首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of nitrogen (30 and 120 mg N per cuvette) on photosynthetic rate of four cultivars of triticale (‘Bolero’, ‘Grado’, ‘Largo’, and ‘Lasko’) grown 14 days in phytotron was strongly modified by water content (75, 45 and 35% of full water capacity). For plants grown under 35% of full water capacity, it was higher when they were grown under 30 than under 120 mg N/cuvette (9.88 and 8.76 μmol CO2 m?2 s?1, respectively) but for plants grown under 45 and 75% of full water capacity there were not significant differences. Transpiration, stomatal conductance, photosynthetic water use efficiency, and internal water use efficiency were not influenced by nitrogen doses independently of water content. Photosynthetic rate, transpiration, stomatal conductance, photosynthetic water use efficiency, and dry matter of studied cultivars of triticale grown under 45 and 35% of full water capacity and both nitrogen doses were lower than for plants grown under 75% of full water capacity. With lowering of water content stomatal conductance was decreasing similarly as photosynthetic rate e.g. for plants grown under 35% of full water capacity as compared with those grown under 75% of full water capacity average stomatal conductance decreased from 0.209 to 0.138 mol H2O m?2 s?1 and photosynthetic rate from 13.69 to 9.32 μmol CO2 m?2 s?1 and as a result there were not significant differences in internal water use efficiency for all studied combinations (67.09 μmol CO2 mol?1 H2O) which shows that stomatal factors were mainly responsible for changes of photosynthetic rate. With lowering of water content from 75 to 35% of full water capacity the decrease of photosynthetic rate and stomatal conductance was much higher than the decreases of transpiration (from 3.57 to 3.02 mmol H2O m?2 s?1) what shows not direct dependence of transpiration on stomatal conductance (water use efficiency decreased from 3.87 to 3.10 μmol CO2 mmol?1 H2O). The effect of nitrogen on dry matter production was strongly modified by water availability e.g. for plants grown under 35% of full water capacity, dry matter was similarly independent of nitrogen dose but for plants grown under 45 and 75% of full water capacity dry matter was significantly higher than when they were grown under 120 (79.05 and 86.75 mg, respectively) or with 30 mg N/cuvette (74.03 and 80.30 mg, respectively).  相似文献   

2.
A field experiment was conducted over two years to evaluate the gas exchange, water relations, and water use efficiency (WUE) of wheat under different water stress and nitrogen management practices at Crop Physiology Research Area, University of Agriculture, Faisalabad, Pakistan. Four irrigation regimes and four nitrogen levels, i.e., 0, 50, 100, and 150 kg N ha?1 were applied in this study. The photosynthetic gas exchange parameters [net carbon dioxide (CO2) assimilation rate, transpiration rate and stomatal conductance] are remarkably improved by water application and nitrogen (N) nutrition. Plants grown under four irrigation treatments as compared with those grown under one irrigation treatment average stomatal conductance increased from 0.15 to 0.46 μ mol m?2s?1mol during 2002–2003 and 0.18 to 0.33 μ mol m?2s?1mol during the year 2003–2004 and photosynthetic rate from 9.33 to 13.03 μmol CO2 m?2 s?1 and 3.99 to 7.75 μmol CO2 m?2 s?1 during the year 2002–2003 and 2003–2004, respectively. The exposure of plants to water and nitrogen stress lead to noticeable decrease in leaf water potential, osmotic potential and relative water content. Relative water content (RWC) of stressed plants dropped from 98 to 75% with the decrease in number of irrigation and nitrogen nutrition. The higher leaf water potential, and relative water contents were associated with higher photosynthetic rate. Water use efficiency (WUE) reduced with increasing number of irrigations and increased with increasing applied nitrogen at all irrigation levels.  相似文献   

3.
ABSTRACT

Impatiens (Impatiens wallerana Hook. f.) is the most important annual bedding plant in the United States, based on wholesale dollar volume. Production of high-quality plants requires optimization of the nutrition regimen during growth, especially the total nitrogen (N) concentration and the ratio of N sources. The objective was to determine the N concentration and the nitrate (NO3 ??N):ammonium (NH4 +?N) ratio of N source that optimized bedding-plant impatiens growth and flower development. Four N concentrations (3.5, 7, 10.5, and 14 mmol N · L?1) were used in factorial combination with four ratios of NO3 ??N:NH4 +?N (4:0, 3:1, 1:1, and 1:3). Application of treatments was made for 30 d. Then for 10 d only deionized water was applied to reduce salt buildup. Substrate pH was lowest (4.9) with the NH4 +?N source and electrical conductivity (EC) highest, but never > 2.4 dS m?1. Nitrogen concentration and N source displayed an interaction for most growth parameters. Shoot fresh and dry weights and flower bud number were maximized at the 1:3 NO3 ??N:NH4 +?N ratio with a N concentration of 10.5 mmol L?1. However, plant diameter, leaf number, and leaf chlorophyll content responded quadratically to N form ratio, with the 1:1 ratio optimum at a concentration of 10.5 mmol N· L?1.  相似文献   

4.
The effect that application of nitrogen (N) rates exerts on some parameters of N metabolism in pepper plants (Capsicum annuum L. cv. Lamuyo) during senescence was studied. All plants were grown under controlled conditions in an experimental greenhouse. The treatments consisted of the application of 4 rates of N at the onset of flowering in the form of KNO3 (N1: 6 g m‐2, N2:12 g m‐2, N3:18 g m‐2, N4:24 g m‐2). The results obtained show a optimal effect ofN2 fertilization on uptake, translocation, and assimilation of NO3 in the leaves. The N2 treatment registered maximums in the concentration of chlorophyll a and b, and in commercial yield. In conclusion, for improved pepper cultivation during senescence, treatment N2 gave the maximum yield, and increased metabolism and efficient utilization of N.  相似文献   

5.
ABSTRACT

Previous research has shown that supplying adequate sulfur (S) continuously in combination with reduced amounts of nitrogen (N) will produce a quality plant. However, not all commercially available fertilizers use the same source of S, contain the same or optimal concentration of it, or contain any S at all. Additionally, nutrient incompatibility can occur if all the macronutrients are combined in one solution or one dry fertilizer. Thus, the objective of this research was to determine the effect of different methods of application and different types of S fertilizers on chrysanthemum growth. Two experiments were conducted in which three S sources (H2SO4, MgSO4, and K2SO4) were applied in combination with three N concentrations (50, 100, and 150 mg L?1) as fertilizer treatments. Sulfur was applied at 10 mg L?1, either continuously—by slightly acidulating the fertilizer solution with H2SO4—or in one, two, or three single, discrete applications as either K2SO4 or MgSO4. Leaf N concentration was greatest when 100 or 150 mg N L?1 was applied. As expected, S applied continuously by slightly acidulating the fertilizer solution with sulfuric acid resulted in higher leaf S concentration and larger flower diameter than under any of the other treatments. Together, plants fertilized with S continuously at 10 mg S L?1 and N at 100 mg L?1 were the largest, had the largest flower diameter, and contained the greatest leaf N and S concentrations. Sulfur concentration in the mix was highest and N concentration lowest when S was supplied continuously. Thus, if growers need to supply S and acidulate their water, sulfuric acid would be the best choice. If there are concerns about possible S contamination in landfills or in mix recycling, either potassium or magnesium S, applied multiple times as single applications in combination with 100 or 150 mg N L?1, may be a better choice.  相似文献   

6.
ABSTRACT

This study investigated the effect of liquid fertilizer treatments on growth, flowering, leaf mineral content, and rhizome production during forcing of Curcuma alismatifolia ‘Chiang Mai Pink’ and C. thorelii ‘Chiang Mai Snow’. Plants were irrigated with 200 mL of 1.3 g L?1 of 15 nitrogen (N) -7 phosphorus (P) -14 potassium (K) water soluble fertilizer at 0, 1.3, 2.7, 4.0, 5.3, or 6.6 g L?1 weekly. Days to flower, flower stem length, and leaf length were recorded, the mineral contents in leaves were analyzed, and the number of rhizomes with tuberous roots were recorded at harvest. Flowering of the first inflorescence in both C. alismatifolia ‘Chiang Mai Pink’ and C. thorelii ‘Chiang Mai Snow’ was significantly delayed when plants received 6.6 g L?1 fertilizer as compared to the control plants. The number of rhizomes with more than 4 tuberous roots was highest when plants received 2.7 g L?1 fertilizer. No medium-sized rhizomes with more than seven tuberous roots were produced when ‘Chiang Mai Pink’ plants received 0, 4.0, 5.3, and 6.6 g L?1 fertilizer. Based on the production of rhizomes with four to six tuberous roots, optimum concentration of 15N -7P -14K water soluble fertilizer is 2.7 g L?1 for C. alismatifolia ‘Chiang Mai Pink’ and 1.3 to 4.0 g L?1 for C. thorelii ‘Chiang Mai Snow’. Although high boron content occurred only in the outer part of the second leaf when fertilizer concentrations were increased, leaf-margin burn (LMB) symptoms were not observed in both species and this could not be related to the production of rhizomes.  相似文献   

7.
This trial was carried out to study the nutritional and productive behavior generated by modifications in the salt concentration in the nutrient solution for Cordyline fruticosa var. Red Edge plants. The anions studied were chloride (Cl), nitrogen (N), and phosphorus (P). Four treatments were tested: T1 [control, 1.5 dS m?1, 14.3 mmol L?1 sodium chloride (NaCl)], T2 (2.5 dS m?1, 22.2 mmol L?1 NaCl), T3 (3.5 dS m?1, 32.7 mmol L?1 NaCl), and T4 (4.5 dS m?1, 38.2 mmol L?1 NaCl). At the end of the cultivation, leaf, petiole, shoot and root fresh and dry weights, elemental extractions, and elemental concentrations were determined. Nutrient concentrations and total plant uptake (extraction) were calculated from the dry matter. The treatment T2 induces a blade protection mechanism, which consists on the accumulation of chloride (Cl?) in root and vessels; so, leaf storage is reduced, avoiding damages. Petiole also contributes to this protection, acting as a salt pool. As NaCl concentration in the nutritive solution arises, N plant concentration increases significantly although there are no significant differences between T1 and T2. With high salinity levels, P in vessels is reduced, whereas root extraction and concentration increases. The greatest N and P extractions are observed in T2, which is due to its higher dry matter. Chloride extractions are lower in T1 than in the other treatments.  相似文献   

8.
In herbaceous plants grown in controlled environmental conditions nitrate (NO3?) uptake increases during the day and decreases in the night. The aim of this work was to measure NO3? uptake rates along the day-night cycle, in rose (Rosa hybrida L.) plants grown under controlled environmental conditions. Two independent experiments were conducted inside a growth chamber at 20 ºC and 25 ºC, using rose mini-plants cv. Texas, grown in a hydroponic nutrient film technique (NFT) set-up with at 3.0 mol m?3 NO3? concentration. Dry matter and nitrogen (N) accumulation were registered during growth and NO3? uptake rates were measured during a day-night cycle, using 15N as 15NO3?. In both experiments the hourly estimated N-NO3? accumulation rates are near to the measured uptake rates of 15NO3? and nitrate uptake decrease during the day and increase in the night, in contrast with the herbaceous plants. Results are discussed on the basis of N plant demand and carbohydrates availability.  相似文献   

9.
The aim of this study was to determine the salt tolerance of pepper (Capsicum annuum L.) under greenhouse conditions and to examine the interactive effects of salinity and nitrogen (N) fertilizer levels on yield. The present study shows the effects of optimal and suboptimal N fertilizer levels (270 kg ha?1 and 135 kg ha?1) in combination with five different irrigation waters of varying electrical conductivity (EC) (ECiw = 0.25, 1.0, 1.5, 2.0, 4.0, and 6.0 dS m?1) and three replicates per treatment. At optimal N level, yield decreased when the irrigation water salinity was above ECiw 2 dS m?1. At the suboptimal N level, a significant decrease in yield occurred only above ECiw 4 dS m?1. At high salinity levels the salinity stress was dominant with respect to yield and response was similar for both N levels. Based on the results it can also be concluded that under saline conditions (higher than threshold salinity for a given crop) there is a lesser need for N fertilization relative to the optimal levels established in the absence of other significant stresses.  相似文献   

10.
Brassica alboglabra plants were first grown aeroponically with full nutrients under full sunlight with average midday photosynthetic photon flux density (PPFD) of 1200 μmol m?2 s?1. Thirty days after transplanting, plants were respectively, subjected to 10 days of average midday PPFD of 1200 (control, L1), 600 (L2) and 300 μmol m?2 s?1 (L3). Productivity, photosynthetic CO2 assimilation and stomatal conductance were significantly lower in low-light (L2 and L3) plants than in high-light (L1) plants. Low light plants had the highest nitrate (NO3?) accumulation in the petioles. Low light also had an inverse effect total reduced N content. After different light treatments, all plants were re-exposed to another 10 days of full sunlight. Low-light plants demonstrated their ability to recover their photosynthetic rate, enhance productivity and reduce the NO3? concentration. These results have led to the recommendation of not harvesting this popular vegetable during or immediately after cloudy weather conditions.  相似文献   

11.
Abstract

This trial was carried out to establish an appropriate nutrient solution for Aglaonema commutatum and to investigate the nutritional effects generated by modifications in the solution. Six treatments were tested: control (T0; pH 6.5, E.C. 1.5 dS m?1, 6 mmol L?1 NO3 ?‐N, and 6 mmol L?1 K+); high nitrogen (N) level (T1; 9 mmol L?1 6:3 NO3 ?–NH4 +); N form (T2; 6 mmol L?1 N‐NH4 +); high K+ level (T3; 12 mmol L?1 K+); high electrical conductivity (T4; E.C. 4 dS m?1, 25 mmol L?1 NaCl), and basic pH (T5; pH 8). At the end of the cultivation, leaf, shoot, and root dry weights and elemental concentrations were determined. Nutrient contents and total plant uptake were calculated from the dry weights and nutrient concentrations. Plant K+ uptake increased with application of K+ or basic nutrient solution. The uptake and transport of calcium (Ca) were enhanced by the use of NO3 ?‐N and inhibited by the presence of other cations in the medium (NH4 +, K+, Na+) and by basic pH. Magnesium (Mg) uptake increased with NO3 ?‐N application and with pH. Sodium (Na) uptake was the highest in the saline treatment (T4), followed by the basic pH treatment. Sodium accumulation was detected in the roots (natrophobic plant), where the plant generated a physiological barrier to avoid damage. Dry weight did not differ significantly (p<0.05) among treatments except in the NaCl treatment. These results may help in the formulation of nutrient solutions that take into account the ionic composition of irrigation water and the physiological requirements of plants.  相似文献   

12.
Application of organic fertilizers in sustainable agriculture systems improves yield sustainability of field crop production. The current research has been formed to investigate the effects of various levels of vermicompost (zero, 3, 6 and 9 t ha?1) in combination with foliar spraying of potassium humate (0, 1, 2 and 3 mL L?1) on spring safflower, in Iran during 2012–2013. In addition, inorganic fertilization has been considered as conventional agriculture (CA). In the current experiment, growth indices, seed yield, yield components and flower yield were evaluated. The results showed that the maximum leaf area index, total dry weight and crop growth rate have been determined at 9 t ha?1 vermicompost and 3 mL L?1 K-humate while the maximum netto assimilation rate has existed in CA at the emergence of flower buds. Likewise, the results indicated that vermicompost leads to a significant increase in seed yield, flower yield and yield components except 1000 seed weight. Flower yield, head number per plant and seed number per head were affected by K-humate concentrations and increased significantly from 1 to 3 mL L?1. It should be mentioned that 9 t ha?1 vermicompost and 3 mL L?1 K-humate produced the highest seed and flower yield.  相似文献   

13.
The influence of light intensity on the effects of 10–6 mol L–1 99Tc on growth, chlorophyll and carotenoid contents of bush bean plants was investigated. After germination and cotyledon excision, the plants were grown in a growth chamber either under low light (photosynthetic active radiation, PAR 144 E m–2 s–1) or higher light (PAR 307 E M–2 s–1) conditions. In plants grown under the higher light conditions, 99Tc hardly affected CO2-assimilation, dark respiration, pigment contents and growth. No toxicity symptoms were observed in these plants. Under low light conditions, 99T c significantly decreased growth and the concentration of chlorophylls. Toxicity symptoms in the form of chlorosis and necrosis developed. Transmission electron microscopy (TEM) observations revealed alterations of chloroplast ultrastructure comparable to those described for plants slightly affected by paraquat toxicity or by Mo-deficiency. Our results indicate that in the low light plants 99Tc induces damage in chloroplasts by peroxidation of membrane lipids.  相似文献   

14.
Abstract

The effect of additional iron (Fe) on arsenic (As) induced chlorosis in barley (Hordeum vulgare L. cv. Minorimugi) was investigated. The treatments were: (1) 0?μmol?L?1 As?+?10?μmol?L?1 Fe3+ (control), (2) 33.5?μmol?L?1 As?+?10?μmol?L?1 Fe3+ (As-treated) and (3) 33.5?μmol?L?1 As?+?50?μmol?L?1 Fe3+ (additional-Fe3+) for 14?days. Arsenic and Fe3+ were added as sodium-meta arsenite (NaAsO2) and ethylenediaminetetraacetic acid-Fe3+, respectively. Chlorosis in fully developed young leaves was observed in the As-treated plants. The chlorophyll index and the Fe concentration decreased in shoots of the As-treated plants compared with the control plants. Arsenic reduced the concentration of phosphorus, potassium, calcium, magnesium, manganese, zinc and copper. The additional-Fe3+ treatment increased the chlorophyll index in plants compared with the As-treated plants. Among the elements, Fe concentration and accumulation specifically increased in the shoots of additional-Fe3+ plants compared with As-treated plants, indicating that As-induced chlorosis was Fe-chlorosis. Arsenic and Fe were mostly concentrated in the roots of the As-treated plants. Despite inducing chlorosis in the As-treated plants, phytosiderophores (PS) accumulation in the roots and release from the roots did not increase, rather PS accumulation decreased, indicating that As toxicity hindered PS production in the roots. The PS accumulation in the roots was further reduced in the additional-Fe3+ treatment.  相似文献   

15.
 在半干旱黄土丘陵沟壑区,应用英国PPS公司生产的CIRAS2型光合作用系统,测定不同土壤水分下4年生紫丁香(SyringaoblataLindl.)叶片气体交换参数的日变化和光响应特性。结果表明:丁香光合速率、蒸腾速率、叶片水分利用效率、气孔导度、胞间CO2浓度等气体交换参数,对土壤水分和光合有效辐射的变化,具有明显的阈值响应。有利于丁香光合作用和水分有效利用的适宜土壤质量含水量范围在15%~19.5%之间,土壤相对含水量为58.8%~76.6%;适宜的光合有效辐射强度范围在600~1000μmol/(m2·s)之间。在此土壤质量含水量和光合有效辐射强度范围内,丁香的光合作用和生长过程不会发生较大的水分胁迫和强光胁迫,也不会发生蒸腾速率过高造成的无效蒸腾耗水,因而能获得较高的光合速率和叶片水分利用率。维持丁香正常生理和生长过程所需的最低土壤质量含水量在11.6%(土壤相对含水量为45.7%)左右,相应的最高光合有效辐射强度在800μmol/(m2 ·s)左右,土壤质量含水量降低或光合有效辐射强度升高,会导致严重水分胁迫和。  相似文献   

16.
ABSTRACT

Influences of nickel (Ni) concentrations in the nutrient solution on yield, quality, and nitrogen (N) metabolism of cucumber plants (Cucumis sativus cv ‘RS189’ and ‘Vikima’) were evaluated when plants were grown either with urea or nitrate as the sole N source. The cucumber plants were treated with two N sources, urea and nitrate as sodium nitrate (NaNO3) at 200 mg L?1, and three concentrations of Ni as nickel sulfate (NiSO4·6H2O; 0, 0.5, and 1 mg L?1). Treatments were arranged in a randomized block design with six replicates. The highest concentration of Ni in the leaves (1.2 mg kg?1 Dwt) was observed in the urea-fed plants at 1 mg L?1 Ni concentration. Additions of Ni up to 0.5 mg L?1 had no effect on the fruit Ni concentration in the both urea and nitrate-fed plants. Yield significantly (p < 0.05) increased with the Ni supplements from 0 to 0.5 mg L?1 (10 and 15% in ‘RS189’ and ‘Vikima’, respectively), but decreased when 1 mg L?1 Ni applied to the solutions in urea-fed plants. Nitrate-fed plants had a higher percentage of total soluble solids compare to those urea-fed plants. Nitrate concentrations of the fruits in urea-fed plants in both cultivars were reduced by approximately 50% compared to those nitrate-fed plants. The reduction of nitrate concentration in the fruits became more pronounced as the Ni concentration increased in the solution. The rate of photosynthesis (Pn) increased with the increase of the Ni concentration in the solution with urea-fed plants. Both N concentration and nitrate reductase (NR) activity of young leaves were higher in urea-fed plants at 0.5 mg l?1 Ni concentration. Ni supplements enhanced the growth and yield of urea-fed plants by increasing Pn, N concentration and NR activity. It can be concluded that Ni supplements (0.5 mg l?1) improve yield, quality, and NR activity in urea-fed cucumber plants.  相似文献   

17.
Abstract

To evaluate the hypothesis that plant-mediated oxygen supplies decrease methane (CH4) production and total global warming potential (GWP) in a tropical peatland, the authors compared the fluxes and dissolved concentrations of greenhouse gases [GHGs; CH4, carbon dioxide (CO2) and nitrous oxide (N2O)] and dissolved oxygen (DO) at multiple peatland ecosystems in Central Kalimantan, Indonesia. Study ecosystems included tropical peat swamp forest and degraded peatland areas that were burned and/or drained during the rainy season. CH4 fluxes were significantly influenced by land use and drainage, which were highest in the flooded burnt sites (5.75 ± 6.66 mg C m?2 h?1) followed by the flooded forest sites (1.37 ± 2.03 mg C m?2 h?1), the drained burnt site (0.220 ± 0.143 mg C m?2 h?1), and the drained forest site (0.0084 ± 0.0321 mg C m?2 h?1). Dissolved CH4 concentrations were also significantly affected by land use and drainage, which were highest in the flooded burnt sites (124 ± 84 μmol L?1) followed by the drained burnt site (45.2 ± 29.8 μmol L?1), the flooded forest sites (1.15 ± 1.38 μmol L?1) and the drained forest site (0.860 ± 0.819 μmol L?1). DO concentrations were influenced by land use only, which were significantly higher in the forest sites (6.9 ± 5.6 μmol L?1) compared to the burnt sites (4.0 ± 2.9 μmol L?1). These results suggest that CH4 produced in the peat might be oxidized by plant-mediated oxygen supply in the forest sites. CO2 fluxes were significantly higher in the drained forest site (340 ± 250 mg C m?2 h?1 with a water table level of ?20 to ?60 cm) than in the drained burnt site (108 ± 115 mg C m?2 h?1 with a water table level of ?15 to +10 cm). Dissolved CO2 concentrations were 0.6–3.5 mmol L?1, also highest in the drained forest site. These results suggested enhanced CO2 emission by aerobic peat decomposition and plant respiration in the drained forest site. N2O fluxes ranged from ?2.4 to ?8.7 μg N m?2 h?1 in the flooded sites and from 3.4 to 8.1 μg N m?2 h?1 in the drained sites. The negative N2O fluxes might be caused by N2O consumption by denitrification under flooded conditions. Dissolved N2O concentrations were 0.005–0.22 μmol L?1 but occurred at < 0.01 μmol L?1 in most cases. GWP was mainly determined by CO2 flux, with the highest levels in the drained forest site. Despite having almost the same CO2 flux, GWP in the flooded burnt sites was 20% higher than that in the flooded forest sites due to the large CH4 emission (not significant). N2O fluxes made little contribution to GWP.  相似文献   

18.
The effects of nitrogen (N) forms (ammonium- or nitrate-N) on plant growth under salinity stress [150 mmol sodium chloride (NaCl)] were studied in hydroponically cultured cotton. Net fluxes of sodium (Na+), ammonium (NH4+), and nitrate (NO3?) were also determined using the Non-Invasive Micro-Test Technology. Plant growth was impaired under salinity stress, but nitrate-fed plants were less sensitive to salinity than ammonium-fed plants due mainly to superior root growth by the nitrate-fed plants. The root length, root surface area, root volume, and root viability of seedlings treated with NO3-N were greater than those treated with NH4-N with or without salinity stress. Under salinity stress, the Na+ content of seedlings treated with NO3-N was lower than that in seedlings treated with NH4-N owing to higher root Na+ efflux. A lower net NO3? efflux was observed in roots of nitrate-fed plants relative to the net NH4+ efflux from roots of ammonium-fed plants. This resulted in much more nitrogen accumulation in different tissues, especially in leaves, thereby enhancing photosynthesis in nitrate-fed plants under salinity stress. Nitrate-N is superior to ammonium-N based on nitrogen uptake and cotton growth under salinity stress.  相似文献   

19.
The mineral composition and maintenance of mineral balance are important to growth and development of plants. The selenium (Se) has not been described as an essential element for plants, although there are studies that have demonstrated to interaction between Se with other mineral nutrients. The aim was to evaluate the influence that Se application at different rates and forms exerts on the nutritional state in lettuce plants. The plants were grown under different treatments: 5, 10, 20, 40, 60, 80, 120 μmol L?1 as sodium selenate [Na2SeO4 or Na2SeO3]. All the plants growth under controlled conditions. The results showed changes in some of the essential nutrients inside of plants such as nitrogen (N), phosphorous (P), iron (Fe), copper (Cu), calcium (Ca). The effect of Se depended largely on the Se from was applied to the culture medium. Thus, the selenite application had a stronger effect on the nutritional state of the plant.  相似文献   

20.
Nitrogen (N) fluxes of a slope mire in the German Harz Mountains were monitored to study the effect of increased N deposition on the N retention of the mire. In addition, the N content of mire pore water beneath different plant species was analyzed to assess N retention ability of plants. Atmospheric N deposition at the study site was 4.9?±?0.4 g N m?2 year?1 averaged for the study period of 2002 and 2003, with forest stand deposition being the largest share. Discharge was the main output pathway of N with a rate of 1.9?±?0.3 g N m?2 year?1. The mire showed a high N retention rate of 67%. Short-term N accumulation rate was 3.9 g N m?2 year?1. Differences in mire pore water N concentration under different vegetation cover indicate a lower N retention ability for ombrotrophic Sphagnum plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号