首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blast disease, caused by the Magnaporthe oryzae Triticum pathotype (MoT), is a major concern for wheat production in tropical and subtropical regions. The most destructive symptoms occur in wheat spikes. Infected spikes become bleached due to partial or total sterility, producing small and wrinkled grains. High disease pressure of the disease results in significant yield losses. This study aimed to identify wheat quantitative trait loci (QTLs) conferring resistance to blast disease at the heading stage. A doubled-haploid population was developed from the cross between BRS 209 (susceptible) and CBFusarium ENT014 (resistant, carrying the 2NS translocation). A linkage map was constructed containing 5,381 molecular markers and the inclusive composite interval mapping method was employed for QTL detection. Four QTLs were mapped in response to two MoT isolates. The major QTL identified on the 2AS chromosome explained an average of 84.0% of the phenotypic variation for spike bleaching at 9 days postinoculation and reinforces the potency of the 2NS translocation. Recombination between the distal region of chromosome 2AS and the 2NS marker was found. These results could explain why some lines carrying the VENTRIUP/LN2 marker have a variable reaction to the disease. QTLs on 5B and 7B chromosomes were also identified. Two mechanisms of resistance were hypothesized: the hypersensitive response and resistance to colonization of host tissues. The KASP markers thus developed and simple sequence repeats (SSRs) allocated in QTL regions can be used in the future for the development of wheat blast-resistant cultivars.  相似文献   

2.
Septoria tritici blotch (STB) is one of the most important leaf spot diseases in wheat worldwide. The goal of this study was to detect chromosomal regions for adult-plant resistance in large winter wheat populations to STB. Inoculation by two isolates with virulence to Stb6 and Stb15, both present in the parents, was performed and STB severity was visually scored plotwise as percent coverage of flag leaves with pycnidia-bearing lesions. 'Florett'/'Biscay' and 'Tuareg'/'Biscay', each comprising a cross of a resistant and a susceptible cultivar, with population sizes of 316 and 269 F(7:8) recombinant inbred lines, respectively, were phenotyped across four and five environments and mapped with amplified fragment length polymorphism, diversity array technology, and simple sequence repeat markers covering polymorphic regions of ≈1,340 centimorgans. Phenotypic data revealed significant (P < 0.01) genotypic differentiation for STB, heading date, and plant height. Entry-mean heritabilities (h(2)) for STB were 0.73 for 'Florett'/'Biscay' and 0.38 for 'Tuareg'/'Biscay'. All correlations between STB and heading date as well as between STB and plant height were low (r = -0.13 to -0.20). In quantitative trait loci (QTL) analysis, nine and six QTL were found for STB ratings explaining, together, 55 and 51% of phenotypic variation in 'Florett'/'Biscay' and 'Tuareg'/'Biscay', respectively. Genotype-environment and QTL-environment interactions had a large impact. Two major QTL were detected consistently across environments on chromosomes 3B and 6D from 'Florett' and chromosomes 4B and 6B from 'Tuareg', each explaining 12 to 17% of normalized adjusted phenotypic variance. These results indicate that adult-plant resistance to STB in both mapping populations was of a quantitative nature.  相似文献   

3.
Wangshuibai is a Chinese landrace wheat with a high level of resistance to fusarium head blight (FHB) and deoxynivalenol (DON) accumulation. Using an F7 population of recombinant inbred lines (RILs) derived from the cross between Wangshuibai and Annong 8455 for molecular mapping of quantitative trait loci (QTL) for FHB resistance, the proportion of scabbed spikelets (PSS) and DON content were assessed under field conditions. Composite interval mapping revealed that two and three QTL were significantly associated with low PSS and low DON content, respectively, over 2 years. QTL on chromosomes 3B and 2A explained 17 and 11·5%, respectively, of the phenotypic variance for low PSS, whereas QTL on chromosomes 5A, 2A and 3B explained 12·4, 8·5 and 6·2%, respectively, of the phenotypic variance for low DON content. The 3B QTL appeared to be associated mainly with low PSS, and the 5A QTL primarily with low DON content in Wangshuibai. The 2A QTL had minor effects on both low PSS and DON content. Microsatellite and AFLP markers linked to these QTL should be useful for marker-assisted selection of QTL for low PSS and low DNA content from Wangshuibai.  相似文献   

4.
Journal of Plant Diseases and Protection - Thermal imaging is a potential remote sensing tool for estimating fungal wheat diseases. This study for the first time investigated the suitability of...  相似文献   

5.
6.
Guo Q  Zhang ZJ  Xu YB  Li GH  Feng J  Zhou Y 《Phytopathology》2008,98(7):803-809
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most damaging diseases of wheat (Triticum aestivum) globally. High-temperature adult-plant resistance (HTAPR) and slow-rusting have great potential for sustainable management of the disease. The wheat cultivars Luke and Aquileja have been previously reported to possess HTAPR and slow-rusting to stripe rust, respectively. Aquileja displayed less number of stripes per unit leaf area than Luke, while Luke showed lower infection type than Aquileja at adult-plant stages of growth under high-temperature conditions. The objectives of this study were to confirm the resistances and to map the resistance genes in Luke and Aquileja. Luke was crossed with Aquileja, and 326 of the F(2) plants were genotyped using 282 microsatellite primer pairs. These F(2) plants and their derived F(3) families were evaluated for resistance to stripe rust by inoculation in the fields and greenhouses of high- and low-temperatures. Infection type was recorded for both seedlings and adult plants, and stripe number was recorded for adult plants only. Two quantitative trait loci (QTL) were identified, on the short arm of chromosome 2B, to be significantly associated with infection type at adult-plant stages in the fields and in the high-temperature greenhouse. The locus distal to centromere, referred to as QYrlu.cau-2BS1, and the locus proximal to centromere, referred to as QYrlu.cau-2BS2, were separated by a genetic distance of about 23 cM. QYrlu.cau-2BS1 was flanked by the microsatellite markers Xwmc154 and Xgwm148, and QYrlu.cau-2BS2 was flanked by Xgwm148 and Xabrc167. QYrlu.cau-2BS1 and QYrlu.cau-2BS2 explained up to 36.6 and 41.5% of the phenotypic variation of infection type, respectively, and up to 78.1% collectively. No significant interaction between the two loci was detected. Another QTL, referred to as QYraq.cau-2BL, was detected on the long arm of chromosome 2B to be significantly associated with stripe number. QYraq.cau-2BL was flanked by the microsatellite markers Xwmc175 and Xwmc332, and it explained up to 61.5% of the phenotypic variation of stripe number. It is possible that these three QTL are previously unmapped loci for resistance to stripe rust.  相似文献   

7.
ABSTRACT Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a major disease to wheat (Triticum aestivum) worldwide. Use of adult-plant resistance (APR) is an effective method to develop wheat cultivars with durable resistance to powdery mildew. In the present study, 432 molecular markers were used to map quantitative trait loci (QTL) for APR to powdery mildew in a doubled haploid (DH) population with 107 lines derived from the cross Fukuho-komugi x Oligoculm. Field trials were conducted in Beijing and Anyang, China during 2003-2004 and 2004-2005 cropping seasons, respectively. The DH lines were planted in a randomized complete block design with three replicates. Artificial inoculation was carried out in Beijing with highly virulent isolate E20 of B. graminis f. sp. tritici and the powdery mildew severity on penultimate leaf was evaluated four times, and the maximum disease severity (MDS) on penultimate leaf was investigated in Anyang under natural inoculation in May 2004 and 2005. The heritability of resistance to powdery mildew for MDS in 2 years and two locations ranged from 0.82 to 0.93, while the heritability for area under the disease progress curve was between 0.84 and 0.91. With the method of composite interval mapping, four QTL for APR to powdery mildew were detected on chromosomes 1AS, 2BL, 4BL, and 7DS, explaining 5.7 to 26.6% of the phenotypic variance. Three QTL on chromosomes 1AS, 2BL, and 7DS were derived from the female, Fukuho-komugi, while the one on chromosome 4BL was from the male, Oligoculm. The QTL on chromosome 1AS showed high genetic effect on powdery mildew resistance, accounting for 19.5 to 26.6% of phenotypic variance across two environments. The QTL on 7DS associated with the locus Lr34/Yr18, flanked by microsatellite Xgwm295.1 and Ltn (leaf tip necrosis). These results will benefit for improving powdery mildew resistance in wheat breeding programs.  相似文献   

8.
ABSTRACT Stagonospora nodorum leaf blotch is an economically important foliar disease in the major wheat-growing areas of the world. In related work, we identified a host-selective toxin (HST) produced by the S. nodorum isolate Sn2000 and determined the chromosomal location of the host gene (Snn1) conditioning sensitivity to the toxin using the International Triticeae Mapping Initiative mapping population and cytogenetic stocks. In this study, we used the same plant materials to identify quantitative trait loci (QTL) associated with resistance to fungal inoculations of Sn2000 and investigate the role of the toxin in causing disease. Disease reactions were scored at 5, 7, and 10 days postinoculation to evaluate changes in the degree of effectiveness of individual QTL. A major QTL was identified on the short arm of chromosome 1B, which coincided with the snn1 toxin-insensitivity gene. This locus explained 58% of the phenotypic variation for the 5-day reading but decreased to 27% for the 10-day reading, indicating that the toxin is most effective in the early stages of the interaction. In addition, relatively minor QTL were identified on chromosomes 3AS, 3DL, 4AL, 4BL, 5DL, 6AL, and 7BL, but not all minor QTL were significant for all readings and their effects varied. Multiple regression models explained from 68% of the phenotypic variation for the 5-day reading to 36% for the 10-day reading. The Chinese Spring nullisomic 1B tetrasomic 1D line and the Chinese Spring-Triticum dicoccoides disomic 1B chromosome substitution line, which were insensitive to SnTox1, were more resistant to the fungus than the rest of the nullisomictetrasomic and disomic chromosome substitution lines. Our results indicate that the toxin produced by isolate Sn2000 is a major virulence factor.  相似文献   

9.
Necrotrophic effectors (also known as host-selective toxins) are important determinants of disease in the wheat-Stagonospora nodorum pathosystem. To date, five necrotrophic effector-host gene interactions have been identified in this system. Most of these interactions have additive effects while some are epistatic. The Snn4-SnTox4 interaction was originally identified in a recombinant-inbred population derived from a cross between the Swiss winter wheat cultivars 'Arina' and 'Forno' using the S. nodorum isolate Sn99CH 1A7a. Here, we used a recombinant-inbred population consisting of 121 lines developed from a cross between the hexaploid land race Salamouni and the hexaploid wheat 'Katepwa' (SK population). The SK population was used for the construction of linkage maps and quantitative trait loci (QTL) detection using the Swiss S. nodorum isolate Sn99CH 1A7a. The linkage maps developed in the SK population spanned 3,228 centimorgans (cM) and consisted of 441 simple-sequence repeats, 9 restriction fragment length polymorphisms, 29 expressed sequence tag sequence-tagged site markers, and 5 phenotypic markers. The average marker density was 6.7 cM/marker. Two QTL, designated QSnb.fcu-1A and QSnb.fcu-7A on chromosome arms 1AS and 7AS, respectively, were associated with disease caused by the S. nodorum isolate Sn99CH 1A7a. The effects of QSnb.fcu-1A were determined by the Snn4-SnTox4 interaction and accounted for 23.5% of the phenotypic variation in this population, whereas QSnb.fcu-7A accounted for 16.4% of the phenotypic variation for disease but was not associated with any known effector sensitivity locus. The effects of both QTL were largely additive and collectively accounted for 35.7% of the total phenotypic variation. The results of this research validate the effects of a compatible Snn4-SnTox4 interaction in a different genetic background, and it provides knowledge regarding genomic regions and molecular markers that can be used to improve Stagonospora nodorum blotch resistance in wheat germplasm.  相似文献   

10.
An isometric virus was isolated from cucumber plants growing in a plastic house in Crete and showing stunting and bright yellow mosaic of the leaves. Based on host range, properties in crude sap, behaviour during purification, electron microscopy and serology, the virus was identified as an isolate of artichoke yellow ringspot nepovirus. Ecological data corroborate transmission of the virus via the soil.Samenvatting Uit komkommerplanten in plastic-foliekassen op Kreta werd een bolvormig virus geïsoleerd; de aangetaste komkommerplanten vertoonden dwerggroei en helder geel mozaïek op de bladeren. Gebaseerd op de resultaten verkregen uit onderzoek met het virus naar de waardplantenreeks, de eigenschappen in perssap, zuivering, elektronen-microscopie en serologie kon het virus worden geïdentificeerd als een strain van het artichoke yellow ringspot nepovirus. Waarnemingen op het gebied van de ecologie wijzen op overdracht van het virus via de grond.  相似文献   

11.
Singh  Park  & McIntosh 《Plant pathology》1999,48(5):567-573
A resistant phenotype similar to that conferred in wheat by the complementary genes Lr27  +  Lr31 was produced in the progeny of intercrosses of cultivars carrying Lr27 and a line possessing Lr12 . This confirms that Lr12 is either completely linked with Lr31 or is the same gene. On the basis of these findings and that Lr31 is located on chromosome 4BS, it is concluded that Lr12 must also be located on 4BS. Adult-plant genetic tests confirm that the Australian wheat cultivar Timgalen carries Lr12 , and stocks with Lr12 alone were established from this cultivar.  相似文献   

12.
Black stem, caused by Phoma macdonaldii , is one of the most important diseases of sunflower in the world. Quantitative trait loci (QTLs) implicated in partial resistance to two single pycnidiospore isolates of P. macdonaldii (MP8 and MP10) were investigated using 99 recombinant inbred lines (RILs) from the cross between sunflower parental lines PAC2 and RHA266. The experimental design was a randomized complete block with three replications. High genetic variability and transgressive segregation were observed among RILs for partial resistance to P. macdonaldii isolates. QTL-mapping was performed using a recently developed high-density SSR/AFLP sunflower linkage map. A total of 10 QTLs were detected for black stem resistance. The phenotypic variance explained by each QTL (R2) was moderate, ranging from 6 to 20%. Four QTLs were common between two isolates on linkage group 5 and 15 whereas the others were specific for each isolate. Regarding isolate-specific and isolate-nonspecific QTLs detected for partial resistance, it is evident that both genetic effects control partial resistance to the disease isolates. This confirms the need to consider different isolates in the black stem resistance breeding programmes. The four SSR markers HA3700, SSU25, ORS1097 and ORS523_1 encompassing the QTLs for partial resistance to black stem isolates could be good candidates for marker assisted selection.  相似文献   

13.
Blackleg disease of canola/rapeseed (Brassica napus), caused by the devastating fungal pathogen Leptosphaeria maculans, can significantly influence B. napus production worldwide, except for China, where only the less aggressive L. biglobosa has been found associated with the disease. The aim of this study was to characterize both seedling resistance (major gene resistance, R gene resistance) and adult plant resistance (APR) from a collection of Chinese B. napus varieties/lines (accessions) to L. maculans. Evaluation of seedling resistance was carried out under a controlled environment, using 11 well‐characterized L. maculans isolates as differentials. The identification of APR was performed under multiple field environments in western Canada. R genes were detected in more than 40% of the accessions tested. Four specific R genes, Rlm1, Rlm2, Rlm3 and Rlm4 were identified, with Rlm3 and Rlm4 being the most common genes, while Rlm1 and Rlm2 were detected only occasionally. Results of field evaluation indicated significant variations among field locations as well as accessions; a large portion of the B. napus accessions, regardless of the resistance level observed at the seedling stage, showed high to moderate levels of APR under all environments tested. This study highlights that both R gene resistance and APR are present in Chinese B. napus germplasm and could be potential sources of resistance against blackleg caused by L. maculans if the pathogen ever becomes established in China.  相似文献   

14.
Stagonospora nodorum blotch (SNB), caused by the necrotrophic fungus Stagonospora nodorum (teleomorph: Phaeosphaeria nodorum), is among the most common diseases of winter wheat in the United States. New opportunities in resistance breeding have arisen from the recent discovery of several necrotrophic effectors (NEs, also known as host-selective toxins) produced by S. nodorum, along with their corresponding host sensitivity (Snn) genes. Thirty-nine isolates of S. nodorum collected from wheat debris or grain from seven states in the southeastern United States were used to investigate the production of NEs in the region. Twenty-nine cultivars with varying levels of resistance to SNB, representing 10 eastern-U.S. breeding programs, were infiltrated with culture filtrates from the S. nodorum isolates in a randomized complete block design. Three single-NE Pichia pastoris controls, two S. nodorum isolate controls, and six Snn-differential wheat controls were also used. Cultivar-isolate interactions were visually evaluated for sensitivity at 7 days after infiltration. Production of NEs was detected in isolates originating in each sampled state except Maryland. Of the 39 isolates, 17 produced NEs different from those previously characterized in the upper Great Plains region. These novel NEs likely correspond to unidentified Snn genes in Southeastern wheat cultivars, because NEs are thought to arise under selection pressure from genes for resistance to biotrophic pathogens of wheat cultivars that differ by geographic region. Only 3, 0, and 23% of the 39 isolates produced SnToxA, SnTox1, and SnTox3, respectively, by the culture-filtrate test. A Southern dot-blot test showed that 15, 74, and 39% of the isolates carried the genes for those NEs, respectively; those percentages were lower than those found previously in larger international samples. Only two cultivars appeared to contain known Snn genes, although half of the cultivars displayed sensitivity to culture filtrates containing unknown NEs. Effector sensitivity was more frequent in SNB-susceptible cultivars than in moderately resistant (MR) cultivars (P = 0.008), although some susceptible cultivars did not exhibit sensitivity to NEs produced by isolates in this study and some MR cultivars were sensitive to NEs of multiple isolates. Our results suggest that NE sensitivities influence but may not be the only determinant of cultivar resistance to S. nodorum. Specific knowledge of NE and Snn gene frequencies in this region can be used by wheat breeding programs to improve SNB resistance.  相似文献   

15.
Interactions between Stagonospora nodorum and Septoria tritici were studied. Results from a detached glume experiment indicated that the interaction may be isolate-dependent, as it was shown that the interaction between the two pathogens may be beneficial or antagonistic depending on the isolate of each pathogen present. The number of spores produced by both pathogens was significantly greater when an aggressive isolate of S. tritici was mixed with a non-aggressive isolate of S. nodorum, whereas the number of spores produced by both pathogens was significantly less when two non-aggressive isolates were mixed. There was a significant reduction in disease level when S. tritici was applied prior to S. nodorum, compared to vice versa in the growth chamber. Results from growth chamber and field studies showed that S. nodorum produced significantly more spores when both pathogens were present together. It is concluded that S. tritici has a stimulatory effect on spore production by S. nodorum. However, there was a reduction of S. tritici spores observed in the dual inoculation treatments, suggesting that S. nodorum inhibits S. tritici.  相似文献   

16.
ABSTRACT Restriction fragment length polymorphisms (RFLPs) were used to characterize the genetic structures of three field populations of Phaeosphaeria nodorum from Texas, Oregon, and Switzerland. Data from seven nuclear RFLP loci were used to estimate gene diversity and genetic distances and to make indirect measures of gene flow between populations. Three of the seven RFLP loci differed significantly in allele frequencies across populations. On average, 96% of the total gene diversity was found within populations. There was little evidence for population subdivision, suggesting that gene flow was not restricted among populations. Based on an average population differentiation of 0.04, we estimated that the exchange of 11 migrants among populations per generation would be needed to account for the present level of population subdivision. Genotype diversity based on DNA fingerprints was at a maximum for the Swiss population, whereas populations in Texas and Oregon had lower genotype diversities. Many multilocus haplotypes were found in each population. Ninety-five percent of RFLP allele pairs were in gametic equilibrium. The data were consistent with random mating within each population.  相似文献   

17.
Yu JB  Bai GH  Zhou WC  Dong YH  Kolb FL 《Phytopathology》2008,98(1):87-94
Use of diverse sources of Fusarium head blight (FHB)-resistant germplasm in breeding may significantly improve wheat resistance to FHB. Wangshuibai is an FHB-resistant Chinese landrace unrelated to cv. Sumai 3, the most commonly used FHB-resistant source. In all, 139 F(6) recombinant inbred lines were developed from a cross between Wangshuibai and an FHB-susceptible cultivar, Wheaton, to map quantitative trait loci (QTL) for wheat resistance to initial infection (type I resistance), spread of FHB symptoms within a spike (type II resistance), and deoxynivalenol (DON) accumulation (type III resistance) in infected grain. The experiments were conducted in a greenhouse at Manhattan, KS from 2003 to 2005. More than 1,300 simple-sequence repeat and amplified fragment length polymorphism markers were analyzed in this population. Five QTL for type I resistance were detected on chromosomes 3AS, 3BS, 4B, 5AS, and 5DL after spray inoculation; seven QTL for type II resistance were identified on chromosomes 1A, 3BS, 3DL, 5AS, 5DL, and 7AL after point inoculation; and seven QTL for type III resistance were detected on chromosomes 1A, 1BL, 3BS, 5AS, 5DL, and 7AL with the data from both inoculation methods. These QTL jointly explained up to 31.7, 64, and 52.8% of the phenotypic variation for the three types of FHB resistance, respectively. The narrow-sense heritabilities were low for type I resistance (0.37 to 0.41) but moderately high for type II resistance (0.45 to 0.61) and type III resistance (0.44 to 0.67). The QTL on the distal end of 3BS, 5AS, and 5DL contributed to all three types of resistance. Two QTL, on 7AL and 1A, as well as one QTL near the centromere of 3BS (3BSc), showed effects on both type II and type III resistance. Selection for type II resistance may simultaneously improve type I and type III resistance as well. The QTL for FHB resistance identified in Wangshuibai have potential to be used to pyramid FHB-resistance QTL from different sources.  相似文献   

18.
Engle JS  Madden LV  Lipps PE 《Phytopathology》2006,96(12):1355-1362
ABSTRACT To determine the distribution of Stagonospora nodorum and Pyrenophora tritici-repentis on wheat in Ohio, flag leaves with lesions were collected from wheat-producing counties in 2002 and 2003. Counties were arbitrarily grouped into seven regions. Log-linear analysis of pathogen presence within regions indicated that the presence of S. nodorum was independent of the presence of P. tritici-repentis. A logistic analysis revealed that the occurrence of both pathogens varied by region in one or both years. The aggressiveness of S. nodorum isolates was determined by inoculating two susceptible genotypes with a subsample of isolates from each region from both years. S. nodorum isolates obtained from northeast Ohio, with fewer wheat fields, were less aggressive than those from other regions. Isolates obtained from west-central Ohio, surrounded by regions with high wheat production annually, were significantly more aggressive than those obtained in the remaining five regions. Isolates from the five other regions did not differ significantly (P > 0.05) in aggressiveness. Races 1 and 2, and a few race 3 isolates, of P. tritici-repentis were detected in Ohio. The distribution of P. tritici-repentis races 1 and 2 was not associated with any region, although the prevalence of race 1 was three times greater than race 2. The rarer race 3 was associated with three dispersed regions. Results indicate that S. nodorum was the major wheat leaf-blotching pathogen. There were no positive or negative associations of S. nodorum and P. tritici-repentis or individual races of P. tritici-repentis in any of the tested regions, which indicates that neither pathogen can be used to predict the presence of the other. The isolated northeastern corner of Ohio appeared to contain isolates of S. nodorum with unique characteristics and potentially only one race of P. tritici-repentis, indicating that this area may be genetically isolated from the remaining tested areas of the state.  相似文献   

19.
Verticillium albo‐atrum is responsible for considerable yield losses in many economically important crops, among them alfalfa (Medicago sativa). Using Medicago truncatula as a model for studying resistance and susceptibility to V. albo‐atrum, previous work has identified genetic variability and major resistance quantitative trait loci (QTLs) to Verticillium. In order to study the genetic control of resistance to a non‐legume isolate of this pathogen, a population of recombinant inbred lines (RILs) from a cross between resistant line F83005.5 and susceptible line A17 was inoculated with a potato isolate of V. albo‐atrum, LPP0323. High genetic variability and transgressive segregation for resistance to LPP0323 were observed among RILs. Heritabilites were found to be 0·63 for area under the disease progress curve (AUDPC) and 0·93 for maximum symptom score (MSS). A set of four QTLs associated with resistance towards LPP0323 was detected for the parameters MSS and AUDPC. The phenotypic variance explained by each QTL (R2) was moderate, ranging from 4 to 21%. Additive gene effects showed that favourable alleles for resistance all came from the resistant parent. The four QTLs are distinct from those described for an alfalfa V. albo‐atrum isolate, confirming the existence of several resistance mechanisms in this species. None of the QTLs co‐localized with regions involved in resistance against other pathogens in M. truncatula.  相似文献   

20.
The objectives of this research were to identify quantitative trait loci (QTL) for Stewart's wilt resistance from a mapping population derived from a sweet corn hybrid that is highly resistant to Pantoea stewartii and to determine if marker-based selection for those QTL could substantially improve Stewart's wilt resistance in a population derived from a cross of resistant lines and a highly susceptible sweet corn inbred. Three significant QTL for Stewart's wilt resistance on chromosomes 2 (bin 2.03), 5 (bin 5.03), and 6 (bin 6.06/6.07) explained 31% of the genetic variance in a population of 110 F(3:4) families derived from the sweet corn hybrid Bonus. The three QTL appeared to be additive in their effects on Stewart's wilt ratings. Based on means of families that were either homozygous or heterozygous for marker alleles associated with the resistance QTL, the QTL on chromosomes 2 and 6 appeared to have dominant or partially dominant gene action, while the QTL on chromosome 5 appeared to be recessive. A population of 422 BC(2)S(2) families was derived from crosses of a sweet corn inbred highly susceptible to Stewart's wilt, Green Giant Code 88 (GG88), and plants from two F(3:4) families (12465 and 12467) from the Bonus mapping population that were homozygous for marker alleles associated with Stewart's wilt resistance at the three QTL. Mean Stewart's wilt ratings for BC(2)S(2) families were significantly (P < 0.05) lower for families that were homozygous for the bnlg1902 marker allele (bin 5.03) from resistant lines 12465 or 12467 than for families that were heterozygous at this marker locus or homozygous for the bnlg1902 marker allele from GG88. Resistance associated with this QTL was expressed only if F(3:5) or BC(2)S(2) families were homozygous for marker alleles associated with the resistant inbred parent (P(1)). Marker alleles identified in the F(3:5) mapping population that were in proximity to the resistance QTL on chromosomes 2 and 6 were not polymorphic in crosses of GG88 with 12465 and 12467. Selection for other polymorphic marker loci adjacent to these two regions did not improve Stewart's wilt resistance of BC(2)S(2) families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号