共查询到19条相似文献,搜索用时 132 毫秒
1.
猪体姿态识别有助于实现猪只健康状况预警、预防猪病爆发,是当前研究热点。针对复杂场景下群猪容易相互遮挡、粘连,姿态识别困难的问题,该研究提出一种实例分割与协同注意力机制相结合的两阶段群猪姿态识别方法。首先,以Cascade Mask R-CNN作为基准网络,结合HrNetV2和FPN模块构建猪体检测与分割模型,解决猪体相互遮挡、粘连等问题,实现复杂环境下群猪图像的高精度检测与分割;在上述提取单只猪基础上,构建了基于协同注意力机制(coordinate attention,CA)的轻量级猪体姿态识别模型(CA?MobileNetV3),实现猪体姿态的精准快速识别。最后,在自标注数据集上的试验结果表明,在猪体分割与检测环节,该研究所提模型与Mask R-CNN、MS R-CNN模型相比,在AP0.50、AP0.75、AP0.50:0.95和AP0.5:0.95-large 指标上最多提升了1.3、1.5、6.9和8.8个百分点,表现出最优的分割与检测性能。而在猪体姿态识别环节,所提CA?MobileNetV3模型在跪立、站立、躺卧、坐立4种姿态类上的准确率分别为96.5%、99.3%、98.5%和98.7%,其性能优于主流的MobileNetV3、ResNet50、DenseNet121和VGG16模型,由此可知,该研究模型在复杂环境下群猪姿态识别具有良好的准确性和有效性,为实现猪体姿态的精准快速识别提供方法支撑。 相似文献
2.
基于改进Faster R-CNN识别深度视频图像哺乳母猪姿态 总被引:2,自引:11,他引:2
猪舍场景下,昼夜交替光线变化、热灯光照影响,及仔猪与母猪的粘连等因素,给全天候哺乳母猪姿态自动识别带来很大困难。该文以深度视频图像为数据源,提出基于改进Faster R-CNN的哺乳母猪姿态识别算法。将残差结构引入ZF网络,设计ZF-D2R网络,以提高识别精度并保持实时性;将Center Loss监督信号引入Faster R-CNN训练中,以增强类内特征的内聚性,提升识别精度。对28栏猪的视频图像抽取站立、坐立、俯卧、腹卧和侧卧5类姿态共计7 541张图像作为训练集,另取5类姿态的5 000张图像作为测试集。该文提出的改进模型在测试集上对哺乳母猪的站立、坐立、俯卧、腹卧和侧卧5类姿态的识别平均准确率分别达到96.73%、94.62%、86.28%、89.57%和99.04%,5类姿态的平均准确率均值达到93.25%。在识别精度上,比ZF网络和层数更深的VGG16网络的平均准确率均值分别提高了3.86和1.24个百分点。识别速度为0.058 s/帧,比VGG16网络速度提高了0.034 s。该文方法在提高识别精度的同时保证了实时性,可为全天候母猪行为识别提供技术参考。 相似文献
3.
针对传统机器视觉技术对淡水鱼种类进行检测时特征提取过程复杂的问题,该研究提出了基于特征点检测的淡水鱼种类识别方法。以鳊、鳙、草鱼、鲢、鲤5种大宗淡水鱼为对象,构建了淡水鱼特征点检测数据集;以AlexNet模型为基础,通过减小卷积核尺寸、去除局部响应归一化、引入批量归一化、更换损失函数,构建了改进AlexNet模型用于特征点检测;并以特征点为依据提取特征值、构造特征向量,使用Fisher判别分析方法实现了淡水鱼的种类识别。试验结果表明:改进AlexNet模型在测试集上的归一化平均误差的均值为0.0099,阈值δ为0.02和0.03时的失败率F0.02、F0.03分别为2.50%和0.83%,具有较好的精准度和误差分布情况;基于该模型和Fisher判别分析的淡水鱼种类识别方法对5种淡水鱼的识别准确率为98.0%,单幅图像的平均识别时间为0.368 s,保证了时效性。由此可知,提出的改进AlexNet模型能实现淡水鱼的特征点检测并具有较高的精度,可为淡水鱼种类识别、尺寸检测、鱼体分割等提供条件,该方法可为淡水鱼自动化分类装置的研发奠定基础。 相似文献
4.
采摘点的识别与定位是智能采摘的关键技术,也是实现高效、适时、无损采摘的重要保证。针对复杂背景下番茄串采摘点识别定位问题,提出基于RGB-D信息融合和目标检测的番茄串采摘点识别定位方法。通过YOLOv4目标检测算法和番茄串与对应果梗的连通关系,快速识别番茄串和可采摘果梗的感兴趣区域(Region of Interest,ROI);融合RGB-D图像中的深度信息和颜色特征识别采摘点,通过深度分割算法、形态学操作、K-means聚类算法和细化算法提取果梗图像,得到采摘点的图像坐标;匹配果梗深度图和彩色图信息,得到采摘点在相机坐标系下的精确坐标;引导机器人完成采摘任务。研究和大量现场试验结果表明,该方法可在复杂近色背景下,实现番茄串采摘点识别定位,单帧图像平均识别时间为54 ms,采摘点识别成功率为93.83%,采摘点深度误差±3 mm,满足自动采摘实时性要求。 相似文献
5.
针对YOLOv5(you only look once version five)模型在农作物害虫密集目标上的检测效果无法满足实际需求,以及训练过程中模型收敛速度较慢等问题,该研究提出了融入全局响应归一化(global response normalization,GRN)注意力机制的YOLOv5农作物害虫识别模型(YOLOv5-GRNS)。设计了融入GRN注意力机制的编码器(convolution three,C3)模块,提高对密集目标的识别精度;利用形状交并比(shape intersection over union,SIoU)损失函数提高模型收敛速度和识别精度;在公开数据集IP102(insect pests 102)的基础上,筛选出危害陕西省主要农作物的8种害虫类型,构建了新数据集IP8-CW(insect pests eight for corn and wheat)。改进后的模型在新IP8-CW和完整的IP102两种数据集上进行了全面验证。对于IP8-CW,全类别平均准确率(mean average precision,mAP)mAP@.5和mAP@.5:.95分别达到了72.3%和47.0%。该研究还对YOLOv5-GRNS模型进行了类激活图分析,不仅从识别精度,而且从可解释性的角度,验证了对农作物害虫、尤其是密集目标的优秀识别效果。此外,模型还兼具参数量少、运算量低的优势,具有良好的嵌入式设备应用前景。 相似文献
6.
基于姿态与时序特征的猪只行为识别方法 总被引:2,自引:1,他引:2
生猪行为监测是生猪养殖管理过程中的一个重要环节。该研究提出了基于姿态与时序特征的猪只行为识别方法。首先采集和标注猪栏内猪只图像,分别构建了猪只目标检测数据集、猪只关键点数据集和猪只行为识别数据集;利用构建的数据集,分别训练了基于YOLOv5s的猪只检测模型、基于轻量化OpenPose算法的猪只姿态估计模型和基于ST-GCN算法的猪只行为识别模型,并搭建了猪只行为识别系统。经测试,文中训练的YOLOv5s猪只检测模型mAP(mean Average Precision)最高达到0.995,姿态估计模型平均精度和平均召回率达到93%以上,基于ST-GCN的猪只行为识别模型的平均准确率为86.67%。文中构建的猪只行为识别系统中基于LibTorch推理猪只检测模型和猪只姿态估计模型的单帧推理耗时分别约为14和65 ms,单只猪行为识别推理耗时约为8 ms,每提取200帧连续姿态进行一次行为识别推理,平均17 s更新一次行为识别结果。证明提出的基于姿态与时序特征的猪只行为识别方法具有一定可行性,为群养猪场景下的猪只行为识别提供了思路。 相似文献
7.
准确识别农作物病害并及时防护是保障农作物产量的重要措施。针对传统农作物病害识别模型体积大、准确率不高的问题,该研究提出一种基于注意力机制和多尺度特征融合的轻量型神经网络模型(Lightweight Multi-scale Attention Convolutional Neural Networks,LMA-CNNs)。首先,为减少参数量,使模型轻量化,网络主体结构采用深度可分离卷积;其次,在深度可分离卷积基础上设计出残差注意力模块和多尺度特征融合模块;同时引入Leaky ReLU激活函数增强负值特征的提取。残差注意力模块通过嵌入通道和空间注意力机制,增强有用特征信息的权重并减弱噪声等干扰信息的权重,残差连接能够有效防止网络退化。多尺度特征融合模块利用其不同尺度的卷积核提取多种尺度的病害特征,提高特征的丰富度。试验结果表明,LMA-CNNs模型在59类公开农作物病害图像测试集上的准确率为88.08%,参数量仅为0.14×107,优于ResNet34、ResNeXt、ShuffleNetV2等经典神经网络模型。通过比较不同研究者在同一数据集下所设计的网络模型,进一步验证LMA-CNNs模型不仅拥有更高的识别精度,还具有更少的参数。该研究提出的LMA-CNNs模型较好地平衡模型复杂程度和识别准确率,为移动端农作物病害检测提供参考。 相似文献
8.
针对植物工厂中对番茄花朵授粉作业的自动化和智能化需求,为克服当前机器人在授粉作业过程中因番茄花朵小、姿态朝向各异而导致的检测精度不高和授粉策略不完善等难题,该研究提出了一种由目标检测、花期分类和姿态识别相结合的番茄花朵检测分类算法--TFDC-Net(Tomato Flower Detection and Classification Network)。在目标检测阶段,提出了一种改进的YOLOv5s网络模型ACW_YOLOv5s,通过在YOLOv5s网络中添加卷积块注意力模块(Convolutional Block Attention Module,CBAM)并采用加权框融合(Weighted Boxes Fusion,WBF)方法,使模型的准确率达到0.957,召回率达到0.942,mAP0.5为0.968,mAP0.5-0.95为0.620,各项指标相较于原YOLOv5s网络模型分别提高了0.028、0.004、0.012、0.066,并改善了目标漏检和误检的状况。进而,针对不同花期的花朵以及花蕊不同姿态朝向的授粉问题,采用EfficientNetV2分类网络分别对3种不同花期和5种不同花蕊姿态朝向的花朵进行训练,分别得到花期分类模型及姿态识别模型,通过选取300张花期图片和200张姿态图片对其进行测试,花期分类模型和姿态分类模型的总体准确率分别为97.0%和90.5%。将研究提出的TFDC-Net算法应用于自主研发的授粉机器人中进行试验验证,结果表明,该算法能够实现对番茄花朵的目标检测、花期分类和姿态识别。在此基础上,通过坐标转换对目标快速定位,利用机器人机械臂末端执行器对番茄花朵中的花蕊完成了精准授粉,验证了该算法的有效性。该研究可实现对番茄花朵的目标识别与检测,有助于进一步推动授粉机器人的研发与应用。 相似文献
9.
针对目前苹果在复杂环境下难以进行生长状态分类识别、姿态信息同步获取等问题,该研究提出了一种基于改进YOLOv7的苹果生长状态分类和果实姿态融合识别方法。首先改进多尺度特征融合网络,在骨干网络中增加160×160的特征尺度层,用于增强模型对微小局部特征的识别敏感度;其次引入注意力机制CBAM(convolutional block attention module),改善网络对输入图片的感兴趣目标区域的关注度;最后采用Soft-NMS算法,能够有效避免高密度重叠目标被一次抑制从而发生漏检现象。此外,结合UNet分割网络和最小外接圆及矩形特征获取未遮挡苹果姿态。试验结果表明,改进YOLOv7的识别精确率、召回率和平均识别精度分别为86.9%、80.5%和87.1%,相比原始YOLOv7模型分别提高了4.2、2.2和3.7个百分点,另外苹果姿态检测方法的准确率为94%。该文模型能够实现苹果生长状态分类及果实姿态识别,可为末端执行器提供了抓取方向,以期为苹果无损高效的采摘奠定基础。 相似文献
10.
绿色高效杀线农药是现阶段防治植物线虫病的有效手段之一,针对在大规模杀线农药活性筛选测试阶段,传统人工镜检工作存在耗时长、准确率低、工作量大等问题,提出一种基于坐标注意力机制与高效边界框回归损失的线虫快速识别方法YOLOFN(YOLO for Nematodes)。基于YOLOv5s目标检测理论框架,在主干网络嵌入坐标注意力机制特征提取模块,融合线虫特征图位置信息于通道注意力中;进一步,平衡考量线虫目标的重叠比例、中心点距离、预测框宽高以及正负样本比例,以精确边界框回归的高效损失函数(Efficient IoU,EIoU)和焦点损失函数(Focal loss)优化定位损失函数和分类损失函数,最小化真实框与预测框的宽高差值,动态降低易区分样本的权重,快速聚焦有益训练样本,以提升模型对重叠黏连线虫目标的解析能力和回归精度。试验结果表明,YOLOFN在准确率、召回率和平均精度均值(mean Average Precision,mAP)性能指标上较改进前提高了0.2、4.4和3.8个百分点,与经典检测算法YOLOv3、SSD、Faster R-CNN3相比,mAP分别提高了1.1、31.7和15.1个百分点;与轻量化主干算法深度可分离卷积-YOLOv5、Mobilenetv2-YOLOv5、GhostNet-YOLOv5相比,在推理时间基本无差别情况下,mAP分别高出11.0、16.3和15.0个百分点。YOLOFN模型可快速、准确、高效完成线虫镜检统计工作,满足植物线虫病农药研发的实际需求,为加快植物线虫病防治新药的研制提供有力技术支持。 相似文献
11.
对密集圣女果遮挡、粘连等情况下的果实进行快速识别定位,是提高设施农业环境下圣女果采摘机器人工作效率和产量预测的关键技术之一,该研究提出了一种基于改进YOLOv4-LITE轻量级神经网络的圣女果识别定位方法。为便于迁移到移动终端,该方法使用MobileNet-v3作为模型的特征提取网络构建YOLOv4-LITE网络,以提高圣女果果实目标检测速度;为避免替换骨干网络降低检测精度,通过修改特征金字塔网络(Feature Pyramid Networks,FPN)+路径聚合网络(Path Aggregation Network,PANet)的结构,引入有利于小目标检测的104×104尺度特征层,实现细粒度检测,在PANet结构中使用深度可分离卷积代替普通卷积降低模型运算量,使网络更加轻量化;并通过载入预训练权重和冻结部分层训练方式提高模型的泛化能力。通过与YOLOv4在相同遮挡或粘连程度的测试集上的识别效果进行对比,用调和均值、平均精度、准确率评价模型之间的差异。试验结果表明:在重叠度为0.50时所提出的密集圣女果识别模型在全部测试集上调和均值、平均精度和准确率分别为0.99、99.74%和99.15%,同比YOLOv4分别提升了0.15、8.29、6.55个百分点,权重大小为45.3 MB,约为YOLOv4的1/5,对单幅416×416(像素)图像的检测,在图形处理器(Graphics Processing Unit,GPU)上速度可达3.01 ms/张。因此,该研究提出的密集圣女果识别模型具有识别速度快、识别准确率高、轻量化等特点,可为设施农业环境下圣女果采摘机器人高效工作以及圣女果产量预测提供有力的保障。 相似文献
12.
及时准确地识别出养殖区域内的粘连鱼体是实现水产养殖中鱼群计数、养殖密度估算等多种基本养殖操作自动化的关键技术。针对目前粘连鱼体识别方法存在准确率低、普适性差等问题,该研究提出了一种基于深度可分离卷积网络的粘连鱼体识别方法。首先采集鱼群图像数据,采用图像处理技术分割出鱼体连通区域图像,构建粘连鱼体识别数据集;其次构建基于深度可分离卷积网络的粘连鱼体识别模型,采用迁移学习方法训练模型;最后基于训练好的模型实现粘连鱼体的识别。在真实的鱼体图像数据集上进行测试,识别准确率达到99.32%。与基于支持向量机(Support Vector Machine, SVM)和基于反向传递神经网络(Back Propagation Neural Network, BPNN)的机器学习方法相比,准确率分别提高了5.46个百分点和32.29个百分点,具有更好的识别性能,可为实现水产养殖自动化、智能化提供支持。 相似文献
13.
快速准确识别玉米生长的不同阶段,对于玉米种植周期的高效精准管理具有重要意义。针对大田环境下玉米生长阶段分类辨识易受复杂背景、户外光照等因素影响的问题,该研究采用无人机获取玉米不同生长阶段的图像信息,以苗期、拔节期、小喇叭口期、大喇叭口期4个生长阶段为对象,利用Swin Transformer(Swin-T)模型引入迁移学习实现玉米不同生长阶段的快速识别。首先结合玉米垄面走向特性,将训练集旋转8次用以扩充数据集;为探究各模型在非清晰数据集上的表现,采用高斯模糊方法将测试集转换6次;最后以AlexNet,VGG16,GoogLeNet做为对比,评估Swin-T模型性能。试验结果表明,Swin-T模型在原始测试集的总体准确率为98.7%,相比于AlexNet,VGG16,GoogLeNet模型分别高出6.9、2.7和2.0个百分点;在错误分类中,大喇叭口期和小喇叭口期由于冠层特征相似,造成识别错误的概率最大;在非清晰数据集下,AlexNet,VGG16,GoogLeNet模型精度总体退化指数分别为12.4%、10.4%和15.0%,Swin-T模型总体退化指数为8.31%,并且退化均衡度、平均退化指数、最大退化准确率均表现最佳。研究结果表明:在分类精度、模糊图像输入等方面,Swin-T模型能够较好地满足实际生产中玉米不同生长阶段分类识别的需求,可为玉米生长阶段的智能化监测提供技术支撑。 相似文献
14.
基于R-FCN深度卷积神经网络的机器人疏果前苹果目标的识别 总被引:2,自引:13,他引:2
疏果前期苹果背景复杂、光照条件变化、重叠及被遮挡,特别是果实与背景叶片颜色极为相近等因素,给其目标识别带来很大困难。为识别疏果前期的苹果目标,提出基于区域的全卷积网络(region-based fully convolutional network,R-FCN)的苹果目标识别方法。该方法在研究基于ResNet-50和ResNet-101的R-FCN结构及识别结果的基础上,改进设计了基于ResNet-44的R-FCN,以提高识别精度并简化网络。该网络主要由ResNet-44全卷积网络、区域生成网络(RegionProposal Network, RPN)及感兴趣区域(Region of Interest, RoI)子网构成。ResNet-44全卷积网络为基础网络,用以提取图像的特征,RPN根据提取的特征生成Ro I,然后Ro I子网根据ResNet-44提取的特征及RPN输出的Ro I进行苹果目标的识别与定位。对采集的图像扩容后,随机选取23 591幅图像作为训练集,4 739幅图像作为验证集,对网络进行训练及参数优化。该文提出的改进模型在332幅图像组成的测试集上的试验结果表明,该方法可有效地识别出重叠、被枝叶遮挡、模糊及表面有阴影的苹果目标,识别的召回率为85.7%,识别的准确率为95.1%,误识率为4.9%,平均速度为0.187 s/幅。通过与其他3种方法进行对比试验,该文方法比FasterR-CNN、基于ResNet-50和ResNet-101的R-FCN的F1值分别提高16.4、0.7和0.7个百分点,识别速度比基于ResNet-50和ResNet-101的R-FCN分别提高了0.010和0.041 s。该方法可实现传统方法难以实现的疏果前苹果目标的识别,也可广泛应用于其他与背景颜色相近的小目标识别中。 相似文献
15.
基于改进YOLOv4-Tiny的蓝莓成熟度识别方法 总被引:1,自引:2,他引:1
为实现自然环境下蓝莓果实成熟度的精确快速识别,该研究对YOLOv4-Tiny网络结构进行改进,提出一种含有注意力模块的目标检测网络(I-YOLOv4-Tiny)。该检测网络采用CSPDarknet53-Tiny网络模型作为主干网络,将卷积注意力模块(Convolution Block Attention Module,CBAM)加入到YOLOv4-Tiny网络结构的特征金字塔(Feature Pyramid Network,FPN)中,通过对每个通道的特征进行权重分配来学习不同通道间特征的相关性,加强网络结构深层信息的传递,从而降低复杂背景对目标识别的干扰,且该检测网络的网络层数较少,占用内存低,以此提升蓝莓果实检测的精度与速度。对该研究识别方法进行性能评估与对比试验的结果表明,经过训练的I-YOLOv4-Tiny目标检测网络在验证集下的平均精度达到97.30%,能有效地利用自然环境中的彩色图像识别蓝莓果实并检测果实成熟度。对比YOLOv4-Tiny、YOLOv4、SSD-MobileNet、Faster R-CNN目标检测网络,该研究在遮挡与光照不均等复杂场景中,平均精度能达到96.24%。平均检测时间为5.723 ms,可以同时满足蓝莓果实识别精度与速度的需求。I-YOLOv4-Tiny网络结构占用内存仅为24.20 M,为采摘机器人与早期产量预估提供快速精准的目标识别指导。 相似文献
16.
机器视觉技术广泛应用于鸡蛋感官品质无损检测研究中,快速得到鸡蛋图像边缘有助于高效识别鸡蛋的几何特征参数。借鉴计算机二分法快速解方程的算法,提出用二分法快速检测图像边缘,把对图像的整体研究转换到具体的行图像来研究,利用行图像信息构建了满足二分法求解条件的方程,并把对边缘的检测构造成对方程的求解问题,从而建立了二分法求解鸡蛋图像边缘的理论基础,最后在应用部分给出了详细的程序实现步骤。试验结果表明:该方法可以检测鸡蛋图像边缘,检测效率提高了约20倍,大大加快了检测速度,可为鸡蛋自动化检测提供更高的效率。 相似文献
17.
18.
针对苹果内在品质检测过程中传统测量果心大小方法效率低、准确性差等问题,该研究提出一种基于TMU-Net网络自动分割果心的方法,将Transformer编码器融入U-Net网络结构中,构建改进U型卷积网络TMU-Net模型。模型由特征提取模块、特征处理模块、解码器、特征拼接模块组成,以VGG-16前13层作为主干特征提取网络,在跳跃连接中叠加多重残差空洞卷积(Multiple Residual Dilated Convolution,MRDC)模块,增大感受野的同时增强了模型对底层特征提取能力。采用数据增强技术对果心数据集扩充后,利用迁移学习方法冻结特定的网络层,对TMU-Net模型进行训练。试验结果表明:引入迁移学习并使用最佳训练方式使模型分割精确率提高了22.48个百分点;TMU-Net网络模型在果心分割任务中实现了96.72%的精确率,与U-Net、PSPNet、DeeplabV3+网络对比,精确率分别提升了14.28、9.98、7.15个百分点。该方法能够精准、有效地实现果心分割,可为实现苹果内在品质智能检测提供参考。 相似文献
19.
为解决山地地形起伏大、无人机飞行高度高导致图像中尺度小且纹理模糊的松枯死木识别困难问题,该研究提出了一种在特征层级进行超分辨率重建的YOLOv5松枯死木识别算法。在YOLOv5网络中添加选择性核特征纹理迁移模块生成有细节纹理的高清检测特征图,自适应改变感受野的机制分配权重,将更多注意力集中在纹理细节,提升了小目标和模糊目标的识别精度。同时,使用前景背景平衡损失函数抑制背景噪声干扰,增加正样本的梯度贡献,改善正负样本分布不平衡问题。试验结果表明,改进后算法在交并比(intersection over union, IoU)阈值取0.5时的平均精度均值(mean average precision, mAP50)为92.7%,mAP50~95(以步长0.05从0.5到0.95间取IoU阈值下的平均mAP)为62.1%,APsmall(小目标平均精度值)为53.2%,相比于原算法mAP50提高了3.2个百分点,mAP50~95提升了8.3个百分点,APsmall提升了15.8个百分点。不同算法对比分析表明,该方法优于Faster R-CNN、YOLOv4、YOLOX、MT-YOLOv6、QueryDet、DDYOLOv5等深度学习算法,mAP50分别提高了16.7、15.3、2.5、2.8、12.3和1.2个百分点。改进后松枯死木识别算法具有较高精度,有效缓解了小目标与纹理模糊目标识别困难问题,为后续疫木清零提供技术支持。 相似文献