首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT Gibberella zeae, causal agent of Fusarium head blight (FHB) of wheat and barley and Gibberella ear rot (GER) of corn, may be transported over long distances in the atmosphere. Epidemics of FHB and GER may be initiated by regional atmospheric sources of inoculum of G. zeae; however, little is known about the origin of inoculum for these epidemics. We tested the hypothesis that atmospheric populations of G. zeae are genetically diverse by determining the genetic structure of New York atmospheric populations (NYAPs) of G. zeae, and comparing them with populations of G. zeae collected from seven different states in the northern United States. Viable, airborne spores of G. zeae were collected in rotational (lacking any apparent within-field inoculum sources of G. zeae) wheat and corn fields in Aurora, NY in May through August over 3 years (2002 to 2004). We evaluated 23 amplified fragment length polymorphism (AFLP) loci in 780 isolates of G. zeae. Normalized genotypic diversity was high (ranging from 0.91 to 1.0) in NYAPs of G. zeae, and nearly all of the isolates in each of the populations represented unique AFLP haplotypes. Pairwise calculations of Nei's unbiased genetic identity were uniformly high (>0.99) for all of the possible NYAP comparisons. Although the NYAPs were genotypically diverse, they were genetically similar and potentially part of a large, interbreeding population of G. zeae in North America. Estimates of the fixation index (G(ST)) and the effective migration rate (Nm) for the NYAPs indicated significant genetic exchange among populations. Relatively low levels of linkage disequilibrium in the NYAPs suggest that outcrossing is common and that the populations are not a result of a recent bottleneck or invasion. When NYAPs were compared with those collected across the United States, the observed genetic identities between the populations ranged from 0.92 to 0.99. However, there was a significant negative correlation (R = -0.59, P < 0.001) between genetic identity and geographic distance, suggesting that some genetic isolation may occur on a continental scale. The contribution of long-distance transport of G. zeae to regional epidemics of FHB and GER remains unclear, but the diverse atmospheric populations of G. zeae suggest that inoculum may originate from multiple locations over large geographic distances. Practically, the long-distance transport of G. zeae suggests that management of inoculum sources on a local scale, unless performed over extensive production areas, will not be completely effective for the management of FHB and GER.  相似文献   

2.
ABSTRACT Rain splash dispersal of Gibberella zeae, causal agent of Fusarium head blight of wheat, was investigated in field studies in Ohio between 2001 and 2003. Samplers placed at 0, 30, and 100 cm above the soil surface were used to collect rain splash in wheat fields with maize residue on the surface and fields with G. zeae-infested maize kernels. Rain splash was collected during separate rain episodes throughout the wheat-growing seasons. Aliquots of splashed rain were transferred to petri dishes containing Komada's selective medium, and G. zeae was identified based on colony and spore morphology. Dispersed spores were measured in CFU/ml. Intensity of splashed rain was highest at 100 cm and ranged from 0.2 to 10.2 mm h(-1), depending on incident rain intensity and sampler height. Spores were recovered from splash samples at all heights in both locations for all sampled rain events. Both macroconidia and ascospores were found based on microscopic examination of random samples of splashed rain. Spore density and spore flux density per rain episode ranged from 0.4 to 40.9 CFU cm(-2) and 0.4 to 84.8 CFU cm(-2) h(-1), respectively. Spore flux density was higher in fields with G. zeae-infested maize kernels than in fields with maize debris, and generally was higher at 0 and 30 cm than at 100 cm at both locations. However, on average, spore flux density was only 30% lower at 100 cm (height of wheat spikes) than at the other heights. The log of spore flux density was linearly related to the log of splashed rain intensity and the log of incident rain intensity. The regression slopes were not significantly affected by year, location, height, and their interactions, but the intercepts were significantly affected by both sampler height and location. Thus, our results show that spores of G. zeae were consistently splash dispersed to spike heights within wheat canopies, and splashed rain intensity and spore flux density could be predicted based on incident rain intensity in order to estimate inoculum dispersal within the wheat canopy.  相似文献   

3.
With the aim of unravelling the role of airborne Fusarium graminearum inoculum in the epidemic of Fusarium head blight (FHB) caused by this species in wheat spikes, a network of Burkard air samplers was set up in five wheat fields distributed in Belgium from 2011 to 2013. Each year from April to July, the daily amounts of F. graminearum inoculum above the wheat canopy were quantified using a newly developed TaqMan qPCR assay. The pattern of spore trapping observed was drastically different per year and per location with a frequency of detection between 9 and 66% and a mean daily concentration between 0.8 and 10.2 conidia-equivalent/m3. In one location, air was sampled for a whole year. Inoculum was frequently detected from the wheat stem elongation stage until the end of the harvesting period, but high inoculum levels were also observed during the fall. Using a window-pane analysis, different periods of time around wheat flowering (varying in length and starting date) were investigated for their importance in the relation between airborne inoculum and FHB parameters (FHB severity, frequency of F. graminearum infection and DON). For almost all the combinations of variables, strong and significant correlations were found for multiple window lengths and starting times. Inoculum quantities trapped around flowering were highly correlated with F. graminearum infection (up to R?=?0.84) and DON (up to R?=?0.9). Frequencies of detection were also well correlated with both of these parameters. DON concentrations at harvest could even be significantly associated with the F. graminearum inoculum trapped during periods finishing before the beginning of the anthesis (R?=?0.77). Overall, these results highlight the key role of the airborne inoculum in F. graminearum epidemics and underline the importance of monitoring it for the development of disease forecasting tools.  相似文献   

4.
In order to better understand the epidemiology of Puccinia triticina and the relationship between airborne inoculum and disease severity, a method for quantifying airborne inoculum was developed using volumetric Burkard 7-day spore traps and real-time PCR. The method was applied using a spore trap network from 1 March to 30 June over a 5-year period. At one site, the inoculum was quantified continuously over 3 years, during which it showed a seasonal distribution, with the highest quantities and detection frequencies occurring between May and June. High mean daily quantities (65.8–121.2 spores/day) and detection frequencies (±20 % of days) were also reported after harvest from September to December. In the coldest months of the year, almost no detection was recorded (1–6 % of days). The study results indicate that the absence of inoculum in the air when upper leaves are emerging could be a limiting factor for the risk of epidemics. Mean daily quantities of airborne inoculum (0–131.4 spores/day) were measured from the beginning of stem elongation (GS30) to the flag leaf stage (GS39). These values were well correlated with the disease severity levels measured during grain development. A multiple regression analysis showed that total rainfall in late summer and autumn and mean minimum temperature in winter positively influence spore density between GS30 and GS39 in the following spring (R2 = 0.73). This relationship and the patterns of airborne inoculum observed in fields strongly suggest the existence of a ‘green bridge’ phenomenon in Belgium. Our study also showed that the quantification of airborne inoculum or its estimation using a weather-based predictive model could be useful for interpreting disease severity models and avoiding over-estimates of disease risk.  相似文献   

5.
To elucidate the early epidemic stages of septoria tritici blotch, especially the relationship between the onset of epidemics, the local availability of primary inoculum, and the presence of wheat debris, the early disease dynamics and airborne concentration in Zymoseptoria tritici ascospores were concomitantly assessed at a small spatiotemporal scale and over two years, using spore traps coupled with a qPCR assay. One plot, with the crop debris left, provided a local source of primary inoculum, while the other plot, without debris, lacked any. According to the assay's limits of detection, daily spore trap samples were classified as not detectable or not quantifiable, detectable, and quantifiable. The proportions of samples assigned to the different classes and numbers of spores in samples classified as quantifiable were significantly different between years, time periods (from November to March) and spore trap location (field with or without debris). The effect of year on the airborne ascospore concentration was high: 22 daily peaks with more than 230 ascospores m?3 day?1 were identified in the autumn of 2012/13, but none in the autumn of 2011/12. The local presence of wheat debris had no obvious effect on the amount of airborne ascospores or on the earliness of the two epidemics, especially in the year with high inoculum pressure (2012/13). These results suggest that the amount of primary airborne inoculum available in a wheat crop is not a limiting factor for the onset of an epidemic.  相似文献   

6.
Gibberella zeae, a causal agent of Fusarium head blight (FHB) in wheat and barley, is one of the most economically harmful pathogens of cereals in the United States. In recent years, the known host range of G. zeae has also expanded to noncereal crops. However, there is a lack of information on the population genetic structure of G. zeae associated with noncereal crops and across wheat cultivars. To test the hypothesis that G. zeae populations sampled from barley, wheat, potato, and sugar beet in the Upper Midwest of the United States are not mixtures of species or G. zeae clades, we analyzed sequence data of G. zeae, and confirmed that all populations studied were present in the same clade of G. zeae. Ten variable number tandem repeat (VNTR) markers were used to determine the genetic structure of G. zeae from the four crop populations. To examine the effect of wheat cultivars on the pathogen populations, 227 strains were sampled from 10 subpopulations according to wheat cultivar types. The VNTR markers also were used to analyze the genetic structure of these subpopulations. In all populations, gene (H = 0.453 to 0.612) and genotype diversity (GD = or >0.984) were high. There was little or no indication of linkage disequilibrium (LD) in all G. zeae populations and subpopulations. In addition, high gene flow (Nm) values were observed between cereal and noncereal populations (Nm = 10.69) and between FHB resistant and susceptible wheat cultivar subpopulations (Nm = 16.072), suggesting low population differentiation of G. zeae in this region. Analysis of molecular variance also revealed high genetic variation (>80%) among individuals within populations and subpopulations. However, low genetic variation (<5%) was observed between cereal and noncereal populations and between resistant and susceptible wheat subpopulations. Overall, these results suggest that the populations or subpopulations are likely a single large population of G. zeae affecting crops in the upper Midwest of the United States.  相似文献   

7.
ABSTRACT Gibberella zeae (anamorph Fusarium graminearum) causes Fusarium head blight (FHB) of wheat and barley and has been responsible for several billion dollars of losses in the United States since the early 1990s. We isolated G. zeae from the top, middle, and bottom positions of wheat spikes collected from 0.25-m(2) quadrats during severe FHB epidemics in a single Kansas (KS) field (1993) and in a single North Dakota (ND) field (1994). Three amplified fragment length polymorphism (AFLP) primer pairs were used to resolve 94 polymorphic loci from 253 isolates. Members of a subset of 26 isolates also were tested for vegetative compatibility groups (VCGs). Both methods indicated high levels of genotypic variability and identified the same sets of isolates as probable clones. The mean number of AFLP multilocus haplotypes per head was approximately 1.8 in each population, but this value probably underestimates the true mean due to the small number of samples taken from each head. Isolates with the same AFLP haplotype often were recovered from different positions in a single head, but only rarely were such apparently clonal isolates recovered from more than one head within a quadrat, a pattern that is consistent with a genetically diverse initial inoculum and limited secondary spread. The KS and ND samples had no common AFLP haplotypes. All G. zeae isolates had high AFLP fingerprint similarity (>70%, unweighted pair group method with arithmetic means similarity) to reference isolates of G. zeae lineage 7. The genetic identity between the KS and ND populations was >99% and the estimated effective migration rate was high (Nm approximately 70). Tests for linkage disequilibrium provide little evidence for nonrandom associations between loci. Our results suggest that these populations are parts of a single, panmictic population that experiences frequent recombination. Our results also suggest that a variety of population sampling designs may be satisfactory for assessing diversity in this fungus.  相似文献   

8.
Trends in weather variables and concentrations of airborne conidia ofAlternaria solani were monitored in a potato field in South Africa during three potato-growing seasons in 2001 and 2002. Distinct seasonal variation was noted, with a drop in spore numbers during winter. Peaks in spore concentration coincided with periods favorable for spore formation and dispersal; most notable was the effect of interrupted wetting periods. Diurnal periodicity of spore dispersal was also observed, with the peak of spore concentrations between 9h00 and 18h00. Few spores were sampled at night, when wind velocity and temperature are lowest and relative humidity is highest. Increased numbers of spores were sampled during days of harvesting or when other ground-operated farm equipment was used. The results obtained in this study will be useful in establishing decision support systems to control early blight on potatoes in southern Africa. http://www.phytoparasitica.org posting July 10, 2003.  相似文献   

9.
ABSTRACT Patterns of spore deposition by Heterobasidion species were studied between the spring of 1998 and December 2000 in four forests in the western Alps using woody traps. The maximum spore deposition rate (DR) ranged from 169 to 1,550 spores m(-2) h(-1). Although spores were captured from February to October at most sites, inoculum concentration consistently peaked in the late summer or early fall. In one of the four study sites, similar patterns of DR were recorded in 2 years of sampling. A significant correlation (r = 0.654, P = 0.001) was found between DR and the average minimum air temperature in the 4 weeks before sampling. Approximately 1,200 spores were isolated and identified at the species level by polymerase chain reaction-based methods. Single-spore isolates were consistently clampless, indicating the sampled airspora was almost exclusively composed of haploid basidiospores. No significant variations of basidiospore frequencies were detected for either H. abietinum or H. annosum among sampling periods. However, the frequency of H. parviporum spores was always significantly higher in the summer. These findings suggest different patterns of sporulation among Heterobasidion species.  相似文献   

10.
The potential use of DNA-based methods for detecting airborne inoculum of Leptosphaeria maculans and Pyrenopeziza brassicae , both damaging pathogens of oilseed rape, was investigated. A method for purifying DNA from spores collected using Hirst-type spore samplers and detecting it using polymerase chain reaction (PCR) assays is described. For both pathogens, the sensitivities of the DNA assays were similar for spore-trap samples and pure spore suspensions. As few as 10 spores of L. maculans or P. brassicae could be detected by PCR and spores of both species could be detected against a background of spores of six other species. The method successfully detected spores of P. brassicae collected using spore traps in oilseed rape crops that were infected with P. brassicae. Leptosphaeria maculans spores were detected using spore traps on open ground close to L. maculans -infected oilseed rape stems. The potential use of PCR detection of airborne inoculum in forecasting the diseases caused by these pathogens is discussed.  相似文献   

11.
ABSTRACT A means for determining the rate of release, Q (spores per square meter per second), of spores from a source of inoculum is paramount for quantifying their further dispersal and the potential spread of disease. Values of Q were obtained for Phytophthora infestans sporangia released from an area source of diseased plants in a potato canopy by comparing the concentrations of airborne sporangia measured at several heights above the source, with the concentrations predicted by a Lagrangian Stochastic simulation model. An independent estimate of Q was obtained by quantifying the number of sporangia per unit area of source at the beginning of each sampling day by harvesting diseased plant tissue and enumerating sporangia from these samples. This standing spore crop was the potential number of sporangia released per area of source during the day. The standing spore crop was apportioned into time segments corresponding to sporangia concentration measurement periods using the time trace of sporangia sampled above the source by a Burkard continuous suction spore sampler. This apportionment of the standing spore crop yielded potential release rates that were compared with modeled release rates. The two independent estimates of Q were highly correlated (P = 0.003), indicating that the model has utility for predicting release rates for P. infestans sporangia and the spread of disease between fields.  相似文献   

12.
Both airborne spores of Rhynchosporium secalis and seed infection have been implied as major sources of primary inoculum for barley leaf blotch (scald) epidemics in fields without previous history of barley cropping. However, little is known about their relative importance in the onset of disease. Results from both quantitative real‐time PCR and visual assessments indicated that seed infection was the main source of inoculum in the field trial conducted in this study. Glasshouse studies established that the pathogen can be transmitted from infected seeds into roots, shoots and leaves without causing symptoms. Plants in the field trial remained symptomless for approximately four months before symptoms were observed in the crop. Covering the crop during part of the growing season was shown to prevent pathogen growth, despite the use of infected seed, indicating that changes in the physiological condition of the plant and/or environmental conditions may trigger disease development. However, once the disease appeared in the field it quickly became uniform throughout the cropping area. Only small amounts of R. secalis DNA were measured in 24 h spore‐trap tape samples using PCR. Inoculum levels equivalent to spore concentrations between 30 and 60 spores per m3 of air were only detected on three occasions during the growing season. The temporal pattern and level of detection of R. secalis DNA in spore tape samples indicated that airborne inoculum was limited and most likely represented rain‐splashed conidia rather than putative ascospores.  相似文献   

13.
Patterns of spore deposition by Fusarium circinatum, the causal agent of pine pitch canker (PPC) of Monterey pine (Pinus radiata) and other conifers, were studied between May 2003 and April 2004 at two sites in Northern California using a novel spore trapping method combined with a real-time polymerase chain reaction (PCR) approach. At each study site, two plots were sampled by placing spore traps at 100 m intervals along transects 600 m in length. The air was sampled continuously by exchanging the spore traps every 2 weeks. The spore deposition rate (DR), ranged from 0 to 1.3 x 10(5) spores m(2). Spores were detected throughout the year, with higher trapping frequencies (TF) during the rainy season (November to April), than during the dry season (May to October). The detection of spores on traps at distances larger than 200 m from any Monterey pine, suggests at least midrange aerial dispersal. Finally, different inoculum loads were associated with trees displaying different levels of disease symptoms, suggesting infectiousness of the pathogen varies as the disease progresses. This study represents one of the first documenting continuous inoculum pressure values over an entire year for a forest pathogen, and provides important epidemiological information that will be invaluable in the development of disease progression models.  相似文献   

14.
Comparatively little quantitative information is available on both the spatial and temporal relationships that develop between airborne inoculum and disease intensity during the course of aerially spread epidemics. Botrytis leaf blight and Botrytis squamosa airborne inoculum were analyzed over space and time during 2 years (2002 and 2004) in a nonprotected experimental field, using a 6 x 8 lattice of quadrats of 10 x 10 m each. A similar experiment was conducted in 2004 and 2006 in a commercial field managed for Botrytis leaf blight using a 5 x 5 lattice of quadrats of 25 x 25 m each. Each quadrat was monitored weekly for lesion density (LD) and aerial conidium concentration (ACC). The adjustment of the Taylor's power law showed that heterogeneity in both LD and ACC generally increased with increasing mean. Unmanaged epidemics were characterized in either year, with aggregation indices derived from SADIE (Spatial Analysis by Distance Indices). For LD, the aggregation indices suggested a random pattern of disease early in the season, followed by an aggregated pattern in the second part of the epidemic. The index of aggregation for ACC in 2002 was significantly greater than 1 at only one date, while it was significantly greater than 1 at most sampling dates in 2004. In both years and for both variables, positive trends in partial autocorrelation were observed mainly for a spatial lag of 1. In 2002, the overall pattern of partial autocorrelations over sampling dates was similar for LD and ACC with no significant partial autocorrelation during the first part of the epidemic, followed by a period with significant positive autocorrelation, and again no autocorrelation on the last three sampling dates. In 2004, there was no significant positive autocorrelation for LD at most sampling dates while for ACC, there was a fluctuation between significant and non-significant positive correlation over sampling dates. There was a significant spatial correlation between ACC at given date (t(i)) and LD 1 week later (t(i + 1)) on most sampling dates in both 2002 and 2004 for the unmanaged and managed sites. It was concluded that LD and ACC were not aggregated in the early stage of epidemics, when both disease intensity and airborne conidia concentration were low. This was supported by the analysis of LD and ACC from a commercial field, where managed levels of disease were low, and where no aggregation of both variables was detected. It was further concluded that a reliable monitoring of airborne inoculum for management of Botrytis leaf blight is achievable in managed fields using few spore samplers per field.  相似文献   

15.
Two kinds of propagules play a role in Mycosphaerella graminicola dissemination: splash-dispersed pycnidiospores and airborne sexual ascospores. A method based on real-time polymerase chain reaction (PCR) assay and using Burkard spore traps was developed to quantify M. graminicola airborne inoculum. The method was tested for its reliability and applied in a spore trap network over a 2-year period in order to investigate the spatio-temporal distribution of airborne inoculum in Belgium. At four experimental sites, airborne inoculum was detected in both years. A seasonal distribution was observed, with the highest mean daily quantities (up to 351.0 cDNA) trapped in July and with clusters detected from September to April. The first year of trapping, a mean daily quantity of 15.7 cDNA of M. graminicola airborne inoculum was also detected in the air above a building in a city where the spatio-temporal distribution showed a similar pattern to that in the field. Mean daily quantities of up to 60.7 cDNA of airborne inoculum were measured during the cereal stem elongation and flowering stages, suggesting that it contributes to the infection of upper leaves later in the season. Most detection, however, tended to occur between flowering and harvest, suggesting significant production of pseudothecia during that period. Variations in mean daily quantities from 1.0 to 48.2 cDNA were observed between sites and between years in the patterns of airborne inoculum. After stem elongation, the quantities detected at a site were positively correlated with the disease pressure in the field. Quantities trapped at beginning of the growing season were also well correlated with the disease level the previous year. Multiple regressions revealed that some factors partly explain the daily variations of airborne inoculum.  相似文献   

16.
Gibberella zeae, the principal cause of Fusarium head blight (FHB) of barley, contaminates grains with several mycotoxins, which creates a serious problem for the malting barley industry in the United States, China, and Europe. However, limited studies have been conducted on the trichothecene profiles and population genetic structure of G. zeae isolates collected from barley in the United States. Trichothecene biosynthesis gene (TRI)-based polymerase chain reaction (PCR) assays and 10 variable number tandem repeat (VNTR) markers were used to determine the genetic diversity and compare the trichothecene profiles of an older population (n = 115 isolates) of G. zeae collected in 1997 to 2000 with a newer population (n = 147 isolates) collected in 2008. Samples were from across the major barley-growing regions in North Dakota and Minnesota. The results of TRI-based PCR assays were further validated using a subset of 32 and 28 isolates of G. zeae by sequence analysis and gas chromatography, respectively. TRI-based PCR assays revealed that all the G. zeae isolates in both populations had markers for deoxynivalenol (DON), and the frequencies of isolates with a 3-acetyldeoxynivalenol (3-ADON) marker in the newer population were ≈11-fold higher than those among isolates in the older population. G. zeae populations from barley in the Midwest of the United States showed no spatial structure, and all the isolates were solidly in clade 7 of G. zeae, which is quite different from other barley-growing areas of world, where multiple species of G. zeae are commonly found in close proximity and display spatial structure. VNTR analysis showed high gene diversity (H = 0.82 to 0.83) and genotypic diversity but low linkage disequilibrium (LD = 0.02 to 0.07) in both populations. Low genetic differentiation (F(ST) = 0.013) and high gene flow (Nm = 36.84) was observed between the two populations and among subpopulations within the same population (Nm = 12.77 to 29.97), suggesting that temporal and spatial variations had little influence on population differentiation in the Upper Midwest. Similarly, low F(ST) (0.02) was observed between 3-ADON and 15-acetyldeoxynivalenol populations, indicating minor influence of the chemotype of G. zeae isolates on population subdivision, although there was a rapid increase in the frequencies of isolates with the 3-ADON marker in the Upper Midwest between the older collection made in 1997 to 2000 and the newer collection made in 2008. This study provides information to barley-breeding programs for their selection of isolates of G. zeae for evaluating barley genotypes for resistance to FHB and DON accumulation.  相似文献   

17.
Simulated rain was allowed to fall onto spore suspensions of Pseudocercosporella herpotrichoides . The resulting splash droplets were collected on horizontal traps at the bottom of a canopy and at 12 cm above treatments comprising no-crop, wheat monocrop and a wheat–clover bicrop. The number of conidia collected on horizontal traps declined exponentially with distance from the inoculum source. The mean number of spores collected in the absence of any crop was twice that in a monocrop; in the monocrop it was twice that in the bicrop. Both splash droplet and spore deposition gradients were steeper in the monocrop treatment than in no-crop, and shallower in bicrop than in monocrop. Evidence is presented that suggests the clover canopy acts as a secondary source for the redistribution of previously dispersed droplets and spores.  相似文献   

18.
A technique for relating the progress of plant diseases caused by airborne fungal pathogens to cumulative numbers of trapped spores is proposed. The relationship involves two epidemiological parameters—a disease asymptote and the infection efficiency (disease units/spore) of inoculum. The technique was evaluated using data on apple powdery mildew and scab epidemics in sprayed and unsprayed apple orchard plots. For powdery mildew, the observed relationships were close to those proposed in the unsprayed plot, but changed after or during the period of fungicide application in sprayed plots. Parameter estimates gave useful comparative information on the epidemics. The technique was not useful for scab because of the discontinuous patterns of infection.  相似文献   

19.
The importance of the spatial aspect of epidemics has been recognized from the outset of plant disease epidemiology. The objective of this study was to determine if the host spatial structure influenced the spatio-temporal development of take-all disease of wheat, depending on the inoculum spatial structure. Three sowing patterns of wheat (broadcast sowing, line sowing and sowing in hills) and three patterns of inoculum (uniform, aggregated and natural infestation) were tested in a field experiment, repeated over 2 years. Disease (severity, root disease incidence, plant disease incidence and, when applicable, line and hill incidences) was assessed seven times during the course of each season and the spatial pattern was characterized with incidence-incidence relationships. In the naturally infested plots, disease levels at all measurement scales were significantly higher in plots sown in hills, compared to plots sown in line, which were in turn significantly more diseased than plots with broadcast sowing. Disease aggregation within roots and plants was stronger in line and hill sowing than in broadcast sowing. Analysis of the disease gradient in the artificially infested plots showed that the disease intensified (local increase of disease level) more than it extensified (spatial spread of the disease), the effect of the introduced inoculum was reduced by 95% at a distance of 15 cm away from the point of infestation. Yield was not significantly affected by sowing pattern or artificial infestation.  相似文献   

20.
Fusarium ear blight (scab) in small grain cereals—a review   总被引:3,自引:1,他引:2  
This review of Fusarium ear blight (scab) of small grain cereals has shown that up to 17 causal organisms have been associated with the disease, which occurs in most cereal-growing areas of the world. The most common species were Fusarium graminearum (Gibberella zeae), F. culmorum, F, avenaceum (G, avenacea), F, poae and Microdochium nivale (Monographella nivalis). The disease was recorded most frequently under hot, wet climatic conditions where significant yield losses and mycotoxin accumulation in grain were reported. Possible sources of inoculum were reported as crop debris, alternative hosts and Fusarium seedling blight and foot rot of cereals. The mode of dispiersal of inoculum to ears remains unclear, but contaminated arthropod vectors, systemic fungal growth through plants, and wind and rain-splash dispersal of spores have been proposed. Infection of wheat ears was shown to occur mainly during anthesis, and it has been demonstrated that fungal growth stimulants may be present in anthers. Despite the importance of the disease, particularly during epidemic years, control methods are limited. Much effort has gone into breeding resistant wheat varieties and into improving our understanding of the possible mechanisms and genetic basis of resistance, with only moderate success. There are also surprisingly few reports of successful fungicidal or biological control of the disease in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号