首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 607 毫秒
1.
ABSTRACT The spatial distribution and temporal development of tomato crown and root rot, caused by Fusarium oxysporum f. sp. radicis-lycopersici, were studied in naturally infested fields in 1996 and 1997. Disease progression fit a logistic model better than a monomolecular one. Geostatistical analyses and semivariogram calculations revealed that the disease spreads from infected plants to a distance of 1.1 to 4.4 m during the growing season. By using a chlorate-resistant nitrate nonutilizing (nit) mutant of F. oxysporum f. sp. radicis-lycopersici as a "tagged" inoculum, the pathogen was found to spread from one plant to the next via infection of the roots. The pathogen spread to up to four plants (2.0 m) on either side of the inoculated focus plant. Root colonization by the nit mutant showed a decreasing gradient from the site of inoculation to both sides of the inoculated plant. Simulation experiments in the greenhouse further established that this soilborne pathogen can spread from root to root during the growing season. These findings suggest a polycyclic nature of F. oxysporum f. sp. radicis-lycopersici, a deviation from the monocyclic nature of many nonzoosporic soilborne pathogens.  相似文献   

2.
ABSTRACT The monophyletic origin of host-specific taxa in the plant-pathogenic Fusarium oxysporum complex was tested by constructing nuclear and mitochondrial gene genealogies and amplified fragment length polymorphism (AFLP)-based phylogenies for 89 strains representing the known genetic and pathogenic diversity in 8 formae speciales associated with wilt diseases and root and bulb rot. We included strains from clonal lineages of F. oxysporum f. spp. asparagi, dianthi, gladioli, lilii, lini, opuntiarum, spinaciae, and tulipae. Putatively nonpathogenic strains from carnation and lily were included and a reference strain from each of the three main clades identified previously in the F. oxysporum complex; sequences from related species were used as outgroups. DNA sequences from the nuclear translation elongation factor 1alpha and the mitochondrial small subunit (mtSSU) ribosomal RNA genes were combined for phylogenetic analysis. Strains in vegetative compatibility groups (VCGs) shared identical sequences and AFLP profiles, supporting the monophyly of the two single-VCG formae speciales, lilii and tulipae. Identical genotypes were also found for the three VCGs in F. oxysporum f. sp. spinaciae. In contrast, multiple evolutionary origins were apparent for F. oxysporum f. spp. asparagi, dianthi, gladioli, lini, and opuntiarum, although different VCGs within each of these formae speciales often clustered close together or shared identical EF-1alpha and mtSSU rDNA haplotypes. Kishino-Hasegawa analyses of constraints forcing the monophyly of these formae speciales supported the exclusive origin of F. oxysporum f. sp. opuntiarum but not the monophyly of F. oxysporum f. spp. asparagi, dianthi, gladioli, and lini. Most of the putatively nonpathogenic strains from carnation and lily, representing unique VCGs, were unrelated to F. oxysporum f. spp. dianthi and lilii, respectively. Putatively nonpathogenic or rot-inducing strains did not form exclusive groups within the molecular phylogeny. Parsimony analyses of AFLP fingerprint data supported the gene genealogy-based phylogram; however, AFLP-based phylogenies were considerably more homoplasious than the gene genealogies. The predictive value of the forma specialis naming system within the F. oxysporum complex is questioned.  相似文献   

3.
Testing of soil samples in greenhouse assays for suppressiveness to soilborne plant pathogens requires a considerable investment in time and effort as well as large numbers of soil samples. To make it possible to process large numbers of samples efficiently, we compared an in vitro growth assay with a damping-off assay using Pythium aphanidermatum as the test organism on tomato seedlings. The in vitro test compares the radial growth or relative growth of the fungus in soil to that in autoclaved soil and reflects suppressiveness of soils to the pathogen. We used soils from a field experiment that had been farmed either organically or conventionally and into which a cover crop (oats and vetch in mixture) had been incorporated 0, 10, 21, and 35 days previously. We obtained a significant, positive correlation between damping-off severities of tomato seedlings in damping-off assays and both relative and radial growth in vitro. In addition, radial and relative growth of P. aphanidermatum in the in vitro assay were positively correlated with several carbon and nitrogen variables measured for soil and incorporated debris. We did not find differences between the two farming systems for either growth measures of P. aphanidermatum or disease severities on tomato at different stages of cover crop decomposition. The in vitro assay shows potential for use with any fungus that exhibits rapid saprophytic growth, and is most suitable for routine application in suppressiveness testing.  相似文献   

4.
Rekah Y  Shtienberg D  Katan J 《Phytopathology》2000,90(12):1322-1329
ABSTRACT Fusarium oxysporum f. sp. radicis-lycopersici, the causal agent of Fusarium crown and root rot of tomato, and F. oxysporum f. sp. basilici, the causal agent of Fusarium wilt in basil, are soilborne pathogens capable of producing conspicuous masses of macroconidia along the stem. The role of the airborne propagules in the epidemics of the disease in tomato plants was studied. In the field, airborne propagules of F. oxysporum f. sp. radicis-lycopersici were trapped with a selective medium and their prevalence was determined. Plants grown in both covered and uncovered pots, detached from the field soil, and exposed to natural aerial inoculum developed typical symptoms (82 to 87% diseased plants). The distribution of inoculum in the growth medium in the pots also indicated the occurrence of foliage infection. In greenhouse, foliage and root inoculations were carried out with both tomato and basil and their respective pathogens. Temperature and duration of high relative humidity affected rate of colonization of tomato, but not of basil, by the respective pathogens. Disease incidence in foliage-inoculated plants reached 75 to 100%. In these plants, downward movement of the pathogens from the foliage to the crown and roots was observed. Wounding enhanced pathogen invasion and establishment in the foliage-inoculated plants. The sporulation of the two pathogens on stems, aerial dissemination, and foliage infection raise the need for foliage protection in addition to soil disinfestation, in the framework of an integrated disease management program.  相似文献   

5.
Transitioning farmland to certified organic vegetable production can take many paths, each varying in their costs and benefits. Here, the effects of four organic transition strategies (i.e., tilled fallowing, mixed-species hay, low-intensity vegetables, and intensive vegetable production under high tunnels), each with and without annual compost applications for 3 years prior to assessment, were characterized. Although transition cropping strategies differed in soil chemistry (P < 0.05), the magnitude of the changes typically were marginal and pairwise comparisons were rarely significant. In contrast, the compost amendment had a much greater impact on soil chemistry regardless of cropping strategy. For example, percent C and total P increased by 2- to 5-fold and K increased from 6- to 12-fold. Under controlled conditions, damping-off of both edamame soybean (cv. Sayamusume) and tomato (cv. Tiny Tim) was reduced from 2 to 30% in soils from the mixed-hay transition. In the field, damping-off of both crops was also significantly lower in plots previously cropped to hay (P < 0.05). Although not always significant (P < 0.05), this pattern of suppression was observed in all four of the soybean experiments and three of the four tomato experiments independent of compost application. The compost amendments alone did not consistently suppress damping-off. However, plant height, fresh weight, and leaf area index of the surviving seedlings of both crops were greater in the compost-amended soils regardless of the transitional cropping treatment used (P < 0.05 for most comparisons). These data indicate that mixed-hay cropping during the transition periods can enhance soil suppressiveness to damping-off. In addition, although compost amendments applied during transition can improve crop vigor by significantly enhancing soil fertility, their effects on soilborne diseases are not yet predictable when transitioning to certified organic production.  相似文献   

6.
The effect of different organic composts on the suppression of wilt disease of spinach caused by Fusarium oxysporum f. sp. spinaciae was evaluated in a continuous cropping system in both containers and in microplot field trials. Test soils infested with the pathogen were amended with wheatbran, wheatbran and sawdust, coffee grounds, chicken manure, or mixture of different composts with and without 5% (w/w) crab shell powder either once (5%, w/w) or continuously (2.5%) into the test soils infested with the pathogen. In the container trials, the soil amended with composts became suppressive to disease development on the second and third cropping. The suppressive effect was notable in the soil amended with the mixture of compost with and without crab shell powder. The coffee compost lowered soil pH but became suppressive to the disease after modifying the soil pH. In the field trial using the mixture of the different composts containing 5% crab shell powder, a combination of 5% before the first cropping and 2.5% every second cropping gave stable disease control and promoted plant growth. After compost amendment, populations of fungi, bacteria and actinomycetes as measured by dilution plate counting and the total microbial activity as evaluated by fluorescein diacetate hydrolysis increased and population of the pathogen gradually decreased. These phenomena were especially notable in soils amended with the mixture of different composts. These results indicate that diversity in the organic materials promotes higher microbial activity and population in the soil thereby enhancing disease suppressiveness.  相似文献   

7.
ABSTRACT The effects of reduced doses of methyl bromide (MB) or metham sodium, heating, short solarization, and soil microbial activity, alone or in combination, on survival of soilborne fungal pathogens were tested in a controlled-environment system and field plots. Sublethal doses of heating or MB delayed germination of Sclerotium rolfsii sclerotia. Combining MB and heating treatments was more effective than either treatment alone in controlling S. rolfsii and Fusarium oxysporum f. sp. basilici. The application heating followed by fumigation with MB, was significantly more effective in delaying and reducing germination of S. rolfsii sclerotia and in controlling F. oxysporum f. sp. basilici than the opposite sequence. Further, incubation in soil and exposure to microbial activity of previously heated or MB-treated sclerotia increased the mortality rate, indicating a weakening effect. Similarly, incubation of chlamydospores of F. oxysporum f. sp. melonis and F. oxysporum f. sp. radicis-lycopersici in soil in the field after fumigation further reduced their survival, confirming the laboratory results. In field tests, combining MB or metham sodium at reduced doses with short solarization was more effective in controlling fungal pathogens than either treatment alone. Treatment sequence significantly affected pathogen control in the field, similar to its effect under controlled conditions. This study demonstrates a frequent synergistic effect of combining soil treatments and its potential for improving pathogen control and reducing pesticide dose, especially when an appropriate sequence was followed.  相似文献   

8.
Journal of General Plant Pathology - Fusarium wilt of tomato, a disease caused by the soilborne fungus Fusarium oxysporum f. sp. lycopersici, causes major losses to tomato production. Chemical...  相似文献   

9.
Sterilized root residues of asparagus added at a rate of up to 20gkg-1 fresh soil did not influence severity of root and crown rot caused by Fusarium oxysporum f.sp. asparagi (Foa). Root residues accumulated in field soil during asparagus growing for 10 years did not influence disease severity either. Inoculation of this soil with laboratory-prepared Foa after treatment at 65°C (30min), at which the indigenous pathogen was killed but toxic substances present in asparagus root residues were left undamaged, led to the same disease severity as inoculation of similarly-treated fresh soil.
On soil extract agar, aqueous root extracts of asparagus but not those of other crops retarded growth of 31 out of 112 fungal isolates from a range of taxa. Sensitive fungi included Gliocladium spp. and Trichoderma harzianum , but not Foa.
Colonization of Foa-infested soil by Fusarium species was greatly enhanced by addition of root material from asparagus, Brussels sprouts, and chicory, but not by that from strawberry and perennial rye grass. As the fraction of Foa amongst the Fusarium population was small, it is concluded that competitive saprophytic ability of the pathogen is far less than that of the nonpathogenic Fusarium species. Fungistasis to Foa was not or was only slightly reduced in soils amended with root residues.
In contrast to data reported in the literature, the present results do not suggest an appreciable increase of Foa root rot., or of the Foa population in soils, due to substances present in root residues.  相似文献   

10.
ABSTRACT Eight different 3-year cropping systems, consisting of soybean-canola, soybean-barley, sweet corn-canola, sweet corn-soybean, green bean-sweet corn, canola-sweet corn, barley-clover, and continuous potato (non-rotation control) followed by potato as the third crop in all systems, were established in replicated field plots with two rotation entry points in Presque Isle, ME, in 1998. Cropping system effects on soil microbial community characteristics based on culturable soil microbial populations, single carbon source substrate utilization (SU) profiles, and whole-soil fatty acid methyl ester (FAME) profiles were evaluated in association with the development of soilborne diseases of potato in the 2000 and 2001 field seasons. Soil populations of culturable bacteria and overall microbial activity were highest following barley, canola, and sweet corn crops, and lowest following continuous potato. The SU profiles derived from BIOLOG ECO plates indicated higher substrate richness and diversity and greater utilization of certain carbohydrates, carboxylic acids, and amino acids associated with barley, canola, and some sweet corn rotations, indicating distinct differences in functional attributes of microbial communities among cropping systems. Soil FAME profiles also demonstrated distinct differences among cropping systems in their relative composition of fatty acid types and classes, representing structural attributes of microbial communities. Fatty acids most responsible for differentiation among cropping systems included 12:0, 16:1 omega5c, 16:1 omega7c, 18:1 omega9c, and 18:2omega6c. Based on FAME biomarkers, barley rotations resulted in higher fungi-to-bacteria ratios, sweet corn resulted in greater mycorrhizae populations, and continuous potato produced the lowest amounts of these and other biomarker traits. Incidence and severity of stem and stolon canker and black scurf of potato, caused by Rhizoctonia solani, were reduced for most rotations relative to the continuous potato control. Potato crops following canola, barley, or sweet corn provided the lowest levels of Rhizoctonia disease and best tuber quality, whereas potato crops following clover or soybean resulted in disease problems in some years. Both rotation crop and cropping sequence were important in shaping the microbial characteristics, soilborne disease, and tuber qualities. Several microbial parameters, including microbial populations and SU and FAME profile characteristics, were correlated with potato disease or yield measurements in one or both harvest years. In this study, we have demonstrated distinctive effects of specific rotation crops and cropping sequences on microbial communities and have begun to relate the implications of these changes to crop health and productivity.  相似文献   

11.
Soilborne potato diseases and soil microbial community characteristics were evaluated over 8 years in different potato cropping systems designed to address specific management goals of soil conservation, soil improvement and disease suppression. Results were compared to a standard rotation and non‐rotation control in field trials in Maine. Standard rotation consisted of barley underseeded with red clover, followed by potato (2‐year). Soil‐conserving system (SC) featured an additional year of forage grass and reduced tillage (3‐year, barley/timothy–timothy–potato). Soil‐improving system (SI) added yearly compost amendments to SC, and the disease‐suppressive system (DS) featured crops with known disease‐suppressive capability (3‐year, mustard/rapeseed–sudangrass/rye–potato). Systems were established in 2004, evaluated with and without irrigation, and actively managed until 2010, with potato also planted in 2011 and 2012 to examine residual effects. All rotations reduced soilborne diseases black scurf and common scab, and increased yield after one rotation cycle (3 years), but diseases increased overall after two rotation cycles. DS maintained lower soilborne disease levels than all other rotations, as well as high yields, throughout the study. Cropping system effects became more pronounced after multiple cycles. SI system and irrigation both resulted in higher yields, but also higher levels of soilborne disease. Cropping system and irrigation effects were significant even after systems were no longer maintained. Soil microbial community data showed significant changes associated with cropping system, and differences increased over time. Cropping system strategy had significant and lasting effects on soil microbiology and soilborne diseases, and can be used to effectively enhance potato production.  相似文献   

12.
ABSTRACT In order to elucidate the origin of Fusarium oxysporum f. sp. dianthi in Argentina, the genetic diversity among pathogenic isolates together with co-occurring nonpathogenic isolates on carnation was investigated. In all, 151 isolates of F. oxysporum were obtained from soils and carnation plants from several horticultural farms in Argentina. The isolates were characterized using vegetative compatibility group (VCG), intergenic spacer (IGS) typing, and pathogenicity tests on carnation. Seven reference strains of F. oxysporum f. sp. dianthi also were analyzed and assigned to six different IGS types and six VCGs. Twenty-two Argentinean isolates were pathogenic on carnation, had the same IGS type (50), and belonged to a single VCG (0021). The 129 remaining isolates were nonpathogenic on carnation and sorted into 23 IGS types and 97 VCGs. The same VCG never occurred in different IGS types. Our results suggest that the pathogen did not originate in the local populations of F. oxysporum but, rather, that it was introduced into Argentina. Given the genetic homogeneity within Argentinean isolates of F. oxysporum f. sp. dianthi, either IGS type or VCG can be used for the identification of the forma specialis dianthi currently in Argentina.  相似文献   

13.
ABSTRACT To understand the nature of a soil with suppressiveness against Heterodera schachtii, an rDNA analysis was used to identify fungi associated with H. schachtii cysts obtained from soils possessing various levels of suppressiveness. Because H. schachtii cysts isolated from these suppressive soils can transfer this beneficial property to nonsuppressive soils, analysis of the microorganisms associated with the cysts should lead to the identification of the causal organisms. Five soil treatments, generated by mixing different amounts of suppressive and fumigation-induced nonsuppressive soils, were infested with second-stage juveniles of H. schachtii and cropped with mustard-greens. Fungi were identified through an rDNA analysis termed oligonucleotide fingerprinting of ribosomal RNA genes (OFRG). Cysts obtained from soil mixtures consisting of 10 and 100% suppressive soil predominantly contained fungal rDNA with high sequence identity to Dactylella oviparasitica. The dominant fungal rDNA in the cysts isolated from the soil mixtures composed of 0.1 and 1% suppressive soil had high sequence identity to Fusarium oxysporum. Polymerase chain reaction (PCR) amplifications performed with sequence-selective primers corroborated the treatment-specific distribution of rDNA clones obtained by the OFRG analysis. When these sequence-selective PCR primers were used to examine H. schachtii cysts from biocidal soil treatments that produced various levels of suppressiveness, only the D. oviparasitica-like rDNA was consistently identified in the highly suppressive soils.  相似文献   

14.
Ginseng ( Panax quinquefolius ) is an important cash crop in various regions of North America, but yields are often reduced by various root pathogens. A quantitative real-time PCR (qPCR) assay for Cylindrocarpon destructans f. sp. panacis (CDP), the cause of a root rot and replant disease which discourages successive cropping of ginseng on the same site, was developed to quantify the levels of this pathogen in soils previously cropped with ginseng. DNA was extracted from 5-g samples of soil. In pasteurized soils which were re-infested with varying levels of the pathogen, qPCR estimates of pathogen DNA were significantly correlated with disease severity ( r  = 0·494) and with counts of colony-forming units ( r  = 0·620) obtained with an agar medium. In several naturally infested field soils, qPCR estimates of CDP-DNA concentration were significantly correlated with disease severity ( r  = 0·765) and these concentrations were estimated to range from 0 to 1·48 ng g−1 dried soil. A principal components analysis did not show any strong relationships between soil chemistry factors and the concentration of pathogen DNA. The approach outlined here allows the quantification of current populations of CDP in soil many years after ginseng cultivation and the prediction of disease severity in future crops. The method should be generally applicable to root diseases of many crops.  相似文献   

15.
Xing L  Westphal A 《Phytopathology》2006,96(7):763-770
ABSTRACT Sudden death syndrome (SDS) of soybean is caused by the soilborne Fusarium solani f. sp. glycines (synonym F. virguliforme). In a sequential approach, two multifactor factorial-design microplot experiments were conducted to investigate the effects of fungal infestation levels and soil moisture on both root necrosis and foliar SDS severity, and the interaction between F. solani f. sp. glycines and Heterodera glycines in fumigated versus nonfumigated soil. In 2003, soybean cv. Spencer was grown in nonfumigated or methyl bromide-fumigated soil and infested with increasing levels of F. solani f. sp. glycines, either under rainfall or irrigated after growth stage V6/R1. In 2004, interactions between F. solani f. sp. glycines and H. glycines were explored in a factorial inoculation design in fumigated or nonfumigated soil, planted to Williams 82 or Cyst-X20-18. In both years, higher levels of foliar SDS severity and root necrosis were found in F. solani f. sp. glycines-infested soils with H. glycines than in soils without the nematode on the soybean cultivars susceptible to both pathogens. Both natural infestations of H. glycines in 2003 and artificially amended populations of H. glycines in 2004 contributed to higher foliar SDS severity. More severe foliar SDS symptoms always were associated with more root necrosis, but elevated levels of root necrosis did not predict severe leaf symptoms. In contrast to the critical role of H. glycines, increasing fungal infestation levels had no significant effects on increasing either foliar SDS symptoms or root necrosis. Effects of moisture regime and fungal infestation levels also were examined in factorial greenhouse and growth chamber experiments. High soil moisture resulted in higher levels of SDS root necrosis. In the greenhouse, root necrosis increased at a higher rate in low soil moisture than the rate in high soil moisture. The two pathogens acted as a complex and the disease development was strongly dependent on high soil moisture.  相似文献   

16.
ABSTRACT Soil receptivity as a quantifiable characteristic ranging from conduciveness to suppressiveness to soilborne pea pathogens Thielaviopsis basicola and Aphanomyces euteiches was determined by analysis of differences in disease response curves obtained by artificial introduction of inoculum into natural field soil samples. Several parameters, including maximum root rot severity, the area under the health index curve, scores on the first axis of a principal component analysis (PCA) on dose responses, and Weibull model fitting were used to describe the disease responses. In all cases, the Weibull model gave satisfactory fits. PCA yielded a first axis that comprised 86% of the variance found when using Weibull predicted responses for T. basicola and 74% of the variance found for A. euteiches. This PCA axis essentially represented the average increase in disease severity due to the addition of increasing doses of inoculum to the soil. The Weibull scale parameter B, which represents the amount of inoculum necessary to increase root rot severity by 63% with respect to the level caused by pathogens naturally present in the soil, is another means of quantifying the receptivity of soils to these plant pathogens. Weibull parameter B, maximum root rot severity, the areaunder the health index curve, and the scores on the first PCA axis were strongly correlated for each of the pathogens tested individually. To compare the extent and behavior of soil receptivity responses to different pathogens, Weibull parameters B and C (slope at dose B) were chosen because of their universal definition, in contrast to PCA scores. Comparison of the average levels of Weibull parameters B and C indicated significant differences between the pathogens. Yet, no significant similarity in the ranking of the soils was found for the three pathogens, demonstrating that individual soils may interact with different pathogens in totally different ways. In general, soils were suppressive to T. basicola but conducive to A. euteiches, whereas their response to Fusarium solani f. sp. pisi ranged from conducive to suppressive. Therefore, risk assessment of soils prior to planting may require different strategies for each pathogen. Bioassays with soil samples taken before the last pea crop in 1987 and 1991 revealed a significant increase in the natural inoculum potential of soils that mainly was accounted for by A. euteiches and Pythium spp. These results strongly indicate that A. euteiches must be considered one of the most threatening pathogens to pea crops in the Netherlands.  相似文献   

17.
香蕉枯萎病拮抗菌的筛选及其作用机制研究   总被引:15,自引:0,他引:15  
通过分离和筛选,从香蕉园或者其他果园的土壤中分离获得13株对香蕉枯萎病菌(Fusarium oxysporum f.sp.cubense)具有抑制作用的拮抗菌,并对部分拮抗菌抑制病菌菌丝生长和孢子萌发进行了试验。结果表明,拮抗菌株d4、d5、B3和p发酵液对香蕉枯萎病菌生长具有显著的抑制作用,在平板上产生的抑菌圈直径为21.75~34.75 mm,抑菌效果具有持续稳定性,对孢子萌发的抑制率为90.49%~97.18%;拮抗菌对病菌的作用表现为对菌丝的消融、菌丝细胞的泡囊化、抑制病菌分生孢子的萌发、孢子芽管的扭曲。  相似文献   

18.
ABSTRACT A new method for the control of soilborne plant pathogens was tested for its efficacy in two field experiments during two years. Plots were amended with fresh broccoli or grass (3.4 to 4.0 kg fresh weight m(-2)) or left nonamended, and covered with an airtight plastic cover (0.135 mm thick) or left noncovered. In plots amended with broccoli or grass and covered with plastic sheeting, anaerobic and strongly reducing soil conditions developed quickly, as indicated by rapid depletion of oxygen and a decrease in redox potential values to as low as -200 mV. After 15 weeks, survival of Fusarium oxysporum f. sp. asparagi, Rhizoctonia solani, and Verticillium dahliae in inoculum samples buried 15 cm deep was strongly reduced in amended, covered plots in both experiments. The pathogens were not or hardly inactivated in amended, noncovered soil or nonamended, covered soil. The latter indicates that thermal inactivation due to increased soil temperatures under the plastic cover was not involved in pathogen inactivation. The results show the potential for this approach to control various soilborne pathogens and that it may serve as an alternative to chemical soil disinfestation for high-value crops under conditions where other alternatives, such as solarization or soil flooding, are not effective or not feasible.  相似文献   

19.
ABSTRACT Fusarium oxysporum f. sp. canariensis causes Fusarium wilt disease on the Canary Island date palm (Phoenix canariensis). To facilitate disease management, a polymerase chain reaction diagnostic method has been developed to rapidly detect the pathogen. A partial genomic library of F. oxysporum f. sp. canariensis isolate 95-913 was used to identify a DNA sequence diagnostic for a lineage containing all tested isolates of F. oxysporum f. sp. canariensis. Two oligonucleotide primers were designed and used to amplify a 567-bp fragment with F. oxysporum f. sp. canariensis DNAs. DNA from 61 outgroup isolates did not amplify using these primers. Once the primers were shown to amplify a 0.567-kb fragment from DNA of all the F. oxysporum f. sp. canariensis isolates tested, a rapid DNA extraction procedure was developed that led to the correct identification of 98% of the tested F. oxysporum f. sp. canariensis isolates.  相似文献   

20.
Ploetz RC 《Phytopathology》2006,96(6):653-656
ABSTRACT Fusarium wilt of banana (also known as Panama disease) is caused by Fusarium oxysporum f. sp. cubense. Where susceptible cultivars are grown, management is limited to the use of pathogen-free planting stock and clean soils. Resistant genotypes exist for some applications, but resistance is still needed in other situations. Progress has been made with this recalcitrant crop by traditional and nontraditional improvement programs. The disease was first reported in Australia in 1876, but did the greatest damage in export plantations in the western tropics before 1960. A new variant, tropical race 4, threatens the trades that are now based on Cavendish cultivars, and other locally important types such as the plantains. Phylogenetic studies indicate that F. oxysporum f. sp. cubense had several independent evolutionary origins. The significance of these results and the future impact of this disease are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号