首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 752 毫秒
1.
Continuous half-hourly measurements of soil CO2 efflux made between January and December 2001 in a mature trembling aspen stand located at the southern edge of the boreal forest in Canada were used to investigate the seasonal and diurnal dependence of soil respiration (Rs) on soil temperature (Ts) and water content (θ). Daily mean Rs varied from a minimum of 0.1 μmol m−2 s−1 in February to a maximum of 9.2 μmol m−2 s−1 in mid-July. Daily mean Ts at the 2-cm depth was the primary variable accounting for the temporal variation of Rs and no differences between Arrhenius and Q10 response functions were found to describe the seasonal relationship. Rs at 10 °C (Rs10) and the temperature sensitivity of Rs (Q10Rs) calculated at the seasonal time scale were 3.8 μmol m−2 s−1 and 3.8, respectively. Temperature normalization of daily mean Rs (RsN) revealed that θ in the 0–15 cm soil layer was the secondary variable accounting for the temporal variation of Rs during the growing season. Daily RsN showed two distinctive phases with respect to soil water field capacity in the 0–15 cm layer (θfc, 0.30 m3 m−3): (1) RsN was strongly reduced when θ decreased below θfc, which reflected a reduction in microbial decomposition, and (2) RsN slightly decreased when θ increased above θfc, which reflected a restriction of CO2 or O2 transport in the soil profile.Diurnal variations of half-hourly Rs were usually out of phase with Ts at the 2-cm depth, which resulted in strong diurnal hysteresis between the two variables. Daily nighttime Rs10 and Q10Rs parameters calculated from half-hourly nighttime measurements of Rs and Ts at the 2-cm depth (when there was steady cooling of the soil) varied greatly during the growing season and ranged from 6.8 to 1.6 μmol m−2 s−1 and 5.5 to 1.3, respectively. On average, daily nighttime Rs10 (4.5 μmol m−2 s−1) and Q10Rs (2.8) were higher and lower, respectively, than the values obtained from the seasonal relationship. Seasonal variations of these daily parameters were highly correlated with variations of θ in the 0–15 cm soil layer, with a tendency of low Rs10 and Q10Rs values at low θ. Overall, the use of seasonal Rs10 and Q10Rs parameters led to an overestimation of daily ranges of half-hourly RsRs) during drought conditions, which supported findings that the short-term temperature sensitivity of Rs was lower during periods of low θ. The use of daily nighttime Rs10 and Q10Rs parameters greatly helped at simulating ΔRs during these periods but did not improve the estimation of half-hourly Rs throughout the year as it could not account for the diurnal hysteresis effect.  相似文献   

2.
Distinguishing between root and non-root derived CO2 efflux is important when determining rates of soil organic matter turnover, however, in practice they remain difficult to separate. Our aim was to evaluate two methods for determining the component of below-ground respiration not dependent on plant roots (i.e., basal soil respiration; Rb). The first approach estimated Rb indirectly from the y-intercept of linear regressions between below-ground respiration (BGR) and root biomass. The second approach involved direct measurements of soil respiration from bare plots. To compare the contrasting approaches, BGR and crop biomass measurements were collected throughout the year in a range of agricultural systems. We found that both methods were very closely correlated with each other. Values of Rb determined by the intercept approach, however, were slightly higher than those determined by measurement of bare plots. Both approaches showed a seasonal trend with estimates of Rb lowest in winter months at 0.02 t C ha−1 month−1 for the y-intercept approach and 0.11 t C ha−1 month−1 for the bare plots approach, even after the data had been corrected for the influence of soil temperature. Highest rates of Rb occurred from the height to the end of the crop growing season (0.8-1.5 t C ha−1 month−1). The annual CO2 efflux due to Rb was estimated to be 8.1 t C ha−1 y−1 from the y-intercept approach and 6.8 t C ha−1 y−1 from bare plots. Annual BGR was 12.1 t C ha−1 y−1. We conclude that both methods provide similar estimates of Rb, however, logistically the bare plots approach is much easier to undertake than the y-intercept approach.  相似文献   

3.
Reduction of N2O in moist soil was inhibited completely by 10?2 atm C2H2 and partially by 10?5 atm C2H2. The effect of C2H4 was 104 times less than that of C2H2. Denitrification of NO?3 occurred in anaerobically or aerobically incubated waterlogged soil and in anaerobic but not in aerobic moist soil. In the absence of C2H2 there was transient accumulation of N2O. In the presence of C2H2 there was stoichiometric conversion of NO?3 to N2O. Some kinetics of the reduction of N2O and of NO?3 to N2O are presented. Denitrification of 1 μg added NO?3-N.g? could be measured within 1 h. Stoichiometries of production of N2O from NO?2 and NO?3, respectively, and production of CO2 attributable to denitrification were consistent with reported energy yields. Reduction of C2H2 to C2H4 occurred immediately following complete denitrification of added NO?3. The incubation of soil in the presence and in the absence of C2H2 thus permits assay of both denitrification and N2 fixation and provides information on the mole fraction of N2O in the products of denitrification.  相似文献   

4.
Laboratory studies were conducted to investigate the nature of chemical equilibria of zinc in some acid soils of Himachal Pradesh (India). The results indicated that one of the chemical reactions controlling zinc ion activity in the ambient soil solution may be represented by the equation:
Si(OH)4 + 2H2O ? Zn(OH)2(crys.) + SiO2 (amorph.) + 2H3O+
Sequential extraction of 65Zn-equilibrated soils provided a measure of the intensity of its different forms and their relative contribution to the pool of potentially available zinc in such soils. Adsorption-desorption parameters have been derived from a quattitative treatment of these phenomena as defined by the Langmuir equation. A supply parameter, cq√K1K2, integrating the combined effects of quantity, intensity and buffering capacity has been derived from the adsorption studies. A linear relationship between the supply parameter and cumulative desorption of applied zind in these soils has been noted. The desorption of zinc from these soils is an exponential process. The solubility relationship of zinc is expressed in terms of the theory of simultaneous equilibria of competitive chemical reactions which obviates the necessity of assuming a single physico-chemical model in predicting and relating the activity of zinc in the ambient soil solution and its surface reactivity on solid phases in the immediate vicinity of plant roots to its ultimate transport and uptake by plants.  相似文献   

5.
硫酸根自由基高级氧化技术(sulfate radical(SO_4~(·–))based advanced oxidation processes,SR-AOPs)是一种被广泛应用于降解土壤有机污染物的原位氧化修复技术。然而,关于SR-AOPs降解土壤多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的报道相对较少。本研究以南京某炼钢厂附近土壤作为试验样本,通过设置不同比例混合体系的过硫酸钠(Na_2S_2O_8)和亚铁离子(Fe~(2+))以及反应不同时间,探究SR-AOPs对土壤中16种PAHs的修复效果以及最佳技术方案。结果表明:Na_2S_2O_8和Fe~(2+)的配比会显著影响土壤PAHs的降解效果,当两者比例达到10︰1时,即Na_2S_2O_8用量为5 mmol/g,Fe~(2+)用量为0.5 mmol/g,反应时间为24 h时,PAHs总降解率最高,可达到29.32%;不同环数的PAHs决定了SR-AOPs的降解效果,其中SR-AOPs对四环PAHs降解效率最高,总降解率达到37.32%;此外,降解效率随反应时间增加而增加,在24 h达到效果最佳。因此,本研究结果可为SR-AOPs修复土壤PAHs提供理论依据。  相似文献   

6.
Isolates of a soil Pseudoimonas, as well as other soil bacteria, showed a different sensitivity towards NO?2 when grown under aerobic or anaerobic conditions. The tolerance to NO?2 was increased in the presence of O2: for instance, a concentration of 200parts106 of NO?2-N proved to be toxic to a Pseudomonas sp. under anaerobic conditions, whereas over 400 parts106 were needed aerobically to suppress its growth completely. The addition of NO?3 as an electron acceptor for anaerobic respiration did not overcome the inhibitive effect of NO?3. The pH range, at which NO?2 was utilized anaerobically, was narrowed with increasing NO?2 concentration (pH 6.8–8.8 at 70 parts106 of NO?2-N and 7.4–8.5 and 140 parts106 of NO?2-N).Tolerance to nitrite varied considerably among the bacteria tested. Each species was able to overcome the inhibitory effect of NO?2 up to a certain concentration, while the length of the lag phase was related to NO?2 concentration.  相似文献   

7.
Peatlands play an important role in emissions of the greenhouse gases CO2, CH4 and N2O, which are produced during mineralization of the peat organic matter. To examine the influence of soil type (fen, bog soil) and environmental factors (temperature, groundwater level), emission of CO2, CH4 and N2O and soil temperature and groundwater level were measured weekly or biweekly in loco over a one-year period at four sites located in Ljubljana Marsh, Slovenia using the static chamber technique. The study involved two fen and two bog soils differing in organic carbon and nitrogen content, pH, bulk density, water holding capacity and groundwater level. The lowest CO2 fluxes occurred during the winter, fluxes of N2O were highest during summer and early spring (February, March) and fluxes of CH4 were highest during autumn. The temporal variation in CO2 fluxes could be explained by seasonal temperature variations, whereas CH4 and N2O fluxes could be correlated to groundwater level and soil carbon content. The experimental sites were net sources of measured greenhouse gases except for the drained bog site, which was a net sink of CH4. The mean fluxes of CO2 ranged between 139 mg m−2 h−1 in the undrained bog and 206 mg m−2 h−1 in the drained fen; mean fluxes of CH4 were between −0.04 mg m−2 h−1 in the drained bog and 0.05 mg m−2 h−1 in the drained fen; and mean fluxes of N2O were between 0.43 mg m−2 h−1 in the drained fen and 1.03 mg m−2 h−1 in the drained bog. These results indicate that the examined peatlands emit similar amounts of CO2 and CH4 to peatlands in Central and Northern Europe and significantly higher amounts of N2O.  相似文献   

8.
The aim of this greenhouse experiment was the assessment of the influence of H2SeO3 at soil concentrations of 0.05, 0.15 and 0.45 mmol kg−1, on the activity of selected oxidoreductive enzymes in wheat (Triticum aestivum). The wheat plants were grown in 2 dm3 pots filled with dust-silt black soil of pH 7.7. Applied H2SeO3 caused activation of plant nitrate reductase at all concentrations, but activation of plant polyphenol oxidase at only two lower concentrations. The highest concentration caused inhibition of polyphenol oxidase and peroxidase. Plant catalase activity decreased under the influence of 0.15 and 0.45 mmol kg−1 concentration. After the final analysis Se was quantified in plants and soil. The amounts in plants were: control (unamended soil) 1.95 mg kg−1; I dose (0.05 mmol kg−1) 18.27 mg kg−1; II dose (0.15 mmol kg−1) 33.20 mg kg−1 and III dose (0.45 mmol kg−1) 38.37 mg kg−1, in soil: 0.265 mg kg−1; 3.61 mg kg−1; 10.53 mg kg−1; 30.53 mg kg−1; respectively. Simultaneously, a laboratory experiment was performed, where the activity of soil catalase and peroxidase were tested after 1, 3, 7, 14, 28, 56, and 112 days after Se treatment. Peroxidase activity in soil decreased with increasing Se content, over the whole experiment. The lowest dose of Se caused activation a significant 10% increase in catalase activity, but the influence of others doses was unclear.  相似文献   

9.
Here we provide evidence that the form of carbon compound and O2 concentration exert an inter-related regulation on the production and reduction of N2O in soil. 6.7 mM d-glucose, 6.7 mM D-mannitol, 8 mM L-glutamic acid or 10 mM butyrate (all equivalent to 0.48 g C l−1) were applied to slurries of a sandy loam soil. At the start of the experiment headspace O2 concentrations were established at ∼2%, 10% and 21% O2 v/v for each C treatment, and 2 mM K15NO3 (25 atom % excess 15N) was applied, enabling quantification of 15N-N2 production, 15N-(N2O-to-N2) ratios and DNRA. The form of C compound was most important in the initially oxic (21% O2 v/v) soils, where addition of butyrate and glutamic acid resulted in greater N2O production (0.61 and 0.3 μg N2O-N g−1 soil for butyrate and glutamic acid, respectively) than the addition of carbohydrates (glucose and mannitol). Although, there was no significant effect of C compound at low initial O2 concentrations (∼2% O2 v/v), production of 15N-N2 was greatest where headspace O2 concentrations were initially, or fallen to, ∼2% O2 v/v, with greatest reduction of N2O and lowering 15N-(N2O-to-N2) ratios (∼0-0.27). This may reflect that the effect of C is indirect through stimulation of heterotrophic respiration, lowering O2 concentrations, providing sub-oxic conditions for dissimilatory nitrate reduction pathways. Addition of carbohydrates (glucose and mannitol) also resulted in greatest recovery of 15N in NH4+ from applied 15N-NO3, indicative of the occurrence of DNRA, even in the slurries with initial 10% and 21% O2 v/v concentrations. Our 15N approach has provided the first direct evidence for enhancement of N2O reduction in the presence of carbohydrates and the dual regulation of C compound and O2 concentration on N2O production and reduction, which has implications for management of N2O emissions through changing C inputs (exudates, rhizodeposition, residues) with plant species of differing C traits, or through plant breeding.  相似文献   

10.
For the increase of the occupation ratio of inoculum strain in the competition with indigenous rhizobia, the relationship between Rj-genotypes of soybean and the preference of Rj-cultivars for various types of rhizobia for nodulation was investigated by using the Rj 2 Rj 4-genotype of soybean isolated from the cross between the Rj 2 Rj 3-cultivar IAC-2 and Rj 4-one Hill (Ishizuka et al. 1993: Soil Sci. Plant Nutr., 39, 79-86). Firstly, these Rj 2 Rj 4-genotypes were found to harbor the Rj 3-gene. The Rj 2Rj3Rj4-genotypes of soybean were considered to exhibit a more narrow microsymbiont range for nodulation than the Rj 2 Rj 3-and Rj4-cultivars. Therefore, rhizobia were isolated from the nodules of various Rj-genotypes of soybeans grown in soils, and the preference of the Rj 2 Rj 3 Rj 4-genotype for indigenous rhizobia was examined. The nodule occupancy of serotype 110 was significantly higher in the bacteroids of the nodules from the Rj 2 Rj 3 Rj 4-rgenotypes than in those from the other genotypes, non Rj-, Rj 2 Rj 3-, and Rj 4-cultivars. These results demonstrated that the Rj 2 Rj 3 Rj 4-genotype prefers more actively serogroup USDA110 to the others of rhizobia. Thus, Rj 2 Rj 3 Rj 4-genotype is superior to non- Rj-, Rj 2 Rj 3-, and Rj 4-genotypes for the formation of efficient nodules for nitrogen fixation.  相似文献   

11.
This study was conducted to examine whether the applications of N-inputs (compost and fertilizer) having different N isotopic compositions (δ15N) produce isotopically different inorganic-N and to investigate the effect of soil moisture regimes on the temporal variations in the δ15N of inorganic-N in soils. To do so, the temporal variations in the concentrations and the δ15N of NH4+ and NO3 in soils treated with two levels (0 and 150 mg N kg−1) of ammonium sulfate (δ15N=−2.3‰) and compost (+13.9‰) during a 10-week incubation were compared by changing soil moisture regime after 6 weeks either from saturated to unsaturated conditions or vice versa. Another incubation study using 15N-labeled ammonium sulfate (3.05 15N atom%) was conducted to estimate the rates of nitrification and denitrification with a numerical model FLUAZ. The δ15N values of NH4+ and NO3 were greatly affected by the availability of substrate for each of the nitrification and denitrification processes and the soil moisture status that affects the relative predominance between the two processes. Under saturated conditions for 6 weeks, the δ15N of NH4+ in soils treated with fertilizer progressively increased from +2.9‰ at 0.5 week to +18.9‰ at 6 weeks due to nitrification. During the same period, NO3 concentrations were consistently low and the corresponding δ15N increased from +16.3 to +39.2‰ through denitrification. Under subsequent water-unsaturated conditions, the NO3 concentrations increased through nitrification, which resulted in the decrease in the δ15N of NO3. In soils, which were unsaturated for the first 6-weeks incubation, the δ15N of NH4+ increased sharply at 0.5 week due to fast nitrification. On the other hand, the δ15N of NO3 showed the lowest value at 0.5 week due to incomplete nitrification, but after a subsequence increase, they remained stable while nitrification and denitrification were negligible between 1 and 6 weeks. Changing to saturated conditions after the initial 6-weeks incubation, however, increased the δ15N of NO3 progressively with a concurrent decrease in NO3 concentration through denitrification. The differences in δ15N of NO3 between compost and fertilizer treatments were consistent throughout the incubation period. The δ15N of NO3 increased with the addition of compost (range: +13.0 to +35.4‰), but decreased with the addition of fertilizer (−10.8 to +11.4‰), thus resulting in intermediate values in soils receiving both fertilizer and compost (−3.5 to +20.3‰). Therefore, such differences in δ15N of NO3 observed in this study suggest a possibility that the δ15N of upland-grown plants receiving compost would be higher than those treated with fertilizer because NO3 is the most abundant N for plant uptake in upland soils.  相似文献   

12.
For examining the probability of increase in the occupation ratio of inoculated rhizobium in nodules, various Rj-soybean cultivars including the Rj 2 Rj 3 Rj 4-lines of soybean were grown in a field of the Kyushu University Farm. Bradyrhizobium japonicum USDA110 that carries uptake hydrogenase (Hup+) was used as an inoculum. The relative efficiency of nitrogen fixation generally increased by the inoculation. However, there were no significant differences in the effects among the genotypes of the host plants. The occupation ratio of serogroup USDA110 in the nodules on the taproot of the inoculated plants was in the range of 77–100%, suggesting that the B. japonicum strain USDA110 infected taproots immediately after inoculation. The occupation ratios in the nodules on the lateral roots were 53–67, 40–86, 63–83, and 62–77% in inoculated plants of the non-Rj-, Rj 2 Rj 3-, Rj 4-, and Rj 2 Rj 3 Rj 4-genotypes, respectively, and they decreased in all the genotypes with the progression of growth. At the time of the first sampling, the occupation ratios on the lateral roots of these Rj 2 Rj 3 Rj 4-genotypes showed values intermediate between those of IAC-2 (Rj 2 Rj 3) and Hill (Rj 4) , which were the parent cultivars of the Rj 2 Rj 3 Rj 4-lines, B340, B349, and C242. The reduction in the occupation ratio of the serogroup USDA110 for about 1 month after the first sampling was the lowest (0.13–0.16) in the Rj 2 Rj 3 Rj 4-genotypes, excluding B349, followed by the non-Rj- and Rj 2 Rj 3-genotypes and highest (0.52–0.69) in the Rj 4-genotypes, excluding Hill. Therefore, it was considered that the population of compatible rhizobia with host soybean plants increased in the rhizosphere with the progression of the development and growth. The results showed that with the expansion of the root area of host plants, the occupation ratio of type A rhizobia including the serogroup USDA110 was high. Therefore, the Rj 2 Rj 3 Rj 4-genotypes were superior to other Rj-genotypes in terms of the inoculation effects of nodulation type A rhizobium, B. japonicum USDA110. However, the preference of the Rj 2 Rj 3 Rj 4-genotype for serogroup USDA110 is not sufficient to rule out the competition with the other serogroups in this study. Therefore, the study should be centered on the isolation of more efficient (Hup+) and highly compatible rhizobial strains with the Rj 2 Rj 3 Rj 4- genotypes.  相似文献   

13.
区域性土壤流失预测方程的初步研究   总被引:14,自引:0,他引:14  
杨艳生 《土壤学报》1990,27(1):73-79
应用我国南方花岗岩侵蚀红壤区的径流小区观测资料,采用数值分析方法推导出适合花岗岩侵蚀红壤区,计算各次降雨吋土壤流失量和年土壤流失量方程:A1=4·ys·K·LS;并利用野外调查量测资料,推导出适合长江三峡低中山区的土壤流失方程:A2=(152.5D-1016)·R·LS·C-2.3利用上述方程可以预测特定区域的土壤流失量。  相似文献   

14.
H2-oxidizing activities were assayed in slurries of four soils by measuring the consumption of H2 and the exchange of 3H2 with H2O at increasing mixing ratios of H2 or 3H2. Both H2 consumption and 3H2 exchange were abolished by autoclaving or the addition of formaldehyde. The rates of H2 consumption and 3H2 exchange were proportional to the quantity of soil used. Both activities increased with increasing concentrations of H2 or 3H2 and displayed biphasic kinetics, demonstrating the existence of two different H2-oxidizing activities, one with a relatively low K m and V max, and a second with a relatively high K m und V max. The first type of activity was characteristic of abiontic soil hydrogenases, and the second of aerobic H2-oxidizing bacteria. In contrast to H2 consumption, which required the presence of either O2 or ferricyanide, 3H2 exchange operated equally well without an external electron acceptor. The 3H2 exchange assay may thus be particularly useful for enrichment of soil hydrogenases which have not yet been isolated and for which no natural electron acceptor is known.  相似文献   

15.
植物篱枝叶有机碳分解研究   总被引:7,自引:0,他引:7  
孙辉  唐亚  赵其国  张炎周 《土壤学报》2002,39(3):361-367
研究植物篱枝叶的分解和养分矿化过程对该模式下养分的有效利用具有重要意义。在金沙江干热河谷坡耕地上利用分解袋法对新银合欢、山蚂蝗等 6个植物篱树种枝叶的分解进行了研究 ,结果显示山蚂蝗和新银合欢分解最快 ,前 2个星期有机碳分解了48 6 %和 5 0 0 % ;山毛豆和云南合欢次之 ,前 4星期有机碳累积分解量为 5 1 5 %和 45 6 % ;圣诞树和黑荆树分解最慢 ;将枝叶埋入土壤中比覆盖地表分解快。有机碳的分解规律可以用单指数模型Ct=C0 (1 e kt)和双指数模型Ct=C0 1 (1 e k1t) C0 2 (1 e k2 t)拟合 (式中 ,Ct 为有机碳累积分解量占全碳百分数 ,C0 、C0 1 和C0 2 分别为易分解有机碳和难分解有机碳百分数 ,k和k1分别为易分解有机碳分解常数 ,k2 为难分解有机碳分解常数 ) ,双指数模型更具合理性。研究表明有机碳的累积分解量与枝叶初始C/N比呈负相关 ,枝叶分解速度可用有机碳 (或易分解有机碳 )半减期来衡量。  相似文献   

16.
To measure the contribution of root respiration (Rr) to total soil respiration (Rt) in arid cotton fields, eighteen plots, nine for girdling and nine control, were built in an arid cotton field in the Aksu National Experimental Station of Oasis Farmland Ecosystem, Xinjiang of China. Given the difference of soil respiration between girdled plots and non-girdled control plots, the components of soil respiration, root respiration (Rr) and respiration originating from decomposition (Rd) were divided. The temperature sensitivities of R r and R d were analyzed, respectively. The results showed that the average contribution of R r to R t in arid cotton field was about 32% during the study period. The temperature-response curve of R r differed from that of Rd . The dynamic variation of R d was more related to the change of soil temperature as compared to Rr . Rr and Rd had different responses to the variation of environment, and thus new models capable of differentiating between Rr and Rd are needed for evaluating the different factors controlling these two components of soil respiration in arid cotton field.  相似文献   

17.
The effects of wheat straw and different forms of N on denitrification and N immobilization were studied in an anaerobic water-sediment system. The water-sediment system was supplemented with various combinations of wheat straw and 15N-labelled and unlabelled (NH4)2SO4 or KNO3, and incubated anaerobically at 30°C for 10 days. 15N-labelled and unlabelled NO inf3 sup- , NO inf2 sup- , NH inf4 sup+ , and organic N were determined in the water-sediment system. The gases evolved (N2, CO2, N2O, and CH4) were analyzed by gas chromatography at regular intervals. Larger quantities of 15N2–N and organic 15N were formed in wheat straw-amended systems than in non-amended systems. Trends in CO2 production were similar to those of N2–N evolution. The evolution of N2O and CH4 was negligible. Denitrification processes accounted for about 22 and 71% of the added 15NO inf3 sup- –N in the absence and presence of wheat straw, respectively. The corresponding denitrification rates were 3.4 and 12.4 g 15Ng-1 dry sediment day-1. In systems amended with 15NO inf3 sup- –N and 15NO inf3 sup- +NH inf4 sup+ –N without wheat straw, 1.82 and 1.58%, respectively, of the added 15NH inf3 sup- –N was immobilized. The corresponding figures for the same systems supplemented with wheat straw were 5.08 and 4.10%, respectively. Immobilization of 15NO inf4 sup+ –N was higher than that of 15NO inf3 sup- –N. The presence of NO inf3 sup- –N did not stimulate NH inf4 sup+ –N immobilization.  相似文献   

18.
 探讨不同土壤水分条件下光辐射强度对侧柏和油松苗木光合特性与水分利用效率的影响规律,可为林木栽培和管理提供科学依据。在黄土半干旱区,采用人工控制土壤水分的方法,利用模拟光源研究了侧柏和油松苗木的净光合速率、蒸腾速率、水分利用效率和胞间CO2浓度随模拟光辐射增强的变化规律。结果表明:在模拟光辐射为0~2200μmol/(m2.s)的范围内,侧柏和油松叶片的净光合速率、蒸腾速率和水分利用效率均随光辐射强度的增强而增大,但光辐射强度进一步增强,侧柏和油松净光合速率和水分利用效率呈下降趋势;在同样土壤水分条件下,侧柏净光合速率、蒸腾速率和水分利用效率高于油松,侧柏光饱和点高于油松,而侧柏光补偿点低于油松,侧柏光能利用率高于油松;随着土壤水分的增加,侧柏与油松净光合速率、蒸腾速率和胞间CO2浓度升高,而水分利用效率降低。在土壤含水量为7.90%、13.00%和19.99%条件下,侧柏光饱和点分别为1275、1 450和1 675μmol/(m2.s),光补偿点分别为4225和13μmol/(m2.s),由光饱和点对应最大净光合速率分别为3.04、4.06和5.53μmol/(m2.s);在土壤含水量为7.83%1、3.04%与20.15%条件下,油松光饱和点分别为11001、325和1500μmol/(m2.s),光补偿点分别为60.30和23μmol/(m2.s),由光饱和点对应最大净光合速率分别为1.08、3.35和4.36μmol/(m2.s)。  相似文献   

19.
The contribution of nitrification to the emission of nitrous oxide (N2O) from soils may be large, but its regulation is not well understood. The soil pH appears to play a central role for controlling N2O emissions from soil, partly by affecting the N2O product ratios of both denitrification (N2O/(N2+N2O)) and nitrification (N2O/(NO2+NO3). Mechanisms responsible for apparently high N2O product ratios of nitrification in acid soils are uncertain. We have investigated the pH regulation of the N2O product ratio of nitrification in a series of experiments with slurries of soils from long-term liming experiments, spanning a pH range from 4.1 to 7.8. 15N labelled nitrate (NO3) was added to assess nitrification rates by pool dilution and to distinguish between N2O from NO3 reduction and NH3 oxidation. Sterilized soil slurries were used to determine the rates of chemodenitrification (i.e. the production of nitric oxide (NO) and N2O from the chemical decomposition of nitrite (NO2)) as a function of NO2 concentrations. Additions of NO2 to aerobic soil slurries (with 15N labelled NO3 added) were used to assess its potential for inducing denitrification at aerobic conditions. For soils with pH?5, we found that the N2O product ratios for nitrification were low (0.2-0.9‰) and comparable to values found in pure cultures of ammonia-oxidizing bacteria. In mineral soils we found only a minor increase in the N2O product ratio with increasing soil pH, but the effect was so weak that it justifies a constant N2O product ratio of nitrification for N2O emission models. For the soils with pH 4.1 and 4.2, the apparent N2O product ratio of nitrification was 2 orders of magnitude higher than above pH 5 (76‰ and 14‰). This could partly be accounted for by the rates of chemodenitrification of NO2. We further found convincing evidence for NO2-induction of aerobic denitrification in acid soils. The study underlines the role of NO2, both for regulating denitrification and for the apparent nitrifier-derived N2O emission.  相似文献   

20.
The composition of the soil atmosphere is an indicator of biological processes, and soil CO2 gradients have been used to estimate CO2 efflux from the surface. Soil atmosphere samplers, constructed with gas-permeable materials, have been used to quantify soil CO2 concentrations. The type of material used can influence the perceived real-time concentrations of CO2 in the soil. Previous works have not directly compared different types of materials under the same conditions. The objective of this study was to determine the diffusion coefficient (D) and time of 95% equilibrium (teq) of CO2 through several materials, and to evaluate the effect of long-term soil burial (183 days) on diffusion characteristics. Materials tested included silicone, expanded Teflon (ePTFE), and ultra high molecular weight polyethylene (PE) tubing. The D of each material was determined using a closed-loop system consisting of a CO2-enriched (7800 ppm) chamber, a CO2 analyzer and an inner tube (experimental tubing) placed inside the chamber. Air was re-circulated through the inner tube, and as CO2 diffused from the chamber into the tubing, the analyzer recorded the increase in concentration. The silicone tubes had values of D ranging from 8.64 to 5.80×10−6 cm2 s−1 with corresponding teq between 3.9 and 9.7 h. Diffusion coefficients of the ePTFE (1.25×10−4 cm2 s−1) and PE (7.70×10−4 cm2 s−1) materials were 2 orders of magnitude greater, with teq<6 min. Exposure to the soil environment for 183 days did not visibly deteriorate the materials or significantly affect the D or teq values. Use of the ePTFE or PE materials, over the silicone materials, may allow for better characterization of dynamic CO2 concentrations in the soil based on the greater D and lesser teq values of these materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号