首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Long-term overgrazing is known to influence soil microbiological properties and C sequestration in soil organic matter. However, much remains to be known concerning overgrazing impacts on soil microbial activity and litter turnover in heavily grazed rangelands of Central Iran. Aboveground litter decomposition of three dominant species (Agropyron intermedium, Hordeum bulbosum, and Juncus sp.) were studied using a litter bag experiment under field conditions in three range sites of Central Iran, a site with continuous grazing, a site ungrazed for 17 years with dominant woody species (80% cover), and a site ungrazed for 17 years with dominant pasture species (70% cover). Soil samples were taken from 0 to 30 cm depth and analyzed for their chemical and microbiological properties. Results demonstrate that soil organic C and total N contents and C/N ratios were similar for both ungrazed and grazed sites, while available P and K concentrations significantly decreased under grazed conditions. It was also evident that range grazing decreases soil respiration and microbial biomass C, suggesting a lower recent annual input of decomposable organic C. Nevertheless, grazing conditions had no significant effect on litter decomposition indicating soil microclimate is not affected by grazing animals in this ecosystem. It is concluded that overgrazing may presumably depress microbial activity through either reduced input of fresh plant residue into the surface soil or lack of living roots and exudates for stimulating microbial activity. This study also suggests that 17 years of livestock exclusion might be insufficient time for expected C accumulation in soil.  相似文献   

2.
The dried leaves and aerial parts of Artemisia sieberi Besser, which belongs to the Asteraceae family (Anthemideae) and grows in central Iran, were hydrodistilled to produce essential oils. The oil concentrations of the leaves and aerial parts were 0.32% and 0.79% (w/w), respectively. The essential oils were analyzed by gas chromatography (GC) and gas chromatography–mass spectrometry (GC-MS). The amounts of the samples injected were 1.0 nL (diluted 1.0 μL of sample in 1000 ml of n-pentane, v/v). Twenty-three and 14 bioactive, flavor, and fragrance molecules were identified, representing 99.04% and 99.40% of the aerial parts’ essential oils from sites A and B, respectively. Aerial parts of the plants and the habitat soils were sampled at random in full flowering stages in a completely randomized (CR) design with three replications from two sites with different soil types. The main components were trans-methyl isoeugenol (32.60%) in the first site (A) and β-bisabolene (33.59%) in the second site (B) oils. The compositions of the oils were mostly quantitatively rather than qualitatively different.  相似文献   

3.
Increasing grazing intensities of sheep and goats can lead to an increasing degradation of grasslands. We investigated four plots of different grazing intensities (heavily grazed, winter‐grazed, ungrazed since 1999, and ungrazed since 1979) in Inner Mongolia, PR China, in order to study the effects of trampling‐induced mechanical stresses on soil hydraulic properties. Soil water transport and effective evapotranspiration under “heavily grazed” and “ungrazed since 1979” were modeled using the HYDRUS‐1D model. Model calibration was conducted using data collected from field studies. The field data indicate that grazing decreases soil C content and hydrophobicity. Pore volume is reduced, and water‐retention characteristics are modified, the saturated hydraulic conductivity decreases, and its anisotropy (vertical vs. horizontal conductivity) is influenced. Modeling results revealed higher evapotranspiration on the ungrazed site (ungrazed since 1979) compared to the grazed site (heavily grazed) due to wetter soil conditions, more dense vegetation, litter cover, and decreased runoff and drainage, respectively. Grazing modified the partitioning of evapotranspiration with lower transpiration and higher evaporation at the grazed site owing to reduced root water uptake due to reduced evaporation and a patchy soil cover.  相似文献   

4.
It is not clear from the literature whether heavy grazing leads to a deterioration of physical and chemical parameters of topsoils in steppe ecosystems. We sampled five sites in northern China with different grazing intensities, ranging from ungrazed since 1979 to heavily grazed, at 540 sampling points to a depth of 0–4 cm. Each sample was analysed for bulk density, organic carbon (OC), total nitrogen (N), total sulphur (S) and pH. The dataset was analysed using general statistics and explorative analysis (ANOVA, Kruskal–Wallis). As a result of the large number of samples, we were able to detect a change in the mean value of all parameters of less than 10%, with a statistical power of 90% and a level of significance of 0.01. Bulk density increased significantly with increasing grazing intensity. Organic carbon, total N and total S concentrations decreased significantly with increasing grazing intensity. No effect on the pH or C/N ratio was detected. Significant differences in C/S and N/S ratios between differently grazed plots were found. These differences point towards a relative accumulation of sulphur in grazed compared to ungrazed areas following an increased organic matter decline or lower inputs of diluting litter. Elemental stocks of the upper 4 cm were calculated for OC, total N and total S using the measured bulk densities. The data revealed significantly lower amounts for all three elements on the heavily grazed site, but no significant differences for the other areas. In addition, elemental stocks were calculated using an equivalent mass instead of bulk density to take into account changes in bulk density following grazing. This revealed a highly significant decrease for OC, total N and total S with increasing grazing intensity. OC, total N and total S concentrations respond similarly to different grazing intensities, showing highly significant positive correlations. OC concentrations and bulk densities were significantly negatively correlated. We found effects of grazing cessation only in the long-term, as no ameliorating effects of reduced or excluded grazing could be detected five years after grazing cessation. After 25 years of exclusion, significantly different values were found for all parameters. Thus, physical and chemical parameters of steppe topsoils deteriorated significantly following heavy grazing, remained stable if grazing was reduced or excluded for five years, and recovered significantly after 25 years of grazing exclusion.  相似文献   

5.
Grassland birds are declining at a faster rate than any other group of North American bird species. Livestock grazing is the primary economic use of grasslands in the western United States, but the effects of this use on distribution and productivity of grassland birds are unclear. We examined nest density and success of ground-nesting birds on grazed and ungrazed grasslands in western Montana. In comparison to grazed plots, ungrazed plots had reduced forb cover, increased litter cover, increased litter depth, and increased visual obstruction readings (VOR) of vegetation. Nest density among 10 of 11 common bird species was most strongly correlated with VOR of plots, and greatest nest density for each species occured where mean VOR of the plot was similar to mean VOR at nests. Additionally, all bird species were relatively consistent in their choice of VOR at nests despite substantial differences in VOR among plots. We suggest that birds selected plots based in part on availability of suitable nest sites and that variation in nest density relative to grazing reflected the effect of grazing on availability of nest sites. Nest success was similar between grazed plots and ungrazed plots for two species but was lower for nests on grazed plots than on ungrazed plots for two other species because of increased rates of predation, trampling, or parasitism by brown-headed cowbirds (Molothrus ater). Other species nested almost exclusively on ungrazed plots (six species) or grazed plots (one species), precluding evaluation of the effects of grazing on nest success. We demonstrate that each species in a diverse suite of ground-nesting birds preferentially used certain habitats for nesting and that grazing altered availability of preferred nesting habitats through changes in vegetation structure and plant species composition. We also show that grazing directly or indirectly predisposed some bird species to increased nesting mortality. Management alternatives that avoid intensive grazing during the breeding season would be expected to benefit many grassland bird species.  相似文献   

6.
It is not clear from the literature how the spatial distribution of topsoil and vegetation properties is affected by grazing cessation. Thus, the objective of this study was to elucidate if long‐term grazing exclosure increases spatial heterogeneity of topsoil and vegetation properties in a steppe ecosystem in NE China. Variograms and crossvariograms were calculated for bulk density, organic carbon (OC), total N, and total S concentration, δ13C, pH, Ah horizon thickness, vegetation cover, and aboveground biomass. Five sites with different grazing intensities (ungrazed since 1979, ungrazed since 1999, winter grazing, continuously grazed, heavily grazed) were sampled with two different grid sizes, allowing the exploration of scale effects. Small grids (15 m spacing, 5 m nested sampling) exhibited a different spatial structure compared to large grids (50 m spacing, 10 m nested sampling). Spatial distribution in small grids changed with grazing intensity. Generally, heterogeneity of topsoil properties increased with decreasing grazing intensity from a homogeneous to a patchy distribution. We attribute this to vegetation recovery/succession and deposition of windblown material in ungrazed areas. The plot ungrazed since 1999 showed different spatial dependencies than continuously and heavily grazed plots, but has not yet reached the high variability of the plot which was ungrazed since 1979. Large grid sampling did not detect small‐scale variability or grazing impacts, but showed spatial dependencies that were attributed to topography or soil erosion/deposition. Low OC concentration and low Ah thickness were associated with hilltop and shoulder positions, resulting in lower OC stocks at these topographic units.  相似文献   

7.
毛乌素沙地油蒿群落生物结皮的分布特征   总被引:3,自引:1,他引:2  
为研究毛乌素沙地油蒿群落中生物结皮分布状况,根据放牧强度选取沙利(禁牧)、陶利(轻度放牧)和乌审召(正常放牧)3个试验点,分别调查了油蒿群落中固定沙地和半固定沙地植被盖度、油蒿盖度、生物结皮盖度、凋落物盖度、生物结皮破碎度、生物结皮厚度等指标。结果表明,毛乌素沙地油蒿群落中固定沙地生物结皮平均盖度为83.74%,半固定沙地生物结皮平均盖度为23.54%;油蒿群落中半固定沙地生物结皮绝大部分是处于初期发育阶段的藻结皮,而固定沙地苔藓和地衣结皮所占比例接近总盖度的1/2;半固定沙地大多数处于初期发育阶段的生物结皮受上层植被的影响更大;轻度放牧干扰对油蒿群落固定沙地生物结皮盖度和厚度的影响均不显著,而正常的放牧干扰会导致生物结皮盖度显著下降;半固定沙地生物结皮对放牧干扰的影响更为敏感,即使是轻微的放牧干扰,也会产生与正常放牧干扰相当的效果。  相似文献   

8.
Kobresia grasslands on the Tibetan Plateau comprise the world’s largest pastoral alpine ecosystem. Overgrazing-driven degradation strongly proceeded on this vulnerable grassland, but the mechanisms behind are still unclear. Plants must balance the costs of releasing C to soil against the benefits of accelerated microbial nutrient mineralization, which increases their availability for root uptake. To achieve the effect of grazing on this C-N exchange mechanism, a 15NH4+ field labeling experiment was implemented at grazed and ungrazed sites, with additional treatments of clipping and shading to reduce belowground C input by manipulating photosynthesis. Grazing reduced gross N mineralization rates by 18.7%, similar to shading and clipping. This indicates that shoot removal by grazing decreased belowground C input, thereby suppressing microbial N mining and overall soil N availability. Nevertheless, NH4+ uptake rate by plants at the grazed site was 1.4 times higher than at the ungrazed site, because plants increased N acquisition to meet the high N demands of shoot regrowth (compensatory growth: grazed > ungrazed). To enable efficient N uptake and regrowth, Kobresia plants have developed specific traits (i.e., efficient above-belowground interactions). These traits reflect important mechanisms of resilience and ecosystem stability under long-term moderate grazing in an N-limited environment. However, excessive (over)grazing might imbalance such C-N exchange and amplify plant N limitation, hampering productivity and pasture recovery over the long term. In this context, a reduction in grazing pressure provides a sustainable way to maintain soil fertility, C sequestration, efficient nutrient recycling, and overall ecosystem stability.  相似文献   

9.
放牧对荒漠草原植物生物量及土壤养分的影响   总被引:3,自引:1,他引:2  
以宁夏荒漠草原为研究对象,探讨放牧对荒漠草原植物多样性、 生物量及土壤养分特征的影响。结果表明, 放牧对荒漠草原植物群落多样性、 均匀度和丰富度影响显著。植物群落多样性和均匀度随着放牧强度的增加均呈先增加后降低的趋势,在轻度放牧达到最大值。同围封禁牧相比,重度、 中度和轻度放牧草地的植物地上和地下部生物量显著降低,分别降低了43.8%、 42.0%、 15.4% 和 27.7%、16.2%、11.9%。土壤有机碳随着放牧强度的增加而降低,而土壤全氮含量随着放牧强度的增加呈先增加后降低的趋势。围封禁牧草地土壤有机碳比重度放牧增加了18.1%,而土壤全磷、 速效磷和全钾含量分别降低了 21.1%、 51.9% 和 11.0%。土壤有机碳含量对植物群落地上和地下部生物量的影响大于土壤全氮、 全磷、 全钾、 速效磷和速效钾。放牧干扰下荒漠草原土壤环境及其养分含量,能在一定程度上反映植物群落多样性和生物量的变化。  相似文献   

10.
Over the last two decades, grazing intensity has increased in the temperate salt marshes of Samborombón Bay (Argentina) due to agricultural expansion and the displacement of domestic livestock to these areas. We investigated the effect of cattle grazing on soil chemical and physical properties in the higher (HE), medium (ME) and lower (LE) elevation levels of this temperate salt marsh. Soil data were collected from both a National Park, where cattle grazing has been excluded for more than 35 yrs, and an adjacent commercial livestock farm continuously grazed by cattle. We found that soil salinity was greater on the grazed than on the ungrazed sites, especially those in the ME and LE. This could be related to the upward flow of salts from the saline groundwater, driven by the increase in the proportion of bare soil on grazed sites. The increase in soil salinity changed the plant community structure through the increase of salt‐tolerant and non‐palatable species and the decrease of palatable species. Soil physical variables (soil bulk density and soil bearing capacity) were also higher on the grazed than on the ungrazed sites, which can be related to the decrease in soil organic matter (SOM), and suggest an incipient compaction process; however, the values were still lower than those considered critical for plant growth in clay soils. These results suggest that continuous grazing management in this temperate salt marsh might have negative consequences for animal production and ecosystem conservation, mainly related to the increased soil salinity. Further research will be necessary to evaluate the suitability of switching to intermittent grazing management.  相似文献   

11.
The effects of grazing intensity on plant and insect diversity were examined in four different types of grassland (intensively and extensively cattle-grazed pastures, short-term and long-term ungrazed grassland; 24 study sites). Vegetation complexity (plant species richness, vegetation height, vegetation heterogeneity) was significantly higher on ungrazed grasslands compared to pastures but did not differ between intensively and extensively grazed pastures. However, insect species richness was higher on extensively than on intensively grazed pastures, established by suction sampling of four insect taxa (Auchenorrhyncha, Heteroptera, Coleoptera, Hymenoptera Parasitica). This may be due to intensive grazing disrupting plant-insect associations as predicted by a “trophic-level” hypothesis. Local persistence and small-scale recolonization of insects on plants appeared to be difficult in the highly disturbed environment of intensive grazing. Insect diversity increased across the four treatments in the following order: intensively grazed<extensively grazed<short-term ungrazed<long-term ungrazed. The major predictor variable of differences in species diversity was found to be vegetation height. Predator-prey ratios within the investigated insect groups were not affected by grazing intensity.  相似文献   

12.
Soil nematode communities were investigated at eight semi-natural steppe grasslands in the National Park Seewinkel, eastern Austria. Four sites were moderately grazed by horses, cattle and donkeys, four were ungrazed. Nematodes were sampled on four occasions from mineral soil, and their total abundance, diversity of genera, trophic structure and functional guilds were determined. Altogether 58 nematode genera inhabited the grasslands, with Acrobeloides, Anaplectus, Heterocephalobus, Prismatolaimus, Aphelenchoides, Aphelenchus, Tylenchus and Pratylenchus dominating. Mean total abundance at sites was 185–590 individuals per 100 g soil. Diversity indices did not separate communities well, but cluster analysis showed distinct site effects on nematode generic structure. Within feeding groups the relative proportion of bacterial-feeding nematodes was the highest, followed by the fungal- and plant-feeding group. Omnivores and predators occurred in low abundance. The maturity indices and plant parasite indices were characteristic for temperate grasslands, but the abundance of early colonizers (c-p 1 nematodes) was low. A high density of fungal-feeding c-p 2 families (Aphelenchoidae, Aphelenchoididae) resulted in remarkably high channel index values, suggesting that decomposition pathways are driven by fungi. Nematode community indices of all sites pointed towards a structured, non-enriched soil food web. At most sites, grazing showed little or no effect on nematode community parameters, but total abundance was higher at ungrazed areas. Significant differences in the percentage of omnivorous nematodes, the sum of the maturity index, the number of genera and Simpson's index of diversity were found at one long-term grazed pasture, and this site was also separated by multi-dimensional scaling (MDS).  相似文献   

13.
The compositions of essential oils isolated from the aerial parts of Artemisia absinthium, Artemisia santonicum, and Artemisia spicigera by hydrodistillation were analyzed by GC-MS, and a total of 204 components were identified. The major components of these essential oils were camphor (34.9-1.4%), 1,8-cineole (9.5-1.5%), chamazulene (17.8-nd%), nuciferol propionate (5.1-nd%), nuciferol butanoate (8.2-nd%), caryophyllene oxide (4.3-1.7%), borneol (5.1-0.6%), alpha-terpineol (4.1-1.6%), spathulenol (3.7-1.3%), cubenol (4.2-0.1%), beta-eudesmol (7.2-0.6%), and terpinen-4-ol (3.5-1.2%). The antifungal activities of these essential oils were tested against 11 plant fungi and were compared with that of a commercial antifungal reagent, benomyl. The results showed that all of the oils have potent inhibitory effects at very broad spectrum against all of the tested fungi. Pure camphor and 1,8-cineole, which are the major components of the oils, were also tested for antifungal activity against the same fungal species. Unlike essential oils, these pure compounds were able to show antifungal activity against only some of the fungal species. In addition, the antioxidant and DPPH radical scavenging activities of the essential oils, camphor, and 1,8-cineole were determined in vitro. All of the studied essential oils showed antioxidant activity, but camphor and 1,8-cineole did not.  相似文献   

14.
A paired site study was conducted of communally grazed eutrophic and dystrophic grasslands and adjacent ungrazed areas of varying periods of exclusion from communal grazing. This allowed determination of the rate and extent of change of a number of vegetation and soil variables following the removal of high and continuous grazing pressure characteristic of communal lands. Similarity indices for grass species composition between the grazed and adjacent ungrazed areas showed a significant exponential decrease with increasing time since protection from continuous grazing. Most change in grass species composition occurred within four to nine years of protection from communal grazing in eutrophic grasslands, and in six to nine years in dystrophic grasslands. In both grassland types palatability increased with time since protection. In eutrophic sites the abundance of perennials showed a significant increase with time since protection, while the abundance of annuals showed a concomitant decrease. This relationship was not evident in dystrophic grasslands. Grass species diversity, basal cover and density showed no relationship with time since protection in the eutrophic sites, but a general increase with time since protection was found in dystrophic sites. Soil bulk density, field capacity, pH and soil nutrients showed no evidence of a relationship with time since protection for either grassland type, while soil porosity increased significantly with time since protection at eutrophic sites, but not dystrophic sites. These relatively rapid changes following the removal of the high grazing pressure indicate that these systems are characterized by relatively high resilience. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
内蒙古草原地处季节性冻土区,与放牧强度相关,土壤冻融过程对该地生态和水文过程有着显著影响,但相关研究相对欠缺。该文重点研究了内蒙古锡林郭勒草原3种放牧条件下UG79(1979年以来禁牧)、UG99(1999年以来禁牧)、HG(1979年以来持续放牧)季节性冻融期的土壤水热动态,以期准确理解放牧这一当地主要土地利用模式对土壤生态水文过程的影响。结果表明:与地上覆盖度相关,不同放牧条件下地表积雪厚度有明显差异,其中HG处理积雪厚度远小于其他处理,其土壤温度变化也最为剧烈。与不同处理土壤冻结速率相关,土壤冻结时HG,UG79和UG99的"聚墒区"分别为20—30cm,10—20cm和10—30cm,其中UG99"聚墒区"分布范围最广,且集中在牧草根系发达区域,对来年牧草生长提供了更好的水分条件。换言之,由于冻后聚墒效应,土壤消融期水分含量在土壤表层高于冻融前,其中UG99处理最大,达到了0.19m~3/m~3。该研究结果为内蒙古草原季节性冻土区控制放牧及合理的禁牧措施提供理论依据。  相似文献   

16.
Reindeer grazing has a great influence on the ground vegetation of nutrient-poor northern boreal forests dominated by Cladonia lichens in Fennoscandia. Grazing may influence the soil processes in these systems either by influencing the quality of plant litter, or by indirect effects through the soil microclimate. In order to investigate the mechanisms underlying the effects of reindeer on boreal forest soils, we analyzed litter decomposition, soil and microbial C and N, microbial community composition, and soil organic matter quality in three forest sites with old reindeer exclosures adjacent to grazed areas. There was no effect of grazing on soil C/N ratio, inorganic N concentrations, microbial biomass C, microbial community structure analyzed by phospholipid fatty acid (PLFA) analysis, and organic matter quality analyzed by sequential fractionation, in the soil organic layer. However, microbial N was enhanced by grazing at some of the sampling dates and was negatively correlated with soil moisture, which indicates that increased microbial N could be a stress response to drought. The effect of grazing on litter decomposition varied among the decomposition stages: during the first 1.5 months, the litter C loss was significantly higher in the grazed than the ungrazed areas, but the difference rapidly levelled out and, after one year, the accumulated litter C loss was higher in the ungrazed than the grazed areas. Litter N loss was, however, higher in the grazed areas. Our study demonstrates that herbivores may influence soil processes through several mechanisms at the same time, and to a varying extent in the different stages of decomposition.  相似文献   

17.
The effects of super absorbent polymers (SAPs) on growth characteristics and seedlings survival of Artemisia sieberi (under two soil textures, three irrigation levels and seven hydrogel compositions with three replications) were investigated. The studied traits were shoot height, shoot dry weight, root dry weight, ratio of root/shoot, root length, root perimeter, root area and root volume. SAPs successfully enhanced growth capability of A. sieberi in two soil textures compared to the controls. Ideally, 5 g kg?1 Aquasorb? (SNF Company, France) with 100% irrigation and 10 g kg?1 Stockosorb® (Evonik Corporation, Germany) with 75% irrigation in a sandy loam texture and 10 g kg?1 Boloorab A? (Boloorab Company, Iran) with 75% irrigation in a loamy texture significantly affected all traits, resulting in 100% survival for A. sieberi seedlings. Aquasorb? and Stockosorb® showed the best results in the sandy loam texture and preferable outputs were obtained by Boloorab A? application in the loamy texture. In other words, because of the basic differentiation among soils in terms of mineralogy, temperature and moisture content, different SAPs should be applied. Production of dense root network and root aggregation stimulated by SAPs increased root contact with moisture. Therefore, improving the growth and survival of the plants is accessible using SAPs under water stress condition.  相似文献   

18.
Woodpastures (open, grazed woodlands with a mosaic of grassland, shrub and tree patches) are of high biological and cultural value and have become a threatened ecosystem in Europe. Spontaneous tree regeneration in the presence of large herbivores, is an essential process for management and restoration of this structurally diverse habitat. We examined the suitability of five vegetation types (grasslands, ruderal vegetations, tall sedges, rush tussocks and bramble thickets), grazed by large herbivores, for tree regeneration. We hypothesized that bramble thickets and tall herb communities operate as safe sites for palatable tree species through the mechanism of associational resistance. We set up a field experiment with tree seedlings in grazed and ungrazed conditions and recorded mortality and growth of seedlings of two palatable tree species (Quercus robur and Fraxinus excelsior) during three growing seasons. In the same experiment, we studied the effect of a two year’s initial time gap before grazing.Bramble thickets were suitable safe sites for survival and growth of seedlings of both species. Tall sedges, soft rush tussocks and ruderal vegetations with unpalatable or spiny species provided temporal protection, allowing seedlings to survive. Tree regeneration in livestock grazed grassland was highly constrained. Rabbits may undo the nursing effects of bramble thickets. The first year’s survival is of major importance for the establishment of trees. Subsequent grazing affects growth rather than survival. A two year’s initial time gap before grazing, had positive effects on survival, but did not enhance outgrowth of unprotected trees.  相似文献   

19.
Spatial inaccessibility of soil organic carbon (SOC) for microbial decay within soil aggregates is an important stabilization mechanism. However, little is known about the stability of aggregates in semiarid grasslands and their sensitivity to intensive grazing. In this study, a combined approach using soil chemical and physical analytical methods was applied to investigate the effect of grazing and grazing exclusion on the amount and stability of soil aggregates and the associated physical protection of SOC. Topsoils from continuously grazed (CG) and ungrazed sites where grazing was excluded from 1979 onwards (UG79) were sampled for two steppe types in Inner Mongolia, northern China. All samples were analysed for basic soil properties and separated into free and aggregate‐occluded light fractions (fLF, oLF) and mineral‐associated fractions. Tensile strength of soil aggregates was measured by crushing tests. Undisturbed as well as artificially compacted samples, where aggregates were destroyed mechanically by compression, were incubated and the mineralization of SOC was measured. For undisturbed samples, the cumulative release of CO2‐C was greater for CG compared with UG79 for both steppe types. A considerably greater amount of oLF was found in UG79 than in CG soils, but the stabilities of 10–20‐mm aggregates were less for ungrazed sites. Compacted samples showed only a slightly larger carbon release with CG but a considerably enhanced mineralization with UG79. We assume that the continuous trampling of grazing animals together with a smaller input of organic matter leads to the formation of mechanically compacted stable ‘clods’, which do not provide an effective physical protection for SOC in the grazed plots. In UG79 sites, a greater input of organic matter acting as binding agents in combination with an exclusion of animal trampling enhances the formation of soil aggregates. Thus, grazing exclusion promotes the physical protection of SOC by increasing soil aggregation and is hence a management option to enhance the C sequestration potential of degraded steppe soils.  相似文献   

20.
In the Thar (Rajasthan) Desert of India, sand dunes and sandy plains dominate the landscape. Livestock raising and marginal land cultivation are the main occupations. Owing to the high growth rates of human and livestock populations and a decrease in pasture area and its primary productivity, these lands bear acute grazing pressure. Average rainfall is low and vegetation growth is restricted to the short rainy season of two to four months duration. Often there are years of lower than normal rainfall. In these circumstances, fenced areas, established to stabilize formerly active sand dunes, are increasingly opened to grazing to prevent high stock mortality during droughts. This study was conducted in four fenced and one open site, representative of the region's different vegetation types and grazing pressures. The impact of 2 and 5 per cent free grazing pressure on protected sand dune vegetation density and cover was tested in the two fenced sites. The vegetation data for grazed sites are compared with those for the two ungrazed fenced (protected) and one unfenced (open) site subjected to unlimited grazing pressure throughout the year. The vegetation sampling was carried out by the qaudrat and line-transect method before and after grazing from November 1984 to October 1986. It shows a significant reduction in the density and cover of many palatable species and an increase of unpalatable plants. The effect of vegetation degradation is greater in the unfenced area. The low grazing pressure on the fenced sand dunes sites can still cause drastic changes in the vegetation density and cover. Protection resulted in reduced sand erosion and enhanced growth of palatable plants in the fenced sites under similar climatic and edaphic conditions to the unfenced sites. The grazing pressure in the unfenced areas remains high to extreme during the year, due to low land productivity and high feed demand. The regeneration rate is very slow under the constant (3rd to 5th degree) overgrazing. Low intensity grazing pressure on the fenced sites during droughts can cause heavy utilization and mortality of palatable vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号