首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
3种棒果芥属植物生物量分配及异速生长分析   总被引:1,自引:0,他引:1  
类短命植物是准噶尔荒漠早春草本植物类群的重要而独特的组成部分,研究其生物量分配和异速生长关系,有助于深入了解类短命植物的生存策略与生态功能。以棒果芥( Sterigmostemum tomentosum )、福海棒果芥( S . fuhaiense )和黄花棒果芥( S . sulfureum )为研究对象,采用挖掘法获取野外成株全株生物量,对三者的器官生物量、分配比例及异速生长关系进行了对比分析。结果表明,3种植物器官生物量及其分配比例均差异明显。福海棒果芥生物量最大,但根冠比(R/S)和叶冠比(L/S)最小;棒果芥生物量最小,但L/S最大;黄花棒果芥则具有最大的R/S。棒果芥和黄花棒果芥的根冠比(R/S)均随个体的增大而显著下降,表明二者地上(AGB)与地下生物量(BGB)分配受到个体大小的强烈影响。福海棒果芥AGB-BGB间为等速生长关系(幂指数α=1),而另外2种均为异速生长关系;棒果芥、福海棒果芥的叶生物量(LB)与AGB间为等速生长关系,而黄花棒果芥符合异速生长关系(α<1);3个物种的LB-BGB间具有共同的异速生长指数(0.816),表现出强烈的功能趋同性。总之,3个物种间的生物量分配及异速生长关系没有一致规律,但体现了类短命植物生物量分配的特点。  相似文献   

2.
Growth of annual plants in arid environments depends largely on rainfall pulses. An increased understanding of the effects of different rainfall patterns on plant growth is critical to predicting the potential responses of plants to the changes in rainfall regimes, such as rainfall intensity and duration, and length of dry intervals. In this study, we investigated the effects of different rainfall patterns(e.g. small rainfall event with high frequency and large rainfall event with low frequency) on biomass, growth characteristics and vertical distribution of root biomass of annual plants in Horqin Sandy Land, Inner Mongolia of China during the growing season(from May to August) of 2014. Our results showed that the rainfall patterns, independent of total rainfall amount, exerted strong effects on biomass, characteristics of plant growth and vertical distribution of root biomass. Under a constant amount of total rainfall, the aboveground biomass(AGB), belowground biomass(BGB), plant cover, plant height, and plant individual and species number increased with an increase in rainfall intensity. Changes in rainfall patterns also altered the percentage contribution of species biomass to the total AGB, and the percentage of BGB at different soil layers to the total BGB. Consequently, our results indicated that increased rainfall intensity in future may increase biomass significantly, and also affect the growth characteristics of annual plants.  相似文献   

3.
Alpine meadow ecosystem is fragile and highly sensitive to climate change.An understanding of the allocation of above-and below-ground plant biomass and correlations with environmental factors in alpine meadow ecosystem can result in better protection and effective utilization of alpine meadow vegetation.We chose an alpine meadow in the Qinghai-Tibetan Plateau of China as the study area and designed experimental warming plots using a randomized block experimental design.We used single-tube infrared radiators as warming devices,established the warming treatments,and measured plant above- (AGB) and below-ground biomass (BGB) during the growing seasons (May to September) in 2012 and 2013.We determined the allocation of biomass and the relationship between biomass and soil environment under the warming treatment.Biomass indices including above-ground biomass,below-ground biomass and the ratio of root to shoot (R/S) ,and soil factors including soil moisture and soil temperature at different depths were measured.The results showed that (1) BGB of the alpine meadow had the most significant allometric correlation with its AGB (y=298.7x~ (0.44) ,P0.001) ,but the relationship decreased under warming treatment and the determination coefficient of the functional equation was 0.102 which was less than that of 0.188 of the unwarming treatment (control) ; (2) BGB increased,especially in the deeper soil layers under warming treatment (P0.05) .At 0–10 cm soil depth,the percentages of BGB under warming treatment were smaller than those of the control treatment with the decreases being 8.52% and 8.23% in 2012 and 2013,respectively.However,the BGB increased 2.13% and 2.06% in 2012 and 2013,respectively,at 10–50 cm soil depths; (3) BGB had significant positive correlations with soil moisture at 100 cm depth and with soil temperature at 20–100 cm depths (P0.05) ,but the mean correlation coefficient of soil temperature was 0.354,greater than the 0.245 of soil moisture.R/S ratio had a significant negative correlation with soil temperature at 20 cm depth (P0.05) .The warmer soil temperatures in shallow layers increased the biomass allocation to above-ground plant parts,which leading to the increase in AGB;whereas the enhanced thawing of frozen soil in deep layers causing by warming treatment produced more moisture that affected plant biomass allocation.  相似文献   

4.
Seed germination is a key transitional stage in plant life cycle and is strongly regulated by temperature and light. Therefore, research on the effects of temperature and light on seed germination is extremely meaningful for vegetation restoration, especially in desert ecosystems. Seeds of 28 ephemeral plants collected from the Gurbantunggut Desert of China were incubated at different temperatures (5°C/1°C, 15°C/5°C, 20°C/5°C, 25°C/10°C and 30°C/15°C) in 12-h light/12-h darkness or continuous darkness regimes, and the responses of seed germination to temperature and light and the germination speed were studied in 2016. Results showed that seed germination percentage of the 28 ephemeral plants significantly differed to temperature and light. We classified the studied plants as the following groups based on their responses to temperature: 1 low temperature responsed plants, 12 moderate temperature responsed plants, 7 high temperature responsed plants, 4 non-responsed plants and 5 plants of no germination. It should be noted that Corispermum lehmannianum Bunge is sensitive to both moderate and high temperatures. There were 4 groups of plant in response to light, i.e., 7 light responsed plants, 10 dark responsed plants, 6 light non-responsed plants and 5 plants of no germination. Based on seed germination speed of the 28 ephemeral plants, we divided them into 4 patterns of germination, i.e., very rapid, moderately rapid, moderate and slow. Combining variations of temperature, precipitation and sand dune types in the study area, we suggested that very rapid and moderately rapid germinated plants could be used to moving sand dunes in early spring during vegetation restoration, moderate germinated plants could be used to semi-fixed sand dunes in late autumn, and slow germinated plants could be used to sand plain in summer. Thus, seedling establishment and vegetation restoration would be improved by considering seed germination characteristics of these ephemeral plants in the Gurbantunggut Desert, China.  相似文献   

5.
Persian oak (Quercus brantii var. persica) is a dominant tree species of Zagros forests in a semi-arid area, western Iran. However, the capacity of biomass and carbon stocks of these forests is not well studied. We selected three types of oak, i.e., seed-originated oak, coppice oak and mixed (seed-originated and coppice) oak of Zagros forests in Dalab valley, Ilam Province, Iran to survey the capacity of biomass and carbon stocks in 2018. Thirty plots with an area of 1000 m2 were systematically and randomly assigned to each type of oak. Quantitative characteristics of trees, such as diameter at breast height (DBH), height, crown diameter and the number of sprouts in each plot were measured. Then, aboveground biomass (AGB), belowground biomass (BGB), aboveground carbon stock (AGCS) and belowground carbon stock (BGCS) of each tree in plots were calculated using allometric equations. The litterfall biomass (LFB) and litterfall carbon stock (LFCS) were measured in a quadrat with 1 m×1 m in each plot. One-way analysis of variance and Duncan's test were performed to detect the differences in biomass and carbon stocks among three types of oak. Results showed that AGB, BGB and BGCS were significantly different among three types of oak. The highest values of AGB, AGCS, BGB and BGCS in seed-originated oak were 76,043.25, 14,725.55, 36,737.79 and 7362.77 kg/hm2, respectively. Also, the highest values of LFB and LFCS in seed-originated oak were 3298.33 and 1520.48 kg/hm2, respectively, which were significantly higher than those of the other two types of oak. The results imply the significant role of seed-originated oak for the regeneration of Zagros forests. Further conservation strategy of seed-originated oak is an important step in the sustainable management of Zagros forests in Iran.  相似文献   

6.
Research on germination strategies has been proposed as a tool for understanding the evolutionary patterns of plant species living in extreme climate conditions. Previous research has concentrated on spring-germinated plants, while there has been little investigation on the ecological significance of ephemeral plants that germinate in both autumn and spring. The biological characteristics and life history strategies of autumn-and spring-germinated plants of Hypecoum erectum L. that belongs to Hypecoum in Papaveraceae family in the southern part of the Gurbantunggut Desert, China, were investigated from 2016 to 2017. Results showed that:(1) the interval from seedling emergence to the end of the life cycle in autumn-germinated plants(202–208 d) was significantly longer than that in spring-germinated plants(53–65 d);(2) the height, crown, principal axis and the number of leaves of autumn-germinated plants were much greater than those of spring-germinated plants;(3) allocation of dry mass to reproduction was 30.24%(±2.41%) and 10.12%(±0.68%) in autumn-and spring-germinated plants, respectively. Autumn-germinated seedlings of H. erectum had an advantage in avoiding the competition between annual and perennial herbs that had longer periods of vegetative growth.Spring-germinated seedlings need to ensure the survival of population when only a fewer autumn-germinated seedlings successfully overwinter. In an unpredictable environment, the germination strategy of bet hedging not only utilizes the resources and reduces the competition intensity in offspring,but also ensures the survival of the plant population.  相似文献   

7.
古尔班通古特沙漠南缘的主要植物群落类型和饲用植物   总被引:8,自引:1,他引:7  
夏阳 《干旱区研究》1993,10(3):21-27
古尔班通古特沙漠南缘.具有中亚西部——哈萨克斯坦荒漠的典型气候特征,水平地带性植被是小半乔木、半灌木和小半灌木荒漠,盐生植物群落也有广泛发育。根据生态生物学特性和饲用价值,可作为家畜采食的饲用植物可分为小半乔木、沙旱生灌木、盐中生灌木、盐柴类半灌木和小半灌木、多汁盐柴类半灌木和小半灌木、蒿类、短命和类短命植物、多年生草类和一年生盐柴类植物等生态经济类群。从土地的利用角度出发,该区的植被及其饲用植物资源宜作为骆驼、山羊和三北羊等家畜的春秋和冬季放牧利用。  相似文献   

8.
类短命植物粗柄独尾草器官生物量分配与估测   总被引:2,自引:0,他引:2  
粗柄独尾草(Eremurus inderiensis)是古尔班通古特沙漠特有类短命植物。采用全株挖掘法研究粗柄独尾草盛花期的生物学特征、器官生物量分配及生物量估测模型。结果表明:粗柄独尾草地上形态指标之间及其与器官生物量间均呈显著正相关,协同生长关系较强。粗柄独尾草地下生物量平均为(12.00±5.85) g/株,占全株58.23%±6.07%,地上生物量平均为(9.15±5.75) g/株,占全株41.77%±6.07%,根冠比为1.44±0.34。根生物量所占比例最大(51.61%±5.93%),其次为有性繁殖器官(25.14%±5.02%)和光合器官(16.63%±3.75%),这种分配模式体现了类短命植物生活型的特点。根冠比与地上形态指标间均为负相关关系。叶片、花序、地上及地下生物量间的相关生长分析表明,仅叶片重与地上生物量、叶片重与花序生物量间呈等速生长关系,其他均为异速关系。基于D (花柄基径)、HD2 (H为株高)的地上、地下和总生物量直接估测模型均较为精确,且地下生物量的直接和间接估测(基于异速关系)效果相同。  相似文献   

9.
本文采用野外实地调查、标本整理及资料查阅的方法,研究塔克拉玛干沙漠西南部荒漠环境的短命植物,分析其种类组成、生活型特征(物候特性)和植物区系类型。结果:①研究区的短命植物种类有十字花科、禾本科、菊科、紫草科、茄科、车前科、罂粟科及牻牛儿苗科等8科21属的27种,其中十字花科有15种。新记录种有卷果涩荠、大蒜芥、蝎尾菊、偏穗雀麦、旱麦草、中亚天仙子、牻牛儿苗、垂果大蒜芥及砂蓝刺头等10种,占该区域短命植物的37%。②该区域短命植物生活史特征有夏性、冬性及春性。③该区域短命植物分别属于北温带分布、地中海-西亚至中亚分布、旧世界温带分布、世界分布及中亚分布,其中北温带分布及地中海-西亚至中亚分布的植物有15种,占研究区统计种类的51. 86%。该研究结果丰富了新疆南部特殊生境下的短命植物类群,为开发和保护该地区植物种质资源及揭示短命植物对不同生态环境的响应具有重要意义。  相似文献   

10.
Xiang ZHAO 《干旱区科学》2019,11(2):267-279
The aboveground primary production is a major source of carbon(C) and nitrogen(N) pool and plays an important role in regulating the response of ecosystem and nutrient cycling to natural and anthropogenic disturbances. To explore the mechanisms underlying the effect of spring fire and topography on the aboveground biomass(AGB) and the soil C and N pool, we conducted a field experiment between April 2014 and August 2016 in a semi-arid grassland of northern China to examine the effects of slope and spring fire, and their potential interactions on the AGB and organic C and total N contents in different plant functional groups(C_3 grasses, C_4 grasses, forbs, Artemisia frigida plants, total grasses and total plants).The dynamics of AGB and the contents of organic C and N in the plants were examined in the burned and unburned plots on different slope positions(upper and lower). There were differences in the total AGB of all plants between the two slope positions. The AGB of grasses was higher on the lower slope than on the upper slope in July. On the lower slope, spring fire marginally or significantly increased the AGB of C_3 grasses, forbs, total grasses and total plants in June and August, but decreased the AGB of C_4 grasses and A.frigida plants from June to August. On the upper slope, however, spring fire significantly increased the AGB of forbs in June, the AGB of C_3 grasses and total grasses in July, and the AGB of forbs and C_4 grasses in August. Spring fire exhibited no significant effect on the total AGB of all plants on the lower and upper slopes in 2014 and 2015. In 2016, the total AGB in the burned plots showed a decreasing trend after fire burning compared with the unburned plots. The different plant functional groups had different responses to slope positions in terms of organic C and N contents in the plants. The lower and upper slopes differed with respect to the organic C and N contents of C_3 grasses, C_4 grasses, total grasses, forbs, A. frigida plants and total plants in different growing months. Slope position and spring fire significantly interacted to affect the AGB and organic C and N contents of C_4 grasses and A. frigida plants. We observed the AGB and organic C and N contents in the plants in a temporal synchronized pattern. Spring fire affected the functional AGB on different slope positions, likely by altering the organic C and N contents and, therefore,it is an important process for C and N cycling in the semi-arid natural grasslands. The findings of this study would facilitate the simulation of ecosystem C and N cycling in the semi-arid grasslands in northern China.  相似文献   

11.
The association between biodiversity and belowground biomass (BGB) remains a central debate in ecology. In this study, we compared the variations in species richness (SR) and BGB as well as their interaction in the top (0-20 cm), middle (20-50 cm) and deep (50-100 cm) soil depths among 8 grassland types (lowland meadow, temperate desert, temperate desert steppe, temperate steppe desert, temperate steppe, temperate meadow steppe, mountain meadow and alpine steppe) and along environmental gradients (elevation, energy condition (annual mean temperature (AMT) and potential evapotranspiration (PET)), and mean annual precipitation (MAP)) based on a 2011-2013 survey of 379 sites in Xinjiang, Northwest China. The SR and BGB varied among the grassland types. The alpine steppe had a medium level of SR but the highest BGB in the top soil depth, whereas the lowland meadow had the lowest SR but the highest BGB in the middle and deep soil depths. The SR and BGB in the different soil depths were tightly associated with elevation, MAP and energy condition; however, the particular forms of trends in SR and BGB depended on environmental factors and soil depths. The relationship between SR and BGB was unimodal in the top soil depth, but SR was positively related with BGB in the middle soil depth. Although elevation, MAP, energy condition and SR had significant effects on BGB, the variations in BGB in the top soil depth were mostly determined by elevation, and those in the middle and deep soil depths were mainly affected by energy condition. These findings highlight the importance of environmental factors in the regulations of SR and BGB as well as their interaction in the grasslands in Xinjiang.  相似文献   

12.
Previous studies documented that most desert plants can be colonized by arbuscular mycorrhizal (AM) fungi,however,little is known about how the dynamics of AM fungi are related to ephemerals in desert ecosystems.The dynamics of AM fungi with desert ephemerals were examined to determine the effects of host plant life stages on the development of AM fungi.Mean colonization of ephemeral annual plants was 45% lower than that of ephemeral perennial plants.The colonizations were much higher in the early part of the growing season than in later parts,peaking at flowering times.The phenology of AM fungi in root systems varied among different ephemerals.The density of AM fungal spores increased with the development of ephemeral annual plants,reached its maximum at flowering times,and then plateaued about 20 days after the aboveground senescence.A significant positive correlation was found between AM fungi spore density and biomass of ephemeral annual plants.The life cycles of AM fungi associated with desert ephemerals were very short,being about 60-70 days.Soil temperature and water content had no direct influence on the development of AM fungal spores.We concluded that the development of AM fungi was in response to desert ephemeral phenology and life history strategy.  相似文献   

13.
Understanding the effects of degradation on belowground biomass (BGB) is essential for assessment of carbon budget of the alpine meadow ecosystem on the Tibetan Plateau, China. This ecosystem has been undergoing serious degradation owing to climate change and anthropogenic activities. This study examined the response of the vertical distribution of plant BGB to degradation and explored the underlying mechanisms in an alpine meadow on the Tibetan Plateau. A field survey was conducted in an alpine meadow with seven sequential degrees of degradation in the Zoige Plateau on the Tibetan Plateau during the peak growing season of 2018. We measured aboveground biomass (AGB), BGB, soil water content (SWC), soil bulk density (SBD), soil compaction (SCOM), soil organic carbon (SOC), soil total nitrogen (STN), soil total phosphorus (STP), soil available nitrogen (SAN), and soil available phosphorus (STP) in the 0-30 cm soil layers. Our results show that degradation dramatically decreased the BGB in the 0-10 cm soil layer (BGB0-10) but slightly increased the subsoil BGB. The main reason may be that the physical-chemical properties of surface soil were more sensitive to degradation than those of subsoil, as indicated by the remarked positive associations of the trade-off value of BGB0-10 with SWC, SCOM, SOC, STN, SAN, and STP, as well as the negative correlation between the trade-off value of BGB0-10 and SBD in the soil layer of 0-10 cm. In addition, an increase in the proportion of forbs with increasing degradation degree directly affected the BGB vertical distribution. The findings suggest that the decrease in the trade-off value of BGB0-10 in response to degradation might be an adaptive strategy for the degradation-induced drought and infertile soil conditions. This study can provide theoretical support for assessing the effects of degradation on the carbon budget and sustainable development in the alpine meadow ecosystem on the Tibetan Plateau as well as other similar ecosystems in the world.  相似文献   

14.
阜康北部梭梭荒漠早春物种多样性研究   总被引:2,自引:1,他引:1  
通过对梭梭荒漠2种植物群落早春的物种组成、垂直结构及物种多样性的对比研究发现:梭梭(Haloxylon ammodendron)群落和白梭梭(Haloxylon persicum)群落具有结构简单、群落优势度高、均匀度和物种多样性较低、旱生性植物占绝对优势及短生植物成为群落重要组成部分等特征。同时,二者存在以下差异:①物种多样性差异, Shannon-Wiener多样性指数、均匀度指数及优势度指数梭梭群落(0.74,0.08和0.81)均高于白梭梭群落(0.61, 0.06和0.77);②主要伴生种不同,前者以草本植物为主要伴生种,后者以灌木为主要伴生种;③短生物种丰富度差异分别占前者的64.7%(11种)及后者的60%(15种)。2种梭梭群落的特点与差异可能与古尔班通古特沙漠南缘早春适宜的水热配置、群落生境的沙土含水量、沙面稳定程度及物种本身的生物学特性等因素有关。  相似文献   

15.
Variation in seed dormancy and light sensitivity was studied in Alopecurus myosuroides and Apera spica-venti . Seeds were collected from different populations, at different dates and from plants emerging in autumn or spring, and used in four experiments. In the first experiment, initial dormancy was investigated in light and darkness. In Expt 2, buried seeds were exhumed on 16 occasions, from September 1997 to March 2000, and germinated in light, in darkness and after a 5-s light exposure. In Expt 3, emergence was recorded for seeds sown in pots outdoors. In Expt 4, stratified seeds of A. myosuroides only were exposed to photon irradiance ranging from 0.1 to 25 600 μmol m−2. Variation was high among seed collections, but both species showed winter annual dormancy patterns. Apera spica-venti germinated to high percentages in autumn but negligibly in spring. Alopecurus myosuroides germinated less in spring when tested in darkness and after a short light exposure and emerged poorly in spring, which reflected photo-desensitisation during cold stratification. We conclude that the peak of emergence in A. myosuroides , and to some extent in A. spica-venti , is largely regulated by exposure to light interacting with low-level dormancy. This offers valuable information regarding optimal timing of weed control measures.  相似文献   

16.
Wei MAO 《干旱区科学》2012,4(2):161-170
Optimal partitioning theory(OPT)suggests that plants should allocate relatively more biomass to the organs that acquire the most limited resources.The assumption of this theory is that plants trade off the biomass allocation between leaves,stems and roots.However,variations in biomass allocation among plant parts can also occur as a plant grows in size.As an alternative approach,allometric biomass partitioning theory(APT)asserts that plants should trade off their biomass between roots,stems and leaves.This approach can minimize bias when comparing biomass allocation patterns by accounting for plant size in the analysis.We analyzed the biomass allocation strategy of perennial Pennisetum centrasiaticum Tzvel in the Horqin Sand Land of northern China by treating samples with different availabilities of soil nutrients and water,adding snow in winter and water in summer.We hypothesized that P.centrasiaticum alters its pattern of biomass allocation strategy in response to different levels of soil water content and soil nitrogen content.We used standardized major axis(SMA)to analyze the allometric relationship(slope)and intercept between biomass traits(root,stem,leaf and total biomass)of nitrogen/water treatments.Taking plant size into consideration,no allometric relationships between different organs were significantly affected by differing soil water and soil nitrogen levels,while the biomass allocation strategy of P.centrasiaticum was affected by soil water levels,but not by soil nitrogen levels.The plasticity of roots,leaves and root/shoot ratios was‘true’in response to fluctuations in soil water content,but the plasticity of stems was consistent for trade-offs between the effects of water and plant size.Plants allocated relatively more biomass to roots and less to leaves when snow was added in winter.A similar trend was observed when water was added in summer.The plasticity of roots,stems and leaves was a function of plant size,and remained unchanged in response to different soil nitrogen levels.  相似文献   

17.
The quantification of carbon storage in vegetation biomass is a crucial factor in the estimation and mitigation of CO2 emissions. Globally, arid and semi-arid regions are considered an important carbon sink. However, they have received limited attention and, therefore, it should be a priority to develop tools to quantify biomass at the local and regional scales. Individual plant variables, such as stem diameter and crown area, were reported to be good predictors of individual plant weight. Stand-level variables, such as plant cover and mean height, are also easy-to-measure estimators of above-ground biomass (AGB) in dry regions. In this study, we estimated the AGB in semi-arid woody vegetation in Northeast Patagonia, Argentina. We evaluated whether the AGB at the stand level can be estimated based on plant cover and to what extent the estimation accuracy can be improved by the inclusion of other field-measured structure variables. We also evaluated whether remote sensing technologies can be used to reliably estimate and map the regional mean biomass. For this purpose, we analyzed the relationships between field-measured woody vegetation structure variables and AGB as well as LANDSAT TM-derived variables. We obtained a model-based ratio estimate of regional mean AGB and its standard error. Total plant cover allowed us to obtain a reliable estimation of local AGB, and no better fit was attained by the inclusion of other structure variables. The stand-level plant cover ranged between 18.7% and 95.2% and AGB between about 2.0 and 70.8 Mg/hm2. AGB based on total plant cover was well estimated from LANDSAT TM bands 2 and 3, which facilitated a model-based ratio estimate of the regional mean AGB (approximately 12.0 Mg/hm2) and its sampling error (about 30.0%). The mean AGB of woody vegetation can greatly contribute to carbon storage in semi-arid lands. Thus, plant cover estimation by remote sensing images could be used to obtain regional estimates and map biomass, as well as to assess and monitor the impact of land-use change on the carbon balance, for arid and semi-arid regions.  相似文献   

18.
Low temperatures may inhibit dormancy break in seeds of winter annuals, therefore it was hypothesized that seeds of Capsella bursa‐pastoris and Descurainia sophia that mature at high latitudes in late summer–early autumn would not germinate until they had been exposed to high summer temperatures. Consequently, germination would be delayed until the second autumn. Most freshly matured seeds of both species collected in August and September in southern Sweden were dormant. After 3 weeks of burial at simulated August (20/10°C) and September (15/6°C) temperatures, 28 and 27%, respectively, of the C. bursa‐pastoris and 56 and 59%, respectively, of the D. sophia seeds germinated in light at 15/6°C. In contrast, in germination phenology studies conducted in Sweden, only a few seeds of either species germinated during the first autumn following dispersal. However, there was a peak of germination of both species the following spring, demonstrating that dormancy was lost during exposure to the low habitat temperatures between late summer and early autumn and spring. Nearly 100% of the seeds of both species subjected to simulated annual seasonal temperature changes were viable after 30.5 months of burial. In the burial study, exhumed seeds of C. bursa‐pastoris were capable of germinating to 98–100% in light at the simulated spring–autumn temperature regime (15/6°C) in both spring and autumn, while those of D. sophia did so only in autumn. In early spring, however, seeds of D. sophia germinated to 17–50% at 15/6°C. Thus, most seeds of these two annual weeds that mature in late summer do not germinate in the first autumn, but they may do so the following spring or in some subsequent autumn or spring.  相似文献   

19.
Summary. Most freshly-matured seeds of Thlaspi arvense L. (Brassicaceae) were dormant at maturity in May. Seeds sown on soil germinated in autumn and spring, but mostly in autumn. Buried seeds exhumed at monthly intervals and tested in light and darkness over a range of thermoperiods exhibited annual dormancy/non-dormancy cycles. However, the dormant period was short, usually only in April, but sometimes May, and in some years 1–6% of the seeds remained conditionally dormant. After-ripening occurred during summer, and seeds were non-dormant during autumn. Seeds entered conditional dormancy in winter and dormancy in late winter or early spring. When buried dormant seeds were kept at 25/15, 30/15 or 35/20°C for 12 weeks, they gained the ability to germinate to 95–100% at 15/6, 20/10, 25/15, 30/15 and 35/20°C. After burial for 12 weeks at 15/6 and 20/10°C, seeds germinated to 80–100% at 15/6, 20/10 and 25/15°C. but to only 11–64% at 30/15 and 35/20°C. After 4 weeks at 5°C, initially-dormant seeds germinated to 100% at all thermoperiods except 35/20°C, where only 15% of them germinated. However, after 18 weeks at 5°C, only 0–1% of the seeds germinated at all thermoperiods. Most non-dormant seeds exposed to 1, 5 and 15/6°C for 16 weeks were induced into dormancy; 1–15% entered conditional dormancy and thus germinated only at 15/6, 20/10 and 25/15°C. This study indicates that seeds of winter annual plants of T. arvense are non-dormant in autumn and enter dormancy in winter, while those from summer annuals are dormant in autumn and become non-dormant during winter.  相似文献   

20.
干旱、盐胁迫条件下两种盐生植物生物量分配对策的研究   总被引:10,自引:5,他引:5  
贺海波  李彦 《干旱区研究》2008,25(2):242-247
以2种一年生盐生草本植物钠猪毛菜、盐生草为试验对象,研究干旱和盐分胁迫对2种盐生植物生长和生物量分配的影响。结果表明:不同程度干旱和盐分胁迫显著影响了2种盐生植物的生长、生物量积累和生物量的分割。生长分析表明:2种盐生植物在生长率、根冠比、叶面积比方面皆存在明显可塑性,且根冠比、叶面积比的变化均受到个体发育漂变的影响;在整个营养生长期的不同处理组中,根冠比、叶面积比总体上呈逐渐降低趋势。不同干旱胁迫处理下2种盐生植物的根冠比和叶面积比的变化与最优理论和模型的预测相一致;随干旱胁迫的加重,根冠比增大而叶面积比减小。但在盐分胁迫条件下,2种盐生植物并未出现基于最优分配理论来调节生物量分配模式,且2种盐生植物根冠比和叶面积比的响应表现出明显的种间差异。此外,不同处理组间植物生物量分配特征(根冠比、叶面积比)的差异,往往只存在于生活史的某一时期,在整个营养生长期间,并不自始至终保持一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号