首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sakr  Nachaat 《Gesunde Pflanzen》2021,73(4):479-493
Gesunde Pflanzen - Soluble silicon (Si) plays a pivotal role in the nutritional status of a wide variety of field crops and helps them, whether directly or indirectly, counteract...  相似文献   

2.
In 1998–99 and 1999–2000 six trials were conducted to evaluate the effect of fungicides on Fusarium head blight in the field, on infected kernels and deoxynivalenol (DON) concentration in grain. A single application of prochloraz, tebuconazole, epoxiconazole or bromuconazole, applied to durum wheat varieties at the manufacturer's recommended dose at the beginning of anthesis stage, provided good control of the disease when infective pressure in the field was low to medium, and when the main pathogens were F. graminearum and F. culmorum. Kresoxim-methyl showed a low efficacy at controlling the disease. Tebuconazole, prochloraz and bromuconazole were effective at controlling F. graminearum and F. culmorum, while kresoxim-methyl was not effective in reducing Fusarium infected kernels. DON concentration in grain of cultivars inoculated with F. graminearum and F. culmorum was high, averaging 4.2mgkg–1 (untreated control). Tebuconazole, prochloraz and bromuconazole reduced DON concentration by 43%, while epoxiconazole was ineffective. DON concentration in kernels of naturally infected cultivars was 1.95mgkg–1, a concentration which exceeds the 1mgkg–1 maximum level of contamination allowed in the United States. Furthermore prochloraz, bromuconazole and tebuconazole applications, in the naturally inoculated trials, reduced DON concentration from 73% to 96%, while epoxiconazole showed the lowest effectiveness. Moreover, a positive linear correlation between Fusarium infected grains and the DON concentration was observed.  相似文献   

3.
An in vitro detached leaf assay, involving the inoculation of detached leaves with Microdochium nivale, was further developed and used to compare with whole plant resistance ratings to Fusarium head blight (FHB) of 22 commercial cultivars and published information on 21 wheat genotypes, identified as potential sources for FHB resistance. An incubation temperature of 10 °C and isolates of M. nivale var. majus of intermediate pathogenicity were found to be the most suitable for the differential expression of several components of partial disease resistance (PDR), namely incubation period, latent period and lesion length, in wheat genotypes used in the detached leaf assay. There were highly significant differences (P < 0.001) for each component of PDR within commercial cultivars and CIMMYT genotypes. Positive correlations were found between incubation period and latent period (r = 0.606; P < 0.001 and r = 0.498; P < 0.001, respectively, for commercial cultivars and CIMMYT genotypes), inverse correlations between incubation period and lesion length (r = -0.466; P < 0.01 and r = –0.685; P < 0.001, respectively) and latent period and lesion length (r = –0.825; P < 0.001 and r = –0.848; P < 0.001, respectively). Spearman rank correlations between individual PDR components and UK 2003 recommended list ratings were significant for incubation period (rs = 0.53; P < 0.05) and latent period (rs = 0.70; P < 0.01) but not for lesion length (r s = –0.26). Commercial cultivars identified with high resistances across all three PDR components in the detached leaf assay also had high whole plant FHB resistance ratings, with the exception of cv. Tanker which is more susceptible than the results of the detached leaf assay suggested, indicating an additional susceptibility factor could be present. Agreement between resistances found in the detached leaf assay and resistance to FHB suggests resistances detected in detached leaves are under the same genetic control as much of the resistances expressed in the wheat head of the commercial cultivars evaluated. In contrast, high resistances in each of the PDR components were associated with higher susceptibility across 19 CIMMYT genotypes previously evaluated as potential breeding sources of FHB resistance (incubation period: r = 0.52; P < 0.01, latent period: r = 0.53; P < 0.01, lesion length: r = –0.49; P < 0.01). In particular, the CIMMYT genotypes E2 and E12 together with Summai #3, known to have high levels of whole plant FHB resistance, showed low levels of resistance in each PDR component in the detached leaf assay. Such whole plant resistances, which are highly effective and not detected by the detached leaf assay, do not appear to be present in Irish and UK commercial cultivars. The most resistant Irish and UK commercial cultivars were comparable to the genotype Frontana and the most resistant CIMMYT germplasm evaluated in the leaf assay.  相似文献   

4.
The data available indicate that aggressiveness of Fusarium graminearum and F. culmorum depends on their deoxynivalenol (DON) and nivalenol-producing capacity: toxin-producing ability correlated closely with the level of aggressiveness measured. This agrees well with other literature findings. However, the resistance of a cultivar influenced DON production significantly. In the most resistant genotypes, toxin contamination remained near zero, whereas the same isolates and inoculum produced very high toxin levels in susceptible cultivars. As toxin levels were correlated with the ratio of Fusarium-damaged kernels (FDK) and this ratio is very low in highly resistant cultivars, the conclusion is that the level of resistance level is more important in governing DON accumulation in a given cultivar than is the aggressiveness of an isolate. In susceptible cultivars, DON producing ability is decisive, but in highly resistant cultivars resistance is the major factor in suppressing disease development and DON accumulation. In different years, the same FDK values were associated with different DON concentrations and this depended very much on the precipitation towards the end of May, the time of inoculation.  相似文献   

5.
A novel in vitro bioassay is described for screening Fusarium ear blight (FEB) resistance in adult winter wheat plants. Seven winter wheat cultivars were assessed for components of partial disease resistance as 28 day-old detached leaf segments in the laboratory using isolates of Microdochium nivale var. nivale and M. nivale var. majus. Results were compared with disease data obtained at anthesis using the same cultivars as whole plants and the same isolates under glasshouse conditions. Significant cultivar differences were observed using detached leaves, with cv. Avalon (a Fusarium culmorum ear susceptible cultivar) having the shortest leaf incubation period, greatest leaf lesion development and shortest leaf latent period compared to cv. Spark (a Fusarium culmorum ear resistant cultivar), which had the longest leaf incubation period, least leaf lesion development and longest leaf latent period. Using whole plants, cv. Avalon had the shortest ear incubation period and greatest ear disease severity, whilst cv. Spark had the longest incubation period and least ear disease severity. Overall, cultivars of intermediate F. culmorum ear resistance expressed intermediate responses to M. nivale isolates, using both detached leaves and whole plants. Significant correlations were found with ear disease severity and ear incubation period in whole plants and components of partial disease resistance in detached leaves, with significant correlations obtained between leaf incubation period and ear disease parameters using the M. nivale var. nivale isolate. In addition, leaf latent period and leaf lesion size showed significant correlations with whole plant reactions using M. nivale var. nivale and var. majus isolates. The in vitro screening of cultivars as detached leaves using M. nivale isolates may offer a real possibility of a rapid bioassay for the early screening of FEB resistance in wheat and other cereals.  相似文献   

6.
ABSTRACT Race 3 of the fungus Pyrenophora tritici-repentis, causal agent of tan spot, induces differential symptoms in tetraploid and hexaploid wheat, causing necrosis and chlorosis, respectively. This study was conducted to examine the genetic control of resistance to necrosis induced by P. tritici-repentis race 3 and to map resistance genes identified in tetraploid wheat (Triticum turgidum). A mapping population of recombinant inbred lines (RILs) was developed from a cross between the resistant genotype T. tur-gidum no. 283 (PI 352519) and the susceptible durum cv. Coulter. Based on the reactions of the Langdon-T. dicoccoides (LDN[DIC]) disomic substitution lines, chromosomal location of the resistance genes was determined and further molecular mapping of the resistance genes for race 3 was conducted in 80 RILs of the cross T. turgidum no. 283/Coulter. Plants were inoculated at the two-leaf stage and disease reaction was assessed 8 days after inoculation based on lesion type. Disease reaction of the LDN(DIC) lines and molecular mapping on the T. turgidum no. 283/Coulter population indicated that the gene, designated tsn2, conditioning resistance to race 3 is located on the long arm of chromosome 3B. Genetic analysis of the F(2) generation and of the F(4:5) and F(6:7) families indicated that a single recessive gene controlled resistance to necrosis induced by race 3 in the cross studied.  相似文献   

7.
ABSTRACT A random set of recombinant inbred (RI) lines (F2:7) derived from the cross of the inbred lines Mo17 (resistant) and B73 (susceptible) were evaluated for resistance to southern leaf blight (SLB) caused by Cochliobolus heterostrophus race O. The RI lines were genotyped at a total of 234 simple sequence repeat, restriction fragment length polymorphism, or isozyme loci. Field plots of the RI lines were inoculated artificially with an aggressive isolate of C. heterostrophus race O in each of two growing seasons in North Carolina. Lines were rated for percent SLB severity two (1996) or three (1995) times during the grain-filling period. Data also were converted to area under the disease progress curve (AUDPC) and analyzed using the composite interval mapping option of the PLABQTL program. When means of disease ratings over years were fitted to models, a total of 11 quantitative trait loci (QTLs) were found to condition resistance to SLB, depending upon which disease ratings were used in the analyses. When the AUDPC data were combined and analyzed over environments, seven QTLs, on chromosomes 1, 2, 3, 4, 7, and 10 were found to come from the resistant parent Mo17. An additional QTL for resistance on chromosome 1 came from the susceptible parent B73. The eight identified QTLs accounted for 46% of the phenotypic variation for resistance. QTL x environment interactions often were highly significant but, with one exception, were the result of differences in the magnitude of QTL effects between years and not due to changes in direction of effects. QTLs on the long arm of chromosome 1 and chromosomes 2 and 3 had the largest effects, were the most consistently detected, and accounted for most of the phenotypic variance. No significant additive x additive epistatic effects were detected. These data support earlier reports of the polygenic inheritance of resistance to SLB of maize.  相似文献   

8.
Strategies for the Control of Fusarium Head Blight in Cereals   总被引:1,自引:0,他引:1  
Fusarium head blight (FHB) is a widespread and destructive disease of small grained cereals caused by a number of Fusarium species and Microdochium nivale. In addition to causing significant reductions in grain yield, FHB can result in the reduction of grain quality, either by affecting grain processing qualities or by producing a range of toxic metabolites that have adverse effects on humans and livestock. Control of FHB can be achieved by a number of cultural, biological and chemical strategies along with the exploitation of host plant resistance. In recent years, much of the research undertaken for the control of FHB has been concentrated on understanding and exploiting the genetic resistance of cereal plants to FHB-causing pathogens. Although, a brief overview of genetic resistance is presented, this review seeks to summarise the significance of FHB and review the effectiveness of cultural, biological and chemical control strategies that have been investigated for the control the disease.  相似文献   

9.
Fusarium head blight (FHB) is an important disease of wheat, which can result in the contamination of grains with mycotoxins such as deoxynivalenol (DON). Artificial inoculation of flowering ears with conidial suspensions is widely used to study FHB diseases. Our goal was to compare four inoculation treatments in which a conidial suspension was sprayed on flowering ears and to study the effect of the application of moisture during kernel setting and filling with a mist-irrigation system. Ten wheat genotypes were inoculated with a DON-producing Fusarium culmorum strain. Inoculation treatments varied in time of application of the inoculum (morning or evening) and in the method of controlling humidity during inoculation (bagging or mist irrigation). A wet season was simulated with a mist-irrigation system, keeping the crop canopy wet for at least 26 days after flowering. The severity of FHB symptoms (area under disease progress curve (AUDPC)), yield loss and DON contamination in the grains were determined. AUDPC data obtained with the different inoculation treatments were highly correlated (r=0.85–0.95). Mist irrigation after inoculation resulted in a higher mean disease severity, but in a overall lower toxin contamination as compared to the non-irrigated treatments. Genotypic differences in DON accumulation were present: for one wheat line toxin contamination significantly increased when irrigated, while two genotypes accumulated significantly less toxin. The closest relationships (r=0.73–0.89) between the visual symptoms and the DON content were obtained under moderate mean infection pressure. This relation between visual symptoms and the DON content deteriorated at higher infection levels.  相似文献   

10.
ABSTRACT Stagonospora nodorum leaf blotch is an economically important foliar disease in the major wheat-growing areas of the world. In related work, we identified a host-selective toxin (HST) produced by the S. nodorum isolate Sn2000 and determined the chromosomal location of the host gene (Snn1) conditioning sensitivity to the toxin using the International Triticeae Mapping Initiative mapping population and cytogenetic stocks. In this study, we used the same plant materials to identify quantitative trait loci (QTL) associated with resistance to fungal inoculations of Sn2000 and investigate the role of the toxin in causing disease. Disease reactions were scored at 5, 7, and 10 days postinoculation to evaluate changes in the degree of effectiveness of individual QTL. A major QTL was identified on the short arm of chromosome 1B, which coincided with the snn1 toxin-insensitivity gene. This locus explained 58% of the phenotypic variation for the 5-day reading but decreased to 27% for the 10-day reading, indicating that the toxin is most effective in the early stages of the interaction. In addition, relatively minor QTL were identified on chromosomes 3AS, 3DL, 4AL, 4BL, 5DL, 6AL, and 7BL, but not all minor QTL were significant for all readings and their effects varied. Multiple regression models explained from 68% of the phenotypic variation for the 5-day reading to 36% for the 10-day reading. The Chinese Spring nullisomic 1B tetrasomic 1D line and the Chinese Spring-Triticum dicoccoides disomic 1B chromosome substitution line, which were insensitive to SnTox1, were more resistant to the fungus than the rest of the nullisomictetrasomic and disomic chromosome substitution lines. Our results indicate that the toxin produced by isolate Sn2000 is a major virulence factor.  相似文献   

11.
Fusarium head blight (FHB) is a complex cereal disease associated with trichothecene production; these mycotoxins are factors of aggressiveness in wheat. Six species (bread and durum wheat, triticale, rye, barley and oats) were submitted to point inoculations with two isogenic strains of Fusarium graminearum; a wild strain (Tri5 +) produced trichothecenes and the mutated strain (Tri5 –) did not. The trichothecene-producing strain was generally more aggressive than the non-producing strain, but this varied according to crop species. The difference in aggressiveness was less pronounced in rye, a very resistant species. High resistance levels were observed in oats due to the large spacing between florets. In six-row barley, despite the existence of a moderate Type II resistance, the fungus was often observed to move externally from one floret to another within the dense spike, without penetrating the rachis. Bread wheat had low resistance to the trichothecene-producing strain and good resistance to the non-producing strain. Triticale responded to the strains in a similar way but was somewhat more resistant to both: symptoms on the spikelets and rachis of the triticales were restricted to below the point of inoculation. Durum wheat was susceptible to the trichothecene-producing strain and only moderately resistant to the non-producing strain, which was able to cause serious damage only to this species. Our study confirmed that the role of trichothecenes in FHB pathogenesis differs among species. The failure of the trichothecene non-producing F. graminearum strain to spread within the inflorescence of wheat, triticale, rye and barley, and the significant reduction of spread in the durum wheat spike strongly suggested that trichothecenes are a major determinant of fungal spread and disease development in Triticeae.  相似文献   

12.
Wydra K  Zinsou V  Jorge V  Verdier V 《Phytopathology》2004,94(10):1084-1093
ABSTRACT Cassava suffers from bacterial blight attack in all growing regions. Control by resistance is unstable due to high genotype-environment interactions. Identifying genes for resistance to African strains of Xanthomonas axonopodis pv. manihotis can support breeding efforts. Five F(1) cassava genotypes deriving from the male parent 'CM2177-2' and the female parent 'TMS30572' were used to produce 111 individuals by backcrossing to the female parent. In all, 16 genotypes among the mapping population were resistant to stem inoculation by four strains of X. axonopodis pv. manihotis from different locations in Africa, and 19 groups with differential reactions to the four strains were identified, suggesting that the strains represent different pathotypes. Four genotypes were resistant to leaf inoculation, and three were resistant to both stem and leaf inoculations. Genotypes with susceptible, moderately resistant, and resistant reactions after leaf and stem inoculation partly differed in their reactions on leaves and stems. Based on the genetic map of cassava, single-markeranalysis of disease severity after stem-puncture inoculation was performed. Eleven markers were identified, explaining between 16 and 33.3% of phenotypic variance of area under disease progress curve. Five markers on three and one linkage groups from the female- and male-derived framework of family CM8820, respectively, seem to be weakly associated with resistance to four strains of X. axonopodis pv. manihotis. Based on the segregation of alleles from the female of family CM8873, one marker was significantly associated with resistance to two X. axonopodis pv. manihotis strains, GSPB2506 and GSPB2511, whereas five markers were not linked to any linkage group. The quantitative trait loci (QTL) mapping results also suggest that the four African strains belong to four different pathotypes. The identified pathotypes should be useful for screening for resistance, and the QTL and markers will support breeding for resistance.  相似文献   

13.
Fusarium head blight (FHB) of wheat and other small-grain cereals is a disease complex caused by several fungal species. To monitor and quantify the major species in the FHB complex during the growing season, real-time PCR was developed. TaqMan primers and probes were designed that showed high specificity for Fusarium avenaceum, F. culmorum, F. graminearum, F. poae and Microdochium nivale var. majus. Inclusion of an internal PCR control and serial dilutions of pure genomic DNAs allowed accurate determination of the concentration of fungal DNA for each of these species in leaves, ears as well as harvested grains of winter wheat. The DNA concentration of F. graminearum in grain samples correlated (r 2= 0.7917) with the incidence of this species on the grain as determined by isolation from individual kernels. Application of the TaqMan technology to field samples collected in 40 wheat crops in the Netherlands during the growing season of 2001 revealed that M. nivale var. majus predominated on leaves early in the season (GS 45-65). Ears and harvested grains from the same fields, however, showed F. graminearum as the major species. In 2002, grain samples from 40 Dutch fields showed a much wider range of species, whereas in ears from 29 wheat crops in France, F. graminearum was the predominant species. The concentration of DON correlated equally well with the incidence of the DON-producing species F. culmorum and F. graminearum in the grain samples (r 2= 0.8232) as well as with total DNA of both these species (r 2= 0.8259). The Fusarium TaqMan technology is an important tool to quantify and monitor the dynamics of individual species of the complex causing FHB in cereals during the growing season. This versatile tool has been applied in a comparison of different genotypes, but can also be applied to other disease management systems, e.g. fungicide treatments.  相似文献   

14.
Glasshouse studies were undertaken to determine if fungicides used for the control of Fusarium head blight (FHB) result in elevated concentrations of the trichothecene mycotoxin, deoxynivalenol (DON) in harvested wheat grain. Metconazole and azoxystrobin, at double, full, half or quarter the manufacturer's recommended dose rate, were applied to ears of wheat (cv. Cadenza), artificially inoculated with conidia of either Fusarium culmorum or F. graminearum. Metconazole demonstrated high activity against both pathogens, reducing significantly the severity of FHB and the DON concentrations at each of the four dose rates tested when compared to untreated controls. Applications of azoxystrobin significantly reduced FHB and DON compared to unsprayed controls. However, their effectiveness was significantly less than that of metconazole and no dose rate response was observed. Quantification of the amount of trichothecene-producing Fusarium present in harvested grain was determined using a competitive PCR assay based on primers derived from the trichodiene synthase gene (Tri5). Simple linear regression analyses revealed strong relationships between the amount of trichothecene-producing Fusarium present in grain and the DON concentrations (r 2=0.72–0.97). It is concluded that fungicides, applied for the control of FHB, affect DON concentrations indirectly by influencing the amount of trichothecene-producing Fusarium species present in wheat grain. There was no evidence that fungicide applications directly increase the concentration of DON in grain.  相似文献   

15.
ABSTRACT A quantitative trait loci (QTL) analysis of resistance to Sclerotinia sclerotiorum was carried out with 283 sunflower (Helianthus annuus) F(2:3) families derived from a cross between a resistant (SWS-B-04) and a highly susceptible sunflower inbred line. For that purpose, a genetic map based on 195 amplified fragment length polymorphism and 20 simple sequence repeat markers was constructed. The map has a size of 2,273.5 centimorgans and comprises 17 linkage groups, 12 of which could be associated to already defined linkage groups. The heads of sunflower F(3) families were artificially inoculated by using sclerotinia mycelium in three field environments. The lesion length was measured in centimeters 1 week postinoculation and head rot was scored according to a 1-to-8 head rot scale 2 weeks postinoculation. Using the composite interval mapping procedure, three QTL for lesion length and two QTL for head rot could be identified. These QTL explain 10.6 to 17.1% of the total phenotypic variance.  相似文献   

16.
ABSTRACT Partial resistance to Stewart's wilt (Erwina stewartii, syn. Pantoea stewartii), northern corn leaf blight (NCLB) (Exserohilum turcicum), and common rust (Puccinia sorghi) was observed in an F(2:3) population developed from a cross between the inbred sweet corn lines IL731a and W6786. The objective of this study was to identify quantitative trait loci (QTL) associated with partial resistance using restriction fragment length polymorphic markers. Phenotypic data were collected for 2 years for Stewart's wilt, NCLB, and common rust but, due to significant family-environment interaction, analysis was conducted individually on data from each year. In 2 years of evaluation for the three diseases, a total of 33 regions in the maize genome were associated with partial resistance describing from 5.9 to 18% of the total phenotypic variability. Of six regions common in both years, three were associated with partial resistance to Stewart's wilt (chromosomes 4:07, 5:03, and 6:04), one was associated with NCLB (chromosome 9:05), and two were associated with common rust (chromosomes 2:04 and 3:04). The rust QTL on 3S mapped to within 20 cM of the rp3 locus and explained 17.7% of the phenotypic variability. Some of the QTL associated with partial resistance to the three diseases have been reported previously, and some are described here for the first time. Results suggest it may be possible to consolidate QTL from various elite backgrounds in a manner analogous to the pyramiding of major resistance genes. We also report here on two QTL associated with anthocyanin production on chromosomes 10:6 and 5:03 in the general location of the a2 gene.  相似文献   

17.
受小麦抽穗扬花期暖湿天气的影响,2009年我县小麦赤霉病大发生,发生面积2.83万hm2,占小麦种植面积的97.3%,早熟品种病穗率一般在8%左右,迟熟、感病品种高达30%~40%,造成损失1636.3t,是2006年大发生以来发生最为严重的一年.  相似文献   

18.
枣阳市2006年小麦赤霉病发生原因及防治对策   总被引:1,自引:0,他引:1  
2006年枣阳市小麦种植面积为7万hm2,受2005年秋播持续阴雨,全市小麦播种期比常年推迟10~15d,特别是2006年4~5月上旬遭受了特殊气候(多雨、大风、高温、高湿)的影响,造成我市2006年小麦赤霉病发生面积达4·3万hm2。笔者对其发生特点、原因及防治对策进行了探讨。1发生面积及危害  相似文献   

19.
2006年小麦赤霉病发生趋重的原因及治理对策浅析   总被引:1,自引:0,他引:1  
随着国家粮食直补政策及小麦价格的上扬,我市小麦种植面积近年来出现持续递增的态势,为更好指导生产,保证小麦品质及产量,文章对2006年赤霉病发生趋重的原因进行了分析,并提出了相应的治理对策。  相似文献   

20.
ABSTRACT A generalized two-dimensional Gaussian model is proposed to describe disease foci of head blight of wheat in plots (100 to 2,500 m(2)) originating from small areas (1 to 16 m(2)) inoculated with Gibberella zeae-colonized corn kernels. These anisotropic, asymmetrical foci arose from ascospores produced in perithecia. The model is Z = exp[-(AX(2) + BY(2) + CXY + DX + EY + F)], in which Z = the incidence of seed or spikelet infection at point (X,Y) located in the plot, exp = the exponential function, X = the abscissa or spatial coordinate of the point along a given axis (approximately parallel to the average wind vector during the period of spore release in these experiments), Y = the ordinate or spatial coordinate of the point along the axis perpendicular to the X axis (approximately perpendicular to the wind direction in these experiments), A and B = the quadratic coefficients of the second-order polynomial AX(2) + BY(2) + CXY + DX + EY + F, C = the bilinear coefficient, D and E = the linear coefficients, and exp(-F) = the incidence of seed or spikelet infection at the focus peak in which X = 0 and Y = 0. The generalized two-dimensional Gaussian model was tested on data from a circular or isotropic focus, an elliptical or anisotropic focus with two axes of symmetry, and two anisotropic foci with one and zero axis of symmetry. Its goodness-of-fit (r(2) and adjusted r(2)) was compared with the inverse power, modified inverse power, exponential, and classical Gaussian models. Submodels using only the linear terms, only the quadratic terms, or combinations selected from stepwise regression procedures using various probabilities to enter and to stay and a procedure maximizing the adjusted r (2) were also considered. Spatial analysis of the residuals was performed using Geary's c coefficient at the first distance class. For the circular and elliptical foci, our model provided a fit similar to the modified inverse power and exponential models. However, for anisotropic foci with one or zero axis of symmetry arising from ascospores influenced by wind direction, the generalized two-dimensional Gaussian model provided a better fit. For these anisotropic foci, the linear term X but not the quadratic term X(2) was generally retained in the model, indicating an exponential gradient in the direction parallel to the wind. In all models, the quadratic term Y(2) was retained, along with Y in some cases, indicating that the gradient in the direction roughly perpendicular to the wind was Gaussian or Gaussian-exponential in shape. The bilinear term XY provided an indication of the orientation of the focus in relation to the axes of the sampling grid. This model has the versatility and parameters (quadratic, bilinear, and linear) to better describe the anisotropy of foci from wind-dispersed spores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号