oxisol. Grain yield and yield components were significantly influenced by P level and genotype treatments. There was a significant interaction between P level and genotype treatments in relation to grain yield, indicating genotypes responded differently under two P levels. Based on grain yield efficiency index (GYEI), genotypes were classified into efficient, moderately efficient and inefficient groups. The efficient genotypes in utilizing P were ‘BRA052053’, ‘BRS Primavera’, ‘BRA052015’, ‘BRA052023’, ‘BRA01506’, ‘BRA052045’, ‘BRA032033’, ‘BRA01596’ and ‘BRA052034’. Remaining genotypes were classified as moderately efficient in P use efficiency. None of the genotypes were fall into inefficient group. Grain yield was significantly and positively related with shoot dry weight, panicle number, grain harvest index, 1000-grain weight and had a negative and significant correlation with spikelet sterility. Grain weight was having maximum contribution in total rice plant weight comparing to root and shoot, indicating improvement in harvest index of modern Brazilian upland rice cultivars by breeding.  相似文献   

7.
Rice, dry bean, corn, and soybean are important food crops. Phosphorus (P) deficiency is one of the most yield-limiting factors for these crops grown on highly weathered Brazilian Oxisols. Four greenhouse experiments were conducted to determine P requirements of these four crops. The P levels used were 0, 50, 100, 200, and 400 mg kg?1. Growth, yield, and yield components evaluated of four crop species were significantly increased with the application of P fertilization. Most of the responses were quadratic in fashion when the P was applied in the range of 0 to 400 mg kg?1. Maximum grain yield of upland rice was obtained with the application of 238 mg P kg?1 of soil, maximum dry bean grain yield was obtained with the application of 227 mg P kg?1 of soil, and maximum grain yield of soybean was obtained with the application of 224 mg P kg?1 of soil. Maximum shoot growth of corn was obtained with the addition of 323 mg P kg?1 of soil. Most of the growth and yield components had significant positive association with grain yield or shoot dry weight. Phosphorus concentration and uptake were greater in the grain compared to straw in upland rice and dry bean plants. Overall, P-use efficiencies decreased with increasing P rates.  相似文献   

8.
Potassium (K) is an essential nutrient for higher plants. Information on K uptake and use efficiency of upland rice under Brazilian conditions is limited. A greenhouse experiment was conducted with the objective to evaluate influence of K on yield, K uptake, and use efficiency of six upland rice genotypes grown on Brazilian Oxisol. The K rate used was zero (natural soil level) and 200 mg K kg–1 of soil. Shoot dry weight and grain yield were significantly influenced by K level and genotype treatments. However, K × genotype interactions were not significant, indicating similar responses of genotypes at two K levels for shoot dry weight and grain yield. Genotypes produced grain yield in the order of BRS Primavera > BRA 01596 > BRSMG Curinga > BRS 032033 > BRS Bonança > BRA 02582. Potassium concentration in shoot was about sixfold greater compared to grain, across two K levels and six genotypes. However, K utilization efficiency ratio (KUER) (mg shoot or grain yield / mg K uptake in shoot or root) was about 6.5 times greater in grain compared to shoot, across two K level and six genotypes. Potassium uptake in shoot and grain and KUER were significantly and positively associated with grain yield. Soil calcium (Ca), K, base saturation, acidity saturation, Ca saturation, K saturation, Ca/K ratio, and magnesium (Mg)/K ratio were significantly influenced by K application rate.  相似文献   

9.
Dry bean is an important legume for South American population, and phosphorus (P) deficiency is the most yield-limiting nutrient for crop production in South American soils. A greenhouse experiment was conducted with the objective of evaluating influence of P fertilization on grain yield and yield components of 30 dry bean genotypes. The P levels used were 0 mg P kg?1 (natural level of the soil) and 200 mg P kg?1 applied with triple superphosphate fertilizer. Yield and yield components were significantly influenced with P as well as genotype treatments. The P?×?genotype interactions were significant for yield as well as yield components, indicating different responses of genotypes at two P levels. Root dry weight and maximum root length were also significantly increased with the addition of P fertilization. There were also significant differences among the genotypes in the growth of root system. Based on grain yield efficiency index (GYEI), genotypes were classified as P efficient, moderately efficient, and inefficient. Among 30 genotypes, 17 were classified as efficient, 12 were classified as moderately efficient, and 1 was classified as inefficient. Yield components such as pods per plant and seeds per pod were having significant positive association with grain yield. In addition, grain harvest index (GHI) was also having significant linear association with grain yield. Hence, it is possible to improve grain yield of dry bean in Brazilian Oxisol with the addition of adequate rate of P fertilization as well as use of P-efficient genotypes.  相似文献   

10.
Dry bean is an important legume for human consumption in South America. A greenhouse experiment was conducted to evaluate uptake and use efficiency of macro- and micronutrients by six dry bean genotypes at two P levels (25 and 200 mg kg?1 soil). Shoot dry weight and grain yield varied significantly among genotypes and significantly increased with increasing phosphorus (P) levels. Grain harvest index (GHI) and 100-grain weight also differ significantly among genotypes and significantly increased with the increasing P levels. Based on grain yield efficiency index (GYEI), genotypes were classified as efficient and inefficient. The most efficient genotype was CNFP 10104, and inefficient genotypes were CNFP 10103 and CNFP 10120. Number of pods per plant and number of seeds per pod increased significantly with the addition of 200 mg P kg?1 of soil compared to the low level of P (25 mg P kg?1). Similarly, nitrogen (N), P, calcium (Ca), magnesium (Mg), sulfur (S), zinc (Zn), copper (Cu), and manganese (Mn) concentrations and uptake in the shoot and grain also significantly varied among genotypes. Uptake of macro- and micronutrients was greater under the greater P rate compared to the low P rate. This may be related to greater shoot or grain yield at 200 mg P kg?1 soil compared to 25 mg P kg?1 of soil.  相似文献   

11.
Phosphorus (P) deficiency is one of the most important yield‐limiting factors in acid soils in various parts of the world. The objective of this study was to evaluate the growth and P‐use efficiency of 20 upland rice (Oryza sativa L.) genotypes at low (0 mg P kg‐1), medium (75 mg P kg‐1), and high (150 mg P kg‐1) levels of applied P on an Oxisol. Plant height, tillers, shoot and root dry weight, shoot‐root ratio, P concentration in root and shoot, P uptake in root and shoot, and P‐use efficiency were significantly (P<0.01) affected by level of soil P as well as genotype. Shoot weight and P uptake in shoot were found to be the plant parameters most sensitive to P deficiency, suggesting that these two parameters may be most suitable for screening rice genotypes for P‐use efficiency under greenhouse conditions.  相似文献   

12.
Abstract

Phosphorus (P) deficiency is one of the most yield‐limiting factors in lowland acid soils of Brazil. A field experiment was conducted during two consecutive years to determine dry‐matter and grain yield, nutrient uptake, and P‐use efficiency of lowland rice (Oryza sativa L.) grown on an acidic Inceptisol. Phosphorus rates used in the experiment were 0, 131, 262, 393, 524, and 655 kg P ha?1 applied as broadcast through termophosphate yoorin. Dry‐matter yield of shoot and grain yield were significantly (P<0.01) and quadratically increased with P fertilization. Concentrations (content per unit dry‐weight leaves) of nitrogen (N), P, and magnesium (Mg) were significantly increased in a quadratic fashion with the increasing P rates. However, concentrations of potassium (K), calcium (Ca), zinc (Zn), copper (Cu), and iron (Fe) were not influenced significantly with P fertilization, and Mn concentration was significantly decreased with increasing P rates. Phosphorus use efficiencies (agronomic, physiological, agrophysiological, recovery, and utilization) were decreased with increasing P rates. However, magnitude of decrease varied from efficiency to efficiency.  相似文献   

13.
Zinc (Zn) deficiency in rice has been widely reported in many rice-growing regions of the world. A greenhouse experiment was conducted with the objective of determining Zn requirements of lowland rice. Zinc rates used were 0, 5, 10 20, 40, 80, and 120 mg Zn kg?1 of soil applied to an Inceptisol. Zinc application significantly affected shoot dry weight and grain yield as well as concentrations and uptakes of Zn in soil and plant. Maximum yield of shoot dry weight and grain yield were achieved at 5 and 20 mg Zn kg?1 of soil, respectively. Zinc concentration and uptake in shoot as well as Zn uptake in grain had significant quadratic increases as Zn concentration increased in the soil solution. Zinc concentration as well as uptake was greater in the shoot as compared with concentration and uptake in the grain. Zinc-use efficiencies significantly decreased with increasing Zn rates in the soil except agrophysiological efficiency, which had significant quadratic increases with increasing Zn rates. On average, about 6% of the applied Zn was recovered by the lowland rice plants. Mehlich 1 extracting solution extracted much more Zn than diethylenetriaminepentaacetic acid (DTPA). However, Mehlich 1 as well as DTPA-extractable Zn had significant positive correlations with each other as well as with Zn uptake in grain and shoot.  相似文献   

14.
Rice is important crop for world population, including Brazil. Nitrogen (N) is one of the most yield limiting nutrients in rice production under all agro-ecological conditions. A greenhouse experiment was conducted to evaluate N responses to 12 lowland rice genotypes. Soil used in the experiment was a Gley humic according to Brazilian soil classification system and Inceptisol according to USA soil taxonomy classification. The N rates used were 0 mg kg?1 (low) and 300 mg kg?1 (high) of soil. Plant height, straw yield, grain yield, panicle density, 1000 grain weight, and root dry weight were significantly increased with the addition of N fertilization. These growth, yield, and yield components were also significantly influenced by genotype treatment. Grain yield had significant linear or quadratic association with shoot dry weight, panicle number and 1000 grain weight Based on grain efficiency index genotypes were classified as efficient, moderately efficient and inefficient in N use. The N efficient genotypes were ‘BRS Tropical’, ‘BRS Jaçanã’, ‘BRA 02654’, ‘BRA 051077’, ‘BRA 051083’, ‘BRA 051108’, ‘BRA 051130’ and ‘BRA 051250’. Remaining genotypes fall into moderately efficient group. None of the genotypes were grouped as inefficient in N use efficiency.  相似文献   

15.
Phosphorus (P) is required by crop plants for many physiological and biochemical functions. Knowledge of phosphorus uptake and its use by crop plants is essential for adequate management of this essential nutrient. A field experiment was conducted during four consecutive years to determine P uptake and use efficiency by upland rice, dry bean, corn and soybean grown in rotation on a Brazilian Oxisol. Plant samples were taken at different growth stages during the growth cycle of each crop for phosphorus analysis. Phosphorus concentration (content per unit dry matter) significantly decreased in a quadratic fashion with the advancement of plant age in four crop species. Phosphorus concentration was higher in legumes compared to cereals. Phosphorus uptake in shoot, however, significantly increased in an exponential quadratic fashion with the advancement of plant age of crop species. At harvest, P uptake was higher in grain compared to shoot, indicating importance of this element in improving crop yields. Phosphorus use efficiency (grain or straw yield per unit P uptake) was higher in cereals compared to legumes. The P use efficiency for grain production was 465 kg kg?1 for upland rice, 492 kg kg?1 for corn, 229 kg kg?1 for dry bean and 280 kg kg?1 for soybean. The higher P use efficiency in cereals was associated with higher yield of cereals compared to legume species.  相似文献   

16.
《Journal of plant nutrition》2013,36(12):2793-2802
ABSTRACT

Phosphorus (P) deficiency is the most yield-limiting factor in lowland rice production in Inceptisols of Brazil. A greenhouse experiment was conducted to evaluate 12 genotypes of lowland rice (Oryza sativa L.) using an Inceptisol (Typic Haplaquepts). The P treatments were: low (0?mg?P?kg?1), medium (100?mg?P?kg?1), and high (400?mg?P?kg?1). Significant (P<0.01) genotypes differences in P-use efficiency were found. On the basis of P-use efficiency, genotypes were classified as efficient and responsive, efficient and non-responsive, non-efficient and responsive, and non-efficient and non-responsive. From a practical point of view, efficient and responsive and efficient and non-responsive genotypes are the most desirable ones. Among the 12 genotypes tested, none were found to be efficient and responsive and genotypes CNA7553, CNA7591, CNA7601, and Aliança were found to be efficient and non-responsive. Among the yield components, panicle length and harvest index were significantly affected by P levels and genotypes and P and genotypes interactions were significant for these two parameters. However, panicle number was significantly influenced only by P treatment. Among the yield components, panicle number, harvest index, and panicle length were significantly (P<0.01) related to grain yield.  相似文献   

17.
Rice (Oryza sativa L.) is a staple food for more than 50% of the world’s population, and phosphorus (P) is one of the most yield-limiting nutrients for rice production in tropical acidic soils worldwide. A greenhouse experiment was conducted to evaluate efficiency of six P sources for upland rice production. The P sources used were simple superphosphate (SSP), polymer-coated SSP (PSSP), triple superphosphate (TSP), polymer-coated TSP (PTSP), monoammonium phosphate (MAP), and polymer-coated MAP (PMAP). There were four P rates [50, 100 200, and 400 mg phosphorus (P) kg?1] applied with four sources plus one control treatment [0 mg phosphorus (P) kg?1]. Plant height, straw yield, grain yield, panicle density, root dry weight, maximum root length, and 1000-grain weight were significantly increased with increasing P rates in the range of 0 to 400 mg P kg?1. However, P-use efficiency (mg grain produced per mg P applied) was decreased with increasing P rate. Based on regression equation, overall maximum plant height was obtained with the application of 235 mg P kg?1, maximum straw yield with the application of 265 mg P kg?1, and maximum grain yield at 227 mg P kg?1. Based on maximum grain yield, the P source were classified as PMAP > SSP = MAP > PSSP > TSP > PTSP in the upland rice production efficiency. Overall, maximum panicle density was obtained with the addition of 231 mg P kg?1 and maximum 1000-weight was obtained with the addition of 226 mg P kg?1. Similarly, overall root dry weight and maximum root length were achieved with the application of 261 and 298 mg P kg?1 of soil. Most of the growth and yield components had a significant positive association with grain yield. Optimum soil acidity indices such as pH; exchangeable calcium (Ca), magnesium (Mg), and potassium (K); Ca, Mg, and K saturation; base saturation; and acidity saturation were established for maximum upland rice grain yield.  相似文献   

18.
To be sustainable, production in the traditional yam cropping system, faced with declining soil fertility, could benefit from yam–arbuscular mycorrhizal (AM) symbiosis, which can improve nutrient uptake, disease resistance, and drought tolerance in plants. However, only limited information exists about AM colonization of yam. A pot experiment was conducted to collect information on the response of two genotypes (Dioscorea rotundata accession TDr 97/00903 and D. alata accession TDa 297) to AM inoculation (with and without) and phosphorus (P) (0, 0.05, 0.5, and 5 mg P kg–1 soil). Factorial combinations of the treatments were arranged in a completely randomized design with four replicates. The percentage of AM colonization was significantly lowered at 5 mg P kg–1 soil rate in mycorrhizal plants of both genotypes. TDr 97/00903 showed more responsiveness to AM inoculation than TDa 297. The greatest AM responsiveness for tuber yield (52%) was obtained at 0.5 mg P kg–1 soil rate for TDr 97/00903. Mycorrhizal inoculation significantly increased root dry weight and tuber yield of TDr 97/00903 with the greatest values obtained at the 0.5 mg P kg–1 soil rate. Arbuscular mycorrhizal inoculation did not lead to significant (P < 0.05) changes in root length and area. Phosphorus application significantly increased the shoot dry weight and root diameter of TDa 297. Uptake of P was greatest at 0.5 mg P kg–1 soil in both genotypes and was significantly influenced by AM inoculation. Nitrogen (N) and potassium (K) uptake were greatest in mycorrhizal plants at 0.05 mg P kg–1 soil for TDr 97/00903 but at 0.5 mg P kg–1 soil of nonmycorrhizal plants of TDa 297. The increased tuber yield and nutrient uptake observed in the mycorrhizal plants indicate the potential for the improvement of nutrient acquisition and tuber yield through AM symbiosis.  相似文献   

19.
Manganese (Mn) deficiency in upland rice grown after common bean or soybean, which received adequate rate of liming on highly weathered Oxisols, is observed. A greenhouse experiment was conducted to evaluate Mn‐use efficiency of 10 promising upland rice genotypes. The genotypes were grown on an Oxisol at 0 mg Mn kg?1 (natural soil Mn level) and 20 mg Mn kg?1 of soil applied as manganese sulfate. Grain yield, panicle number, and grain harvest index (GHI) were significantly (P < 0.01) influenced by genotype. However, shoot dry weight was significantly affected by Mn as well as genotype treatments. Manganese uptake in the shoot as well as in the grain was also affected by genotype treatment. On the basis of Mn‐use efficiency (mg grain weight/mg Mn accumulated in shoot and grain), genotypes were classified as efficient and responsive (ER), efficient and nonresponsive (ENR), nonefficient and responsive (NER), and nonefficient and nonresponsive (NENR). Genotypes Carisma, CNA8540, and IR42 were classified as ER, and genotypes CNA8557 and Maravilha were classified as ENR. Genotype Caipo was in the group NER, and in the NENR group were genotypes Bonança, Canastra, Caraja, and Guarani. From a practical point of view, genotypes that produce high grain yield at a low level of Mn and respond well to Mn additions are the most desirable because they are able to express their high yield potential in a wide range of Mn availability.  相似文献   

20.
Potassium (K) uptake is greatest among essential nutrients for rice. Data related to yield, yield components, and K-use efficiency by upland rice genotypes are limited. A greenhouse experiment was conducted to evaluate influence of K on growth, yield and yield components, and K-use efficiency by upland rice genotypes. Potassium levels applied to an Oxisol were zero (natural K level) and 200 mg K kg1 of soil and 20 upland rice genotypes were evaluated. Plant height, shoot dry weight, grain yield, 1000-grain weight, and spikelet sterility were significantly affected by K and genotype treatments. Genotypes Primavera and BRA 1600 were the most efficient and genotype BRAMG Curinga was most inefficient in producing grain yield. Plant growth (plant height and shoot dry weight) and yield components (panicle number, grain harvest index, 1000-grain weight, and panicle length) were significantly and positively associated with grain yield. However, spikelet sterility was significantly and negatively correlated with grain yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号