首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study investigated conidial dispersal in the field, and effects of simulated wind and rain on the dispersal of A. brassicicola on Chinese cabbage ( Brassica pekinensis ). Spores were sampled using a Burkard volumetric spore sampler and rotorod samplers in a Chinese cabbage crop. Disease incidence in the field was well fitted by a Gompertz curve with an adjusted r 2 of >0·99. Conidia of A. brassicicola were trapped in the field throughout the growing season. Peaks of high spore concentrations were usually associated with dry days, shortly after rain, high temperature or high wind speed. Diurnal periodicity of spore dispersal showed a peak of conidia trapped around 10·00 h. The number of conidia trapped at a height of 25 cm above ground level was greater than that at 50, 75 and 100 cm. Conidial dispersal was also studied under simulated conditions in a wind tunnel and a rain simulator. Generalized linear models were used to model these data. The number of conidia caught increased significantly at higher wind speeds and at higher rain intensities. Under simulated wind conditions, the number of conidia dispersed from source plants with wet leaves was only 22% of that for plants with dry leaves. Linear relationships were found between the number of conidia caught and the degree of infection of trap plants.  相似文献   

2.
Symptoms of Welsh onion leaf blight, caused by Stemphylium vesicarium, are divided into two types, i.e., brown oval lesions and yellow mottle lesions. Yellow mottle lesions exert considerable economic damage on Welsh onion in northern Japan. In this study, we investigated the life cycle of the pathogen in terms of seasonal fluctuation of spore dispersal and its relationship with development of disease, formation period of pseudothecia and overwintering of the pathogen based on field surveys, spore trapping and fungal isolation. Conidia were trapped throughout the cropping season except before mid June, when no ascospores were trapped. Brown oval lesions, which contained a large number of conidia, usually occurred in July followed by yellow mottle lesions with an increasing number of conidia trapped. These observations suggest that conidia released from brown oval lesions play an important role as a secondary inoculum source of the disease, leading to the development of yellow mottle lesions. Pseudothecia on leaves were first observed at the end of the cropping season or immediately after harvest (late October). The pathogen overwintered in the form of pseudothecia produced on leaves with or without symptoms. Ascospores failed to be trap in the field during the interval between before and beginning of the cropping season in April–May. However, pot experiments demonstrated that ascospores were released from leaf debris in November and rapidly increased in number after snow melt. From this circumstantial evidence, we hypothesize that ascospores are the primary inoculum source of Welsh onion leaf blight.  相似文献   

3.
Rossi V  Caffi T  Legler SE 《Phytopathology》2010,100(12):1321-1329
Dynamics of ascocarp development, ascospore maturation, and dispersal in Erysiphe necator were studied over a 4-year period, from the time of ascocarp formation to the end of the ascosporic season at the end of June in the following spring. Naturally dispersed chasmothecia were collected from mid-August to late November (when leaf fall was complete); the different collections were used to form three to five cohorts of chasmothecia per year, with each cohort containing ascocarps formed in different periods. Chasmothecia were exposed to natural conditions in a vineyard and periodically sampled. Ascocarps were categorized as containing mature or immature ascospores, or as empty; mature ascospores inside chasmothecia were enumerated starting from late February. Ascospore discharge was determined using silicone-coated slides that were placed 3 to 4 cm from sections of the vine trunk holding the chasmothecia. Before complete leaf fall, 34% of the chasmothecia had mature ascospores, 48% had immature ascospores, and 18% were empty; in the same period, the trapped ascospores represented 56% of the total ascospores trapped in an ascosporic season (i.e., from late summer until the next spring or early summer). The number of viable chasmothecia diminished over time; 11 and 5% of chasmothecia had mature ascospores between complete leaf fall and bud break and after bud break, respectively. These ascocarps discharged ≈2 and 42% of the total ascospores, respectively. All the ascocarp cohorts released ascospores in autumn, survived the winter, and discharged viable ascospores in spring; neither ascospore numbers nor their pattern of temporal release was influenced by the time when chasmothecia were collected and exposed in the vineyard. Abundance of mature ascospores in chasmothecia was expressed as a function of degree-days (DD) (base 10°C) accumulated before and after bud break through a Gompertz equation (R2 = 0.92). Based on this equation, 90% of the ascospores were mature when 153 DD (confidence interval, 100 to 210 DD) had accumulated after bud break. Most ascospores were trapped in periods with >2 mm of rain; however, a few ascospores were airborne with <2 mm of rain and, occasionally, in wet periods of ≥3.5 h not initiated by rain.  相似文献   

4.
The incidence and severity of Ascochyta blight in potted chickpea trap plants exposed for 1-wk periods near infested chickpea debris in Córdoba, Spain, or in chickpea trap crops at least 100 m from infested chickpea debris in several locations in southern Spain were correlated with pseudothecial maturity and ascospore production ofDidymella rabiei from nearby chickpea debris. The period of ascospore availability varied from January to May and depended on rain and maturity of pseudothecia. The airborne concentration of ascospores ofD. rabiei was also monitored in 1988. Ascospores were trapped mostly from the beginning of January to late February; this period coincided with that of maturity of pseudothecia on the chickpea debris. Most ascospores were trapped on rainy days during daylight and 70% were trapped between 12.00 and 18.00 h. Autumn-winter sowings of chickpea were exposed longer to ascospore inoculum than the more traditional spring sowings because the autumn-winter sowings were exposed to the entire period of ascospore production on infested chickpea debris lying on the soil surface.  相似文献   

5.
In order to better understand the epidemiology of Puccinia triticina and the relationship between airborne inoculum and disease severity, a method for quantifying airborne inoculum was developed using volumetric Burkard 7-day spore traps and real-time PCR. The method was applied using a spore trap network from 1 March to 30 June over a 5-year period. At one site, the inoculum was quantified continuously over 3 years, during which it showed a seasonal distribution, with the highest quantities and detection frequencies occurring between May and June. High mean daily quantities (65.8–121.2 spores/day) and detection frequencies (±20 % of days) were also reported after harvest from September to December. In the coldest months of the year, almost no detection was recorded (1–6 % of days). The study results indicate that the absence of inoculum in the air when upper leaves are emerging could be a limiting factor for the risk of epidemics. Mean daily quantities of airborne inoculum (0–131.4 spores/day) were measured from the beginning of stem elongation (GS30) to the flag leaf stage (GS39). These values were well correlated with the disease severity levels measured during grain development. A multiple regression analysis showed that total rainfall in late summer and autumn and mean minimum temperature in winter positively influence spore density between GS30 and GS39 in the following spring (R2 = 0.73). This relationship and the patterns of airborne inoculum observed in fields strongly suggest the existence of a ‘green bridge’ phenomenon in Belgium. Our study also showed that the quantification of airborne inoculum or its estimation using a weather-based predictive model could be useful for interpreting disease severity models and avoiding over-estimates of disease risk.  相似文献   

6.
Trunk disease pathogens of grapevines, viz. Phaeomoniella chlamydospora, Eutypa lata and several species in Botryosphaeriaceae, Phaeoacremonium and Phomopsis are known to infect fresh pruning wounds by means of air-borne inoculum released after rainfall or prolonged periods of high relative humidity. Recent surveys have demonstrated that most or all of these pathogens are present in climatically diverse grape growing regions of South Africa. However, the factors controlling spore dispersal of these pathogens in vineyards were largely unknown. To address this question, spore trapping was done in a Chenin Blanc vineyard in the Stellenbosch area, South Africa, for 14 weeks during the grapevine pruning period from June to mid-September of 2004 and 2005. Hourly recordings of weather data were done by a weather station in the row adjacent to the spore trap. Spores of E. lata and Phomopsis and species in Botryosphaeriaceae were trapped throughout the trapping periods of 2004 and 2005, with higher levels of trapped spores recorded in 2005. The spores of all three pathogens were trapped during or after periods of rainfall and/or high relative humidity. In neither of the 2 years were spores of Pa. chlamydospora or Phaeoacremonium spp. trapped. Results indicated that spore event incidence, as well as the amount of spores released during a spore event of above-mentioned pathogens, were governed by rainfall, relative humidity, temperature and wind speed prior to and during the spore events.  相似文献   

7.
ABSTRACT Overwintering of tobacco thrips, Frankliniella fusca, was investigated on common winter annual host plants infected with Tomato spotted wilt virus (TSWV). Populations of tobacco thrips produced on TSWV-infected plants did not differ from those produced on healthy plants, whereas populations varied greatly among host plant species. The mean per plant populations of F. fusca averaged 401, 162, and 10 thrips per plant on Stellaria media, Scleranthus annuus, and Sonchus asper, respectively, during peak abundance in May. Adult F. fusca collected from plant hosts were predominately brachypterous throughout the winter and early spring, but macropterous forms predominated in late spring. Weed hosts varied in their ability to serve as overwintering sources of TSWV inoculum. Following the initial infection by TSWV in October 1997, 75% of Scleranthus annuus and Stellaria media retained infection over the winter and spring season, whereas only 17% of Sonchus asper plants remained infected throughout the same interval. Mortality of TSWV-infected Sonchus asper plants exceeded 25%, but mortality of infected Stellaria media and Scleranthus annuus did not exceed 8%. TSWV transmission by thrips produced on infected plants was greatest on Stellaria media (18%), intermediate on Scleranthus annuus (6%), and lowest on Sonchus asper (2%). Very few viruliferous F. fusca were recovered from soil samples collected below infected wild host plants. Vegetative growth stages of Stellaria media, Sonchus asper, and Ranunculus sardous were more susceptible to F. fusca transmission of TSWV than flowering growth stages, whereas both growth stages of Scleranthus annuus were equally susceptible. In a field study to monitor the spatial and temporal patterns of virus movement from a central source of TSWV-infected Stellaria media to adjacent plots of R. sardous, the incidence of infection in R. sardous plots increased from <1% in March to >42% in June 1999. Infection levels in the Stellaria media inoculum source remained high throughout the experiment, averaging nearly 80% until June 1999 when all Stellaria media plants had senesced. Dispersal of TSWV from the inoculum source extended to the limits of the experimental plot (>37 m). Significant directional patterns of TSWV spread to the R. sardous plots were detected in April and May but not in June. R. sardous infections were detected as early as March and April, suggesting that overwintering inoculum levels in an area can increase rapidly during the spring in susceptible weed hosts prior to planting of susceptible crops. This increase in the abundance of TSWV inoculum sources occurs at a time when vector populations are increasing rapidly. The spread of TSWV among weeds in the spring serves to bridge the period when overwintered inoculum sources decline and susceptible crops are planted.  相似文献   

8.
Trends in weather variables and concentrations of airborne conidia ofAlternaria solani were monitored in a potato field in South Africa during three potato-growing seasons in 2001 and 2002. Distinct seasonal variation was noted, with a drop in spore numbers during winter. Peaks in spore concentration coincided with periods favorable for spore formation and dispersal; most notable was the effect of interrupted wetting periods. Diurnal periodicity of spore dispersal was also observed, with the peak of spore concentrations between 9h00 and 18h00. Few spores were sampled at night, when wind velocity and temperature are lowest and relative humidity is highest. Increased numbers of spores were sampled during days of harvesting or when other ground-operated farm equipment was used. The results obtained in this study will be useful in establishing decision support systems to control early blight on potatoes in southern Africa. http://www.phytoparasitica.org posting July 10, 2003.  相似文献   

9.
The dynamics of the production of Stemphylium vesicarium conidia and Pleospora allii ascospores from different inoculum sources on the ground were compared in a model system of a wildflower meadow mainly composed of yellow foxtail, creeping cinquefoil and white clover. The meadow was either inoculated (each October) or not inoculated with a virulent strain of S. vesicarium, and either covered or not covered with a litter of inoculated pear leaves. Spore traps positioned a few centimetres above the ground were exposed for 170 7-day periods between October 2003 and December 2006. Ascospores and conidia were trapped in 46 and 25% of samples, respectively. Ascospore numbers trapped from the pear leaf litter were about five times higher than those from the meadow, while conidial numbers were similar from the different inoculum sources. The ascosporic season was very long, with two main trapping periods: December–April, and August–October; the former was most important for the leaf litter, the latter for the meadow. The conidial season lasted from April to November, with 92% of conidia caught between July and September. The fungus persistently colonized the meadow: the meadow inoculated in early October 2003 produced spores until autumn 2006. The present work demonstrates that orchard ground is an important source of inoculum for brown spot of pear. Thus, it is important to reduce inoculum by managing the orchard ground all year long.  相似文献   

10.
Daily multiplication factor (number of daughter lesions per mother lesion per day) values were experimentally measured in four replications of a monocyclic experiment on angular leaf spot (ALS) of bean, where sources of inoculum were artificially established within a bean canopy, on the ground (defoliated infected leaves), or both. Daily multiplication factor of lesions in the canopy (DMFRc) was higher than that of infectious, defoliated tissues (DMFRd) in all replications. Both DMFRc and DMFRd were strongly reduced under dry compared to rainy conditions. Under rainy conditions for spore dispersal DMFRd was about two to three times smaller than DMFRc. Defoliated leaves may nevertheless represent a significant source of infection, depending on the amount of infectious tissues. Mother lesions within the canopy generated more daughter lesions in the medium (or lower) layers of the canopy than at its upper level (DMFRc higher at the medium and lower layers of a canopy), whereas DMFRd values seemed to decrease with height in the canopy. A mechanistic simulation model that combines host growth and disease-induced defoliation was designed to simulate the respective contributions of the two components of the dual inoculum source of a diseased canopy (infected foliage and defoliated infectious tissues), and varying infectious periods in both sources. Simulations suggest that higher DMFRc values have a large polycyclic effect on epidemics whereas that of DMFRd is small, and that large effects of the infectious period of lesions in the canopy are found when DMFRc is high. Simulations using experimentally measured DMFRc and DMFRd values indicated much stronger epidemics in rainy compared to dry conditions for spore dispersal, but disease persistence in the latter. The implications of considering a dual source of inoculum in the course of a polycyclic process are discussed with respect to epidemic thresholds.  相似文献   

11.
ABSTRACT The effect of components of primary inoculum dispersal in soil on the temporal dynamics of Phytophthora blight epidemics in bell pepper was evaluated in field and growth-chamber experiments. Phytophthora capsici may potentially be dispersed by one of several mechanisms in the soil, including inoculum movement to roots, root growth to inoculum, and root-to-root spread. Individual components of primary inoculum dispersal were manipulated in field plots by introducing (i) sporangia and mycelia directly in soil so that all three mechanisms of dispersal were possible, (ii) a plant with sporulating lesions on the soil surface in a plastic polyvinyl chloride (PVC) tube so inoculum movement to roots was possible, (iii) a wax-encased peat pot containing sporangia and mycelia in soil so root growth to inoculum was possible, (iv) a wax-encased peat pot containing infected roots in soil so root-to-root spread was possible, (v) noninfested V8 vermiculite media into soil directly as a control, or (vi) wax-encased noninfested soil as a control. In 1995 and 1996, final incidence of disease was highest in plots where sporangia and mycelia were buried directly in soil and all mechanisms of dispersal were operative (60 and 32%) and where infected plants were placed in PVC tubes on the soil surface and inoculum movement to roots occurred with rainfall (89 and 23%). Disease onset was delayed in 1995 and 1996, and final incidence was lower in plants in plots where wax-encased sporangia (6 and 22%) or wax-encased infected roots (22%) were buried in soil and root growth to inoculum or root-to-root spread occurred. Incidence of root infections was higher over time in plots where inoculum moved to roots or all mechanisms of dispersal were possible. In growth-chamber studies, ultimately all plants became diseased regardless of the dispersal mechanism of primary inoculum, but disease onset was delayed when plant roots had to grow through a wax layer to inoculum or infected roots in tension funnels that contained small volumes of soil. Our data from both field and growth-chamber studies demonstrate that the mechanism of dispersal of the primary inoculum in soil can have large effects on the temporal dynamics of disease.  相似文献   

12.
Splash dispersal of conidia of Mycocentrospora acerina in the field   总被引:1,自引:0,他引:1  
The dispersal of conidia of Mycocentrospora acerina was studied in caraway field trials. A Burkard spore trap, rotorods, inverted Petri dishes containing sucrose agar and rain gauges were used to trap conidia of M. acerina . Sporulation was stimulated by rainfall (2 mm) and moderate temperatures (around 15°C). Solar radiation had a negative effect on sporulation. Hardly any conidia were found in the spore traps on rainless days. Short distance (9 m) spread of M. acerina is mainly caused by splash dispersal of its conidia. Trap plants at 0, 0.1, 1 and 4 m from the inoculum source were readily infected under moist conditions. Beyond 9 m from an inoculum source no infection of caraway trap plants was found. Trap plants at 9 m from an inoculum source were infected in one out of three seasons only. Long distance (>9 m) spread could not be demonstrated by the techniques used in this study. The results suggest that, usually, a caraway field is infected by inoculum sources within that field.  相似文献   

13.
Gilles T  Kennedy R 《Phytopathology》2003,93(4):413-420
ABSTRACT Controlled environment experiments were conducted to study the effects of inoculum density, temperature, and their interaction on germination of Puccinia allii urediniospores and infection of leek leaves. Percent germination of P. allii urediniospores and percent branching of germ tubes increased with 3 density of urediniospores and approached a plateau for densities above approximately 20 spores cm(-2) of leaf area. Percent germination was highest at 12 to 21 degrees C, a wide-range temperature optimum. Branching occurred at temperatures ranging from 5 to 25 degrees C, but there were few germ tubes branching at 25 degrees C. P. allii successfully infected leek leaves at temperatures ranging from 7 to 22 degrees C. The number of pustules produced increased with urediniospore density on leek leaves. At low spore densities, pustule production was little affected by temperature; at higher spore densities, pustule production was greatest between 9 to 11 degrees C, and numbers of pustules decreased greatly with temperature increasing above this optimum. Latent period was affected by temperature, with latent period being shortet between 19 and 22 degrees C, and latent period increasing when temperature decreased. Latent periods became approximately 1.8 days shorter for every 10-fold increase in spore density. The rate of pustule production increased with increasing spore density on leaves and was greatest between 11 to 14 degrees C. Computer simulation of leek rust progress based on the found relationships suggested that at optimal temperatures the development of leek rust epidemics may be little affected by initial spore density and density caused by each pustule, but that at sub- and supra-optimal temperatures the development is greatly affected by these variables.  相似文献   

14.
Splash dispersal of Fusarium culmorum and Fusarium poae spores was studied, using inoculated straw placed on tiles as the inoculum source to infect agar strips and artificially produced leaves. In addition, patterns of spread were studied with spores from inoculated artificial leaves onto agar strips. Observed patterns of spore dispersal for each species were indistinguishable, although F. culmorum produced fewer colonies than F. poae. Furthermore, spore dispersal from inoculated straw and artificial leaves were essentially identical, with one exception; colonies arose from single conidia when spread from artificial leaves, but consisted of clumps of conidia when derived from inoculated straw. Splash dispersal patterns of both species onto the upper- and undersides of artificial leaves were different. On the upperside of the leaf, most colonies were found at the tip, while on the underside of the leaf most colonies were found at the base of the leaf. This is the first time that artificially produced leaves have been used in splash dispersal experiments.  相似文献   

15.
ABSTRACT Sources of inoculum were investigated for dominant hosts of Phytophthora ramorum in a redwood forest. Infected trunks, twigs, and/or leaves of bay laurel (Umbellularia californica), tanoak (Lithocarpus densiflorus), and redwood (Sequoia sempervirens) were tested in the laboratory for sporangia production. Sporangia occurred on all plant tissues with the highest percentage on bay laurel leaves and tanoak twigs. To further compare these two species, field measurements of inoculum production and infection were conducted during the rainy seasons of 2003-04 and 2004-05. Inoculum levels in throughfall rainwater and from individual infections were significantly higher for bay laurel as opposed to tanoak for both seasons. Both measurements of inoculum production from bay laurel were significantly greater during 2004-05 when rainfall extended longer into the spring, while inoculum quantities for tanoak were not significantly different between the 2 years. Tanoak twigs were more likely to be infected than bay laurel leaves in 2003-04, and equally likely to be infected in 2004-05. These results indicate that the majority of P. ramorum inoculum in redwood forest is produced from infections on bay laurel leaves. Years with extended rains pose an elevated risk for tanoak because inoculum levels are higher and infectious periods continue into late spring.  相似文献   

16.
Two kinds of propagules play a role in Mycosphaerella graminicola dissemination: splash-dispersed pycnidiospores and airborne sexual ascospores. A method based on real-time polymerase chain reaction (PCR) assay and using Burkard spore traps was developed to quantify M. graminicola airborne inoculum. The method was tested for its reliability and applied in a spore trap network over a 2-year period in order to investigate the spatio-temporal distribution of airborne inoculum in Belgium. At four experimental sites, airborne inoculum was detected in both years. A seasonal distribution was observed, with the highest mean daily quantities (up to 351.0 cDNA) trapped in July and with clusters detected from September to April. The first year of trapping, a mean daily quantity of 15.7 cDNA of M. graminicola airborne inoculum was also detected in the air above a building in a city where the spatio-temporal distribution showed a similar pattern to that in the field. Mean daily quantities of up to 60.7 cDNA of airborne inoculum were measured during the cereal stem elongation and flowering stages, suggesting that it contributes to the infection of upper leaves later in the season. Most detection, however, tended to occur between flowering and harvest, suggesting significant production of pseudothecia during that period. Variations in mean daily quantities from 1.0 to 48.2 cDNA were observed between sites and between years in the patterns of airborne inoculum. After stem elongation, the quantities detected at a site were positively correlated with the disease pressure in the field. Quantities trapped at beginning of the growing season were also well correlated with the disease level the previous year. Multiple regressions revealed that some factors partly explain the daily variations of airborne inoculum.  相似文献   

17.
Epidemics of the obligate biotrophic fungus Puccinia lagenophorae might be used to control populations of the annual plant, groundsel, Senecio vulgaris . Insight into the mechanisms of survival of P. lagenophorae over winter may help to explain the number of inoculum sources, and their strength (assessed by number and size of pustules), present in an S. vulgaris population in spring, indicating the probability and rate of progress of a subsequent epidemic. Results of the study indicated survival of the rust as mycelium within the host over winter. Survival outside the host is unlikely, because aecidiospores lost their capacity to germinate over winter and teliospores have not been reported to be infectious. Survival of S. vulgaris plants over winter was reduced by rust infection in autumn. The mortality of S. vulgaris was 30–100% depending on the date of infection. All plants infected early in autumn died but those infected late in autumn were more likely to survive. In turn, poor survival of the host impacted on the survival of P. lagenophorae over winter. Consequently, the results of the study suggest that no inoculum sources, or only a few weak ones, are present in vulgaris populations in spring. This suggestion was supported by observations of an S. vulgaris population at a ruderal site. Therefore, research on biological weed control should focus on increasing the negative impact of P. lagenophorae on S. vulgaris populations while augmenting the probability of survival of the rust over winter to start new epidemics in spring.  相似文献   

18.
The pattern of development of pycnidia and perithecia of Mycosphaerella pinodes was studied in the glasshouse on pea plants (cv. Solara) sprayed with a pycnospore suspension and in field plots inoculated with barley grains colonized by the fungus. The numbers of pycnidia and perithecia were estimated on each stipule and internode of infected plants, and were related to ratings of disease severity (0–5 scale). Pycnidia were produced on both green and senescent organs, whereas perithecia only appeared on senescent organs. The development and quantity of pycnidia were related to initial inoculum concentration and the physiological stage of the plants. The formation of fruiting bodies progressed from the bottoms to the tops of plants during crop development. Spore trapping showed that both pycnospore dispersal and ascospore discharge were initiated by rainfall or dew. Pycnospores were principally trapped in the first 20 cm above the soil surface while ascospores were also trapped above the crop canopy. Pycnospores and ascospores were dispersed throughout the growing season, suggesting that ascospores also play an important role in secondary infections.  相似文献   

19.
A compartmental model was developed to describe the progress with time of light leaf spot ( Pyrenopeziza brassicae ) on leaves of winter oilseed rape ( Brassica napus ) during the autumn in the UK. Differential equations described the transition between the four compartments: healthy susceptible leaves, infected symptomless leaves, sporulating symptomless leaves and leaves with necrotic light leaf spot lesions, respectively. The model was fitted to data on the progress of light leaf spot on winter oilseed rape at a single site during the autumn of the 1990–1991 season. Model parameters were used to describe rates of leaf appearance, leaf death, infection by airborne ascospores (primary inoculum) and infection by splash-dispersed conidiospores (secondary inoculum). Infection was dependent on sufficient leaf wetness duration. The model also included delay terms for the latent period between infection and sporulation and the incubation period between infection and the appearance of necrotic light leaf spot lesions. This modified SEIR model formulation gave a reasonable fit to the experimental data. Sensitivity analysis showed that varying the parameter accounting for the rate of infection by ascospores affected the magnitude of the curves after the start of the epidemic, whilst including a parameter for conidiospore infection improved the fit to the data. Use of ascospore counts from different sites and different years showed variation in spore release patterns sufficient to affect model predictions.  相似文献   

20.
This paper reports the development of a new specific diagnostic technique to accurately quantify airborne inoculum of Sclerotinia sclerotiorum and discusses its potential use in disease-forecasting schemes, using examples of three contrasting epidemic seasons: 2007, when there was a severe epidemic of sclerotinia stem rot (SSR) in England and high numbers of airborne ascospores were trapped at Rothamsted, and, in contrast, 2003 and 2004, when the incidence of SSR in England was low and low numbers of airborne ascospores were trapped at Rothamsted. DNA was extracted from wax-coated plastic tapes, such as those used in Burkard (Hirst-type) spore traps and rotating-arm traps. A SYBR-green quantitative PCR (qPCR) method produced a linear relationship between ascospore numbers and S. sclerotiorum DNA (mean 0·35 pg DNA per spore) and was able to detect DNA representing as few as two ascospores. The technique was insensitive to DNA of the host plant, Brassica napus , and other plant pathogens, including Sclerotinia minor , S. trifoliorum and Botrytis cinerea , and common airborne fungal genera such as Cladosporium and Penicillium . There was no relationship between rainfall and numbers of airborne ascospores of S. sclerotiorum present at Rothamsted during the period of infection in the severe SSR season (2007).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号