首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Rice (Oryza sativa L.) is a staple food for more than 50% of the world’s population, and phosphorus (P) is one of the most yield-limiting nutrients for rice production in tropical acidic soils worldwide. A greenhouse experiment was conducted to evaluate efficiency of six P sources for upland rice production. The P sources used were simple superphosphate (SSP), polymer-coated SSP (PSSP), triple superphosphate (TSP), polymer-coated TSP (PTSP), monoammonium phosphate (MAP), and polymer-coated MAP (PMAP). There were four P rates [50, 100 200, and 400 mg phosphorus (P) kg?1] applied with four sources plus one control treatment [0 mg phosphorus (P) kg?1]. Plant height, straw yield, grain yield, panicle density, root dry weight, maximum root length, and 1000-grain weight were significantly increased with increasing P rates in the range of 0 to 400 mg P kg?1. However, P-use efficiency (mg grain produced per mg P applied) was decreased with increasing P rate. Based on regression equation, overall maximum plant height was obtained with the application of 235 mg P kg?1, maximum straw yield with the application of 265 mg P kg?1, and maximum grain yield at 227 mg P kg?1. Based on maximum grain yield, the P source were classified as PMAP > SSP = MAP > PSSP > TSP > PTSP in the upland rice production efficiency. Overall, maximum panicle density was obtained with the addition of 231 mg P kg?1 and maximum 1000-weight was obtained with the addition of 226 mg P kg?1. Similarly, overall root dry weight and maximum root length were achieved with the application of 261 and 298 mg P kg?1 of soil. Most of the growth and yield components had a significant positive association with grain yield. Optimum soil acidity indices such as pH; exchangeable calcium (Ca), magnesium (Mg), and potassium (K); Ca, Mg, and K saturation; base saturation; and acidity saturation were established for maximum upland rice grain yield.  相似文献   

2.
Rice is important crop for world population, including Brazil. Nitrogen (N) is one of the most yield limiting nutrients in rice production under all agro-ecological conditions. A greenhouse experiment was conducted to evaluate N responses to 12 lowland rice genotypes. Soil used in the experiment was a Gley humic according to Brazilian soil classification system and Inceptisol according to USA soil taxonomy classification. The N rates used were 0 mg kg?1 (low) and 300 mg kg?1 (high) of soil. Plant height, straw yield, grain yield, panicle density, 1000 grain weight, and root dry weight were significantly increased with the addition of N fertilization. These growth, yield, and yield components were also significantly influenced by genotype treatment. Grain yield had significant linear or quadratic association with shoot dry weight, panicle number and 1000 grain weight Based on grain efficiency index genotypes were classified as efficient, moderately efficient and inefficient in N use. The N efficient genotypes were ‘BRS Tropical’, ‘BRS Jaçanã’, ‘BRA 02654’, ‘BRA 051077’, ‘BRA 051083’, ‘BRA 051108’, ‘BRA 051130’ and ‘BRA 051250’. Remaining genotypes fall into moderately efficient group. None of the genotypes were grouped as inefficient in N use efficiency.  相似文献   

3.
Rice (Oryza sativa L.) is the staple food for more than 50% world population and nitrogen (N) is one of the most yield-limiting nutrients for rice production worldwide. A greenhouse experiment was conducted to evaluate the efficiency of three N sources for lowland rice production. The N sources used were ammonium sulfate, common urea, and polymer-coated urea. There were three N rates, i.e. 100, 200, and 400 mg N kg?1 applied with three sources plus one control treatment (0 mg N kg?1). Growth, yield, and yield components were significantly increased either in a linear or quadratic fashion with the addition of N fertilizers in the range of 0–400 mg kg?1 soil. Maximum grain yield was obtained with the addition of ammonium sulfate at 100, 200, and 400 mg kg?1 of soil. Common urea and polymer-coated urea were more or less similar in grain production at 100 and 200 mg N kg?1. However, at 400 mg N kg?1 treatments, polymer-coated urea produced the lowest grain yield. Most of the growth and yield components were positively related to grain yield, except spikelet sterility which was negatively related to grain yield. Nitrogen use efficiency decreased with increasing N rate in all the three N sources. Maximum N use efficiency was obtained with the addition of ammonium sulfate at lower as well as at higher N rates compared with other two N sources.  相似文献   

4.
Rice is a staple food for about 50 percent of the world’s population. Potassium (K) is absorbed in large amounts by rice plants and adequate amounts of this element are fundamental to improve productivity and maintain sustainability of the cropping systems. A greenhouse experiment was conducted to determine the adequate rate of K for lowland rice grown on a Brazilian Inceptisol. The K rates used were 0, 50, 100, 200, 400, and 600 mg K kg?1 soil. Most of the growth, yield, and yield components were significantly and quadratically increased with increasing K levels. Based on a quadratic equation, maximum grain yield was obtained with the addition of 371 mg K kg?1 soil. Maximum plant height and shoot dry weight were obtained at 414 and 398 mg K kg?1 soil, respectively. Root growth (maximum length and dry weight) was also significantly increased in a quadratic fashion with the increasing K rate in the growth medium. Maximum root length was achieved at 58 mg K kg?1 whereas maximum root dry weight was obtained with the addition of 394 mg K kg?1 soil. Plant height, shoot dry weight, 1000-grain weight, root length, and root dry weight were significantly associated with grain yield. Hence, manipulation of these growth and yield components with the addition of K fertilizer can improve yield of lowland rice in varzea soils of central part of Brazil. Potassium uptake increased significantly in a quadratic fashion with increasing K rate. However, K-use efficiency (mg grain per mg K applied) decreased significantly with increasing K rate in a quadratic fashion. Maximum grain yield was obtained with 117 mg kg?1 Mehlich 1–extractable K, base saturation of 53 percent, Mg saturation of 9 percent, K saturation of 2 percent, and Ca/Mg ratio of 4.  相似文献   

5.
The nitrogen (N) fertilizer-use efficiency (20–50%) is low in rice fields in India. The neem-oil coated urea can increase N-use efficiency in lowland rice, but the desirable thickness of neem-oil coating onto urea is not known yet. Therefore, field experiments were conducted during kharif (rainy) season years 2004 and 2005 at the Research Farm of Indian Agricultural Research Institute, New Delhi to know the suitable thickness of neem-oil coating on prilled urea (PU) for increased N-use efficiency and yield. The treatments comprised of twelve combinations of four N sources (PU coated with neem-oil thickness of 0, 500, 1000 and 2000 mg kg?1 PU) and three N levels (50, 100, and 150 kg N ha?1) plus a no-N control. Prilled urea (PU) refers to the common urea available commercially in prills, which is different from urea super granules. Application of urea coated with neem-oil thickness of 1000 mg kg?1 PU resulted in significantly higher growth, yield parameters, grain yield, N uptake, and efficiency of aromatic rice (Oryza sativa L.) over uncoated PU. Nitrogen application at 122 kg ha?1 was optimum for increased yield of rice. Nitrogen-use efficiency decreased significantly and substantially with each successive increase in levels of N from 50 to 150 kg ha?1.  相似文献   

6.
Two greenhouse experiments were conducted simultaneously to evaluate polymer-coated and common urea in upland rice production. The nitrogen (N) levels used for both the N sources were from 0 to 400 mg kg?1 of soil. Maximum grain yield was obtained with the addition of 167 mg N kg?1 polymer-coated urea and 238 mg N kg?1 common urea. Maximum value of other plant traits was obtained with N applied from 233 to 313 mg kg?1 depending on plant traits and N source. Nitrogen-use efficiency (NUE) decreased with increasing N rate in the two N sources. Based on results of growth, yield, and yield components, and NUE it can be concluded that the N sources were equally effective in upland rice production. Base saturation, pH, and exchangeable calcium (Ca) increased with increasing N rates while iron (Fe), manganese (Mn), and copper (Cu) contents decreased with the increasing N rates.  相似文献   

7.
Phosphorus (P) deficiency is one of the most yield-limiting factors in lowland rice production on Brazilian Inceptisol. The objective of this study was to evaluate eight P sources for lowland rice production. The P sources were simple superphosphate (SSP), polymer-coated simple superphosphate (PSSP), ammoniated simple superphosphate (ASSP), polymer-coated ammoniated simple superphosphate (PASSP), triple superphosphate (TSP), polymer-coated triple superphosphate (PTSP), monoammonium phosphate (MAP), and polymer-coated monoammonium phosphate (PMAP). These P sources were applied in four rates (i.e., 50, 100 200, and 400 mg P kg?1) + one control treatment (0 mg P kg?1). Plant height, straw yield, grain yield, panicle number, and root dry weight were significantly increased in a quadratic fashion with increasing P levels from 0 to 400 mg kg?1 of all the P sources evaluated. However, overall maximum root length and P-use efficiency were significantly less at greater P levels. Based on regression equation, maximum plant height was obtained with 262 mg P kg, maximum straw yield was obtained with 263 mg P kg?1, maximum grain yield was obtained with 273 mg P kg?1, and maximum panicle density was obtained with 273 mg P kg?1. Plant growth and yield components had significant positive association with grain yield, except maximum root length. Based on grain yield and average P rate of maximum grain yield, which is 273 mg kg?1, P sources were classified for P-use efficiency in the order of PSSP = TSP > PTSP > PASSP > SSP > MAP > ASSP. Soil chemical properties [pH; P; potassium (K); calcium (Ca); magnesium (Mg); hydrogen (H) + aluminum (Al); cation exchange capacity (CEC); base saturation; Ca, Mg, and K saturation; acidity saturation; Ca/Mg, Ca/K, and Mg/K ratios] changed significantly with the addition of different P treatments.  相似文献   

8.
The plant root system is an important organ which supplies water and nutrients to growing plants. Information is limited on influence of nitrogen fertilization on upland rice root growth. A greenhouse experiment was conducted to evaluate influence of nitrogen (N) fertilization on growth of root system of 20 upland rice genotypes. The N rate used was 0 mg kg?1(low) and 300 mg kg?1(high) of soil. Nitrogen X genotype interactions for root length and root dry weight were highly significant (P < 0.01), indicating that differences among genotypes were not consistent at two N rates. Overall, greater root length, root dry weight and tops-roots ration were obtained at an N fertilization rate of 300 mg kg?1compared with the 0 mg N kg?1soil. However, genotypes differ significantly in root length, root dry weight and top-root ratio. Nitrogen fertilization produced fine roots and more root hairs compared with absence of N fertilizer treatment. Based on root dry weight efficiency index (RDWEI) for N use efficiency, 70% genotypes were classified as efficient, 15% were classified as moderately efficient and 15% were classified as inefficient. Root dry weight efficiency index trait can be incorporated in upland rice for improving water and nutrient efficiency in favor of higher yields.  相似文献   

9.
Nitrogen (N) deficiency is one of the most yield-limiting nutrients in upland rice growing regions word wide. A greenhouse experiment was conducted with the objective to evaluate nineteen upland rice (Oryza sativa. L.) genotypes for N use efficiency. The soil used in the experiment was an Oxisol and two N levels used were without N application (low level) and an application of 400 mg N kg?1 of soil (high level). Grain yield and yield components and N uptake parameters were significantly affected by N and genotype treatments. Regression analysis showed that plant height, shoot dry weight, number of panicles per pot, number of grains per panicle, grain harvest index, N uptake in shoot and grain were having significant positive relation with grain yield. Nitrogen concentration of 6.4 g kg?1 in the shoot is established as deficient level and 9.5 g kg?1 as sufficient level at harvest. Agronomic efficiency of N (grain yield/unit of N applied) and N utilization efficiency (physiological efficiency X apparent recovery efficiency) were significantly different among genotypes. These two N use efficiencies were having significant quadratic relationship with grain yield. Soil pH, exchangeable soil Ca and base saturation were having significantly positive association with grain yield. However, soil extractable phosphorus (P), potassium (K), hydrogen (H+), aluminum (Al) and cation exchange capacity were having significantly negative association with grain yield.  相似文献   

10.
Pot experiments were conducted in the greenhouse on a calcareous soil to study effect of nitrogen (N) on the alleviation of boron (B) toxicity in rice. The treatments consisted of factorial combination of six levels of B (0, 2.5, 5, 10, 20, and 40 mg kg?1 as boric acid), and four levels of N (0, 75, 150, and 300 mg kg?1 as urea) in a completely randomized design with three replicates. Boron addition (higher than 2.5 mg kg?1) significantly reduced the seeds yield. Nitrogen addition alleviated the growth suppression effects caused by B supplements. Yield was increased by application of 2.5 mg B kg?1 at all N levels, but at higher levels, B significantly decreased the yield of rice. Boron concentration declined with increasing N levels. Boron application increased the concentrations of B, potassium, phosphorous (P), and zinc. Nitrogen application decreased the concentration of Zn and increased the concentration of N and P.  相似文献   

11.
Ammonium sulfate and urea are main sources of nitrogen (N) for annual crop production in developing countries. Two greenhouse experiments were conducted using ammonium sulfate and urea as N sources for upland rice grown on a Brazilian Oxisol. The N rates used were 0, 50, 100, 150, 3000, and 400 kg N kg?1 of soil. Yield and yield components were significantly increased in a quadratic fashion with increasing N rate. Ammonium sulfate X urea interaction was significant for grain yield, shoot dry matter yield, panicle number, plant height and root dry weight, indicating a different response magnitude of these plant parameters to two sources of N. Based on regression equation, maximum grain yield was achieved with the application of 380 mg N kg?1 by ammonium sulfate and 271 mg N kg?1 by urea. Grain yield and yield components were reduced at higher rates of urea (>300 mg kg N) but these plant parameters’ responses to ammonium sulfate at higher rates was constant. In the intermediate N rate range (125 to 275 mg kg?1), urea was slightly better compared to ammonium sulfate for grain yield. Grain yield was significantly related with plant height, shoot dry weight, panicle number, grain harvest index and root dry weight. Hence, improving these plant characteristics by using appropriate soil and plant management practices can improve upland rice yield.  相似文献   

12.
Upland rice is an important crop in the cropping systems of South America, including Brazil. Two greenhouse experiments were conducted to determine influence of lime and gypsum on yield and yield components of upland rice and changes in the chemical properties of an Oxisol. The lime rates used were 0, 0.71, 1.42, 2.14, 2.85, and 4.28 g kg?1 soil. The gypsum rates were 0, 0.28, 0.57, 1.14, 1.71, and 2.28 g kg?1. Lime as well as gypsum significantly increased plant height, straw and grain yield, and panicle density in a quadratic fashion. Adequate lime and gypsum rates for maximum grain yield were 1.11 g kg?1 and 1.13 g kg?1, respectively. Plant height, straw yield, and panicle density were positively related to grain yield. Lime as well as gypsum application significantly changed extractable calcium (Ca), magnesium (Mg), hydrogen (H)+aluminum (Al), base saturation, and effective cation exchange capacity. In addition, liming also significantly increased pH, extractable phosphorus (P) and potassium (K), calcium saturation, magnesium saturation, and potassium saturation. Optimum acidity indices for the grain yield of upland rice were pH 6.0, Ca 1.7 cmolc kg?1, base saturation 60%, and calcium saturation 47%. In addition, upland rice can tolerate 42% of acidity saturation.  相似文献   

13.
Abstract

Use of adequate rates of phosphorus (P) in crop production on high‐P‐fixing acid soils is essential because of high crop response to P fertilization and the high cost of P fertilizers. Information on lowland rice response to thermophosphate fertilization grown on Inceptisols is limited, and data are also lacking for soil‐test‐based P fertilization recommendations for this crop. The objective of this study was to evaluate response of lowland rice to added thermophosphate and to calibrate P soil testing for making P fertilizer recommendations. A field experiment was conducted for two consecutive years in central Brazil on a Haplaquept Inceptisol. The broadcast P rates used were 0, 131, 262, 393, 524, and 655 kg P ha?1, applied as thermophosphate Yoorin. Rice yield and yield components were significantly increased with the application of P fertilizer. Average maximum grain yield was obtained with the application of 509 kg P ha?1. Uptake of macro‐ and micronutrients had significant quadratic responses with increasing P rates. Application of thermophosphate significantly decreased soil acidity and created favorable macro‐ and micronutrient environment for lowland rice growth. Across 2 years, soil‐test levels of Mehlich 1–extractable P were categorized, based on relative grain yield, as very low (0–17 mg P kg?1 soil), low (17–32 mg P kg?1 soil), medium (32–45 mg P kg?1 soil), or high (>45 mg P kg?1 soil). Similarly, soil‐test levels of Bray 1–extractable P across 2 years were very low (0–17 mg P kg?1 soil), low (17–28 mg P kg?1 soil), medium (28–35 mg P kg?1 soil), or high (>35 mg P kg?1 soil). Soil P availability indices for Mehlich 1 extractant were slightly higher at higher P rates. However, both the extracting solutions had highly significant association with grain yield.  相似文献   

14.
Rice, dry bean, corn, and soybean are important food crops. Phosphorus (P) deficiency is one of the most yield-limiting factors for these crops grown on highly weathered Brazilian Oxisols. Four greenhouse experiments were conducted to determine P requirements of these four crops. The P levels used were 0, 50, 100, 200, and 400 mg kg?1. Growth, yield, and yield components evaluated of four crop species were significantly increased with the application of P fertilization. Most of the responses were quadratic in fashion when the P was applied in the range of 0 to 400 mg kg?1. Maximum grain yield of upland rice was obtained with the application of 238 mg P kg?1 of soil, maximum dry bean grain yield was obtained with the application of 227 mg P kg?1 of soil, and maximum grain yield of soybean was obtained with the application of 224 mg P kg?1 of soil. Maximum shoot growth of corn was obtained with the addition of 323 mg P kg?1 of soil. Most of the growth and yield components had significant positive association with grain yield or shoot dry weight. Phosphorus concentration and uptake were greater in the grain compared to straw in upland rice and dry bean plants. Overall, P-use efficiencies decreased with increasing P rates.  相似文献   

15.
Lowland or flooded rice is mainly responsible for about 76% of total rice production at global level, yet information on micronutrient requirements for this crop is limited. Six greenhouse experiments were conducted at the National Rice and Bean Research Center of EMBRAPA, Santo Antônio de Goiás, Brazil, to determine requirements of zinc (Zn), copper (Cu), boron (B), molybdenum (Mo), manganese (Mn), and iron (Fe) for lowland rice grown on a Brazilian Inceptisol. The levels of micronutrients used were Zn (0, 10 20, 40, and 80 mg kg?1), Cu (0, 5, 10, 20, and 40 mg kg?1), B (0, 5, 10, 20, and 40 mg kg?1), Mo (0, 2, 4, 8, and 16 mg kg?1), Mn (0, 50, 100, 300, and 600 mg kg?1), and Fe (0, 250, 500, 1000, and 2000 mg kg?1). Grain yield was significantly increased in a quadratic fashion with the addition of Zn, Cu, B, Mo, Mn, and Fe. The adequate rates of micronutrients for maximum grain yield were Zn 33 mg kg?1, Cu 25 mg kg?1, B 26 mg kg?1, Mo 10 mg kg?1, Mn 250 mg kg?1, and Fe 1269 mg kg?1. In addition to grain yield, plant height, straw yield, panicle density, and root growth of lowland rice were also improved with the addition of most of these micronutrients. Improvement in root growth has special significance in improving nutrient-use efficiency under nutrient-stress conditions. Micronutrient-use efficiency (grain yield per unit nutrient applied) was in the order of Cu > Zn > Mn > Fe > Mo > B.  相似文献   

16.
An innovative method was used to treat rice straw based on a mixed dilute acid treatment followed by neutralization with ammonia water. This treatment decreased the Si content of the rice straw, thus improving its degradation by soil microorganisms. The plant-available N of soil was greatly improved after the application of the treated rice straw with urea. Soil microbial biomass N was about 50 mg kg–1 in the soil amended with the treated rice straw and urea but only 40 mg kg–1 in the soil amended with untreated rice straw and urea. Better synchronization of N supply with the plant requirement for N uptake was obtained when treated rice straw was applied with urea. Recovery of urea-N was 61% when soil was amended with treated rice straw and urea, whereas it was only 46% in soil amended with untreated rice straw and urea, and only 30% in soil treated with urea alone.  相似文献   

17.
Effects of repeated application of urea (UN) and calcium nitrate (CN) singly and together with crop straw biochars on soil acidity and maize growth were investigated with greenhouse pot experiments for two consecutive seasons. Canola straw biochar (CB), peanut straw biochar (PB) and wheat straw biochar (WB) were applied at 1% of dried soil weight in the first season. N fertilizers were applied at 200 mg N kg?1. In UN treatments, an initial rise in pH was subjected to proton consumption through urea hydrolysis, afterwards nitrification of NH4+ caused drastic reductions in pH as single UN had soil pH of 3.70, even lower than control (4.27) after the 2nd crop season. Post-harvest soil analyses indicated that soil pH, soil exchangeable acidity, NH4+, NO3? and total base cations showed highly significant variation under N and biochar types (< 0.05). Articulated growth of plants under combined application with biochars was expressed by 22.7%, 22.5%, and 35.7% higher root and 25.6%, 23.8%, and 35.9% higher shoot biomass by CB, PB and WB combined with CN over UN, respectively. Therefore, CN combined with biochars is a better choice to correct soil acidity and improve maize growth than UN combined with biochars.  相似文献   

18.
Deficiency of micronutrients increasing in field crops, including upland rice in recent years. The objective of this study was to determine requirement of zinc (Zn), copper (Cu) boron (B) and iron (Fe) for upland rice grown on a Brazilian Oxisol. The levels used were: Zn (0, 10, 20, 40, and 80 mg kg?1), Cu (0, 5, 10, 20 and 40 mg kg?1), B (0, 5, 10, 20 and 40 mg kg?1) and Fe (0, 250, 500, 1000, and 2000 mg kg?1). Plant height, straw yield, grain yield, panicle number and grain harvest index (GHI) were significantly improved with the addition of these micronutrients. Root growth was also improved with the application of micronutrients, except with the addition of B. Maximum grain yield was obtained with the addition of 51 mg Zn, 24 mg Cu, 5 mg B kg?1, and 283 mg Fe kg?1 soil. Similarly, maximum straw yield was obtained with the addition of 38 mg Zn, 17 mg Cu, 6 mg B kg?1, and 1500 mg Fe kg?1 soil. Maximum plant height was obtained with the addition of 54 mg Zn, 10 mg B kg?1, and 1197 mg Fe kg?1 soil. Copper did not affect plant height significantly. Maximum panicle number was obtained with the addition of 22 mg Cu kg?1, 3 mg B kg?1, and 1100 mg Fe kg?1 soil. Zinc did not affect panicle number significantly. Maximum GHI was obtained with the addition of 61 mg Zn kg?1, and 8 mg B kg?1. Zinc was had a linear increase in GHI in the range of 0 to 80 mg kg?1, and Fe showed a negative relationship with GHI.  相似文献   

19.
To study the effect of nitrogen and salinity on growth and chemical composition of pistachio seedlings (cv. ‘Badami’), a greenhouse experiment was conducted. Treatments consisted of four salinity levels [0, 800, 1600, and 2400 mg sodium chloride (NaCl) kg?1 soil], and four nitrogen (N) levels (0, 60, 120, and 180 mg kg?1 soil as urea). Treatments were arranged in a factorial manner in a completely randomized design with three replications. The highest level of nitrogen and salinity decreased leaf and root dry weights. Nitrogen application significantly increased the concentration of shoot N and salinity suppressed shoot N concentration. Salinity and nitrogen fertilization increased shoot and root sodium (Na), calcium (Ca), and magnesium (Mg) concentrations. Nitrogen application increased proline concentration and reducing sugar content. Although salinity levels increased proline concentration a specific trend on reducing sugars content was not observed.  相似文献   

20.
ABSTRACT

In a greenhouse experiment, involving factorial combinations of nitrogen (N) (0, 15, 30, 45, and 60 mg kg? 1 soil) and sulfur (S) (0, 7.5, 15.0, 22.5, 30.0 mg kg? 1soil), application of all levels of N and S 15 mg kg? 1 and above increased the grain yield of aromatic rice (Basmati cv. ‘Taraori’) significantly. The highest grain yield of aromatic rice was recorded from the treatment combinations of 60 mg N + 15 mg S kg? 1 or 45 mg N + 30 mg S kg? 1. The interaction of N and S influenced the N and S content in rice grain, N content in straw, N: S ratio both in grain and straw, milling (%), and other quality parameters significantly. Milling (%) and hulling (%), thousand grain weight, L: B ratio, cooked grain breadth, and aroma score were found to be significantly and positively correlated with the N: S ratio of rice grain while grain breadth had a significant inverse relationship with N: S ratio in grain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号